Beispiel #1
0
    def get_preferred_direction(self, beam):
        # Obtain the moment vector
        u1, u2, u3 = beam.global_default_axes()
        m11, m22, m33 = self.get_moment_magnitudes(beam.name)

        # Quick debugging - making sure the torsion doesn't get too high
        if not helpers.compare(m11, 0, 4):
            #pdb.set_trace()
            pass

        # Sum m22 and m33 (m11 is torsion, which doesn't play a role in the direction)
        moment_vector = helpers.sum_vectors(helpers.scale(m22, u2),
                                            helpers.scale(m33, u3))
        '''
    Cross axis-1 with the moment vector to obtain the positive clockwise direction
    This keeps the overall magnitude of moment_vector since u1 is a unit vector
      We are always attempting to repair further up the broken beam (closer to 
      the j-end). The cross will always give us the vector in the right direction
      if we do it this way.
    '''
        twist_direction = helpers.cross(moment_vector, u1)

        # Project the twist direction onto the xy-plane and normalize to have a
        # maximum of 45 degree approach (or, as specified in the variables.py)
        # depending on the ratio of moment magnitude to max_magnitude
        xy_change = (twist_direction[0], twist_direction[1], 0)

        # The rotation is parallel to the z-axis, so we don't add disturbance
        if helpers.compare(helpers.length(xy_change), 0):
            # Return the normal direction - which way is the beam leaning???
            return super(MomentAwareBuilder,
                         self).get_preferred_direction(beam)

        # We know the direction in which the beam is turning
        else:
            # Get direction of travel (this is a unit vector)
            travel = super(MomentAwareBuilder,
                           self).get_preferred_direction(beam)

            # Normalize twist to the maximum moment of force -- structure_check
            normal = helpers.normalize(xy_change,
                                       BConstants.beam['structure_check'])

            # The beam is vertical - check to see how large the normalized moment is
            if travel is None:
                # The change is relatively small, so ignore it
                if helpers.length(normal) <= helpers.ratio(
                        BConstants.beam['verticality_angle']):
                    return travel
                else:
                    return helpers.make_unit(normal)

            else:
                scalar = 1 / helpers.ratio(BConstants.beam['moment_angle_max'])
                scaled_travel = helpers.scale(scalar, travel)
                return helpesr.make_unit(
                    helpers.sum_vectors(normal, scaled_travel))
Beispiel #2
0
    def global_default_axes(self):
        '''
    Returns the default local axes. Later on we might incorporate the ability to return
    rotated axes.
    '''
        axis_1 = helpers.make_unit(
            helpers.make_vector(self.endpoints.i, self.endpoints.j))
        vertical = (math.sin(
            math.radians(helpers.smallest_angle(axis_1, (0, 0, 1)))) <= 0.001)

        # Break up axis_1 into unit component vectors on 1-2 plane, along with
        # their maginitudes
        u1, u2 = (axis_1[0], axis_1[1], 0), (0, 0, axis_1[2])
        l1, l2 = helpers.length(u1), helpers.length(u2)
        u1 = helpers.make_unit(u1) if not helpers.compare(l1, 0) else (1, 1, 0)
        u2 = helpers.make_unit(u2) if not helpers.compare(l2, 0) else (0, 0, 1)

        # Calculate axis_2 by negating and flipping componenet vectors of axis_1
        axis_2 = (1, 0, 0) if vertical else helpers.make_unit(
            helpers.sum_vectors(helpers.scale(-1 *
                                              l2, u1), helpers.scale(l1, u2)))

        # Make it have a positive z-component
        axis_2 = axis_2 if axis_2[2] > 0 else helpers.scale(-1, axis_2)

        # Calculate axis_3 by crossing axis 1 with axis 2 (according to right hand
        # rule)
        axis_3 = helpers.cross(axis_1, axis_2)
        axis_3 = helpers.make_unit(
            (axis_3[0], axis_3[1], 0)) if vertical else axis_3

        # Sanity checks
        # Unit length
        assert helpers.compare(helpers.length(axis_3), 1)

        # On the x-y plane
        assert helpers.compare(axis_3[2], 0)

        return axis_1, axis_2, axis_3
Beispiel #3
0
  def global_default_axes(self):
    '''
    Returns the default local axes. Later on we might incorporate the ability to return
    rotated axes.
    '''
    axis_1 = helpers.make_unit(helpers.make_vector(self.endpoints.i,
      self.endpoints.j))
    vertical = (math.sin(math.radians(helpers.smallest_angle(axis_1,(0,0,1)))) 
      <= 0.001)

    # Break up axis_1 into unit component vectors on 1-2 plane, along with 
    # their maginitudes
    u1, u2 = (axis_1[0],axis_1[1],0),(0,0,axis_1[2])
    l1,l2 = helpers.length(u1), helpers.length(u2)
    u1 = helpers.make_unit(u1) if not helpers.compare(l1,0) else (1,1,0) 
    u2 = helpers.make_unit(u2) if not helpers.compare(l2,0) else (0,0,1)

    # Calculate axis_2 by negating and flipping componenet vectors of axis_1
    axis_2 = (1,0,0) if vertical else helpers.make_unit(helpers.sum_vectors(
      helpers.scale(-1 * l2,u1),helpers.scale(l1,u2)))

    # Make it have a positive z-component
    axis_2 = axis_2 if axis_2[2] > 0 else helpers.scale(-1,axis_2)

    # Calculate axis_3 by crossing axis 1 with axis 2 (according to right hand
    # rule)
    axis_3 = helpers.cross(axis_1,axis_2)
    axis_3 = helpers.make_unit((axis_3[0],axis_3[1],0)) if vertical else axis_3

    # Sanity checks
    # Unit length
    assert helpers.compare(helpers.length(axis_3),1)

    # On the x-y plane
    assert helpers.compare(axis_3[2],0)

    return axis_1,axis_2,axis_3