Beispiel #1
0
def grab2d( im, dark, nsigma=3., blocksize=256 ):
    """ returns the fabio image adding 
    .corr = corrected data
    .sparseframe = segmented spots
    """
    data = np.empty( im.size, np.float32 ) # corrected data
    msk =  np.empty( im.shape, 'b' )  # mask
    csk =  np.empty( im.shape, 'b' )  # cleaned mask
    # subtract the background
    shape0 = im.shape
    data.shape = data.size
    dark.shape = dark.size
    im.shape = im.size
    cImageD11.uint16_to_float_darksub( data, dark, im )
    # compute the mean and std of the data trimming at nsigma
    avg, std = cImageD11.array_mean_var_cut( data, nsigma )
    threshold = avg + nsigma * std
    # remove the readout drift
    data.shape = im.size // blocksize, blocksize
    cImageD11.frelon_lines( data, threshold )
    data.shape = shape0
    dark.shape = shape0
    im.shape = shape0
    # threshold and clean
    nnz = cImageD11.make_clean_mask( data, threshold, msk, csk )
    row = np.empty( nnz, np.uint16 )
    col = np.empty( nnz, np.uint16 )
    tmp = np.empty( shape0[0], 'i' )
    cImageD11.mask_to_coo( csk, row, col, tmp )
    header = { 'threshold' : threshold,
               }
    spar = sparseframe.from_data_mask( csk, data, header )
    return spar, data
Beispiel #2
0
def threshold_image(im,
                    nsigma=2,
                    fix_lines=False,
                    mskmem=None,
                    block=256,
                    verbose=0):
    """
    Process one single image (numpy array)
    """
    if fix_lines:
        im = fix_frelon_lines(im, block=block, nsigma=nsigma)
        if verbose: print("fixed lines")
    cut, val = sigma_cut(im, nsigma)
    if verbose:
        print("cut,val: ", cut, val)
    mask = im > cut
    if verbose:
        print("mask raw:", mask.sum())
    npx, clean_mask = binary_clean(mask, out=mskmem)
    i = np.empty(npx, np.uint16)
    j = np.empty(npx, np.uint16)
    tmp = np.empty(im.shape[0], np.int32)
    ok = cImageD11.mask_to_coo(clean_mask.astype(np.int8), i, j, tmp)
    if verbose:
        print("mask clean", clean_mask.sum())
    assert ok == 0
    print(i.shape, j.shape, clean_mask.sum())
    frm = sparse_frame(i,
                       j,
                       im.shape,
                       itype=np.uint16,
                       pixels={'data': im[clean_mask.astype(np.bool)]})
    return frm
Beispiel #3
0
def from_data_mask(mask, data, header):
    """
    Create a sparse from a dense array
    """
    assert mask.shape == data.shape
    # using uint16 here - perhaps make this general in the future
    # ... but not for now
    assert data.shape[0] < pow(2, 16) - 1
    assert data.shape[1] < pow(2, 16) - 1
    nnz = (mask > 0).sum()
    tmp = np.empty(data.shape[0], 'i')  # tmp hold px per row cumsums
    row = np.empty(nnz, np.uint16)
    col = np.empty(nnz, np.uint16)
    cImageD11.mask_to_coo(mask, row, col, tmp)
    intensity = data[mask > 0]
    #    intensity.attrs = dict(header) # FIXME USE xarray ?
    spf = sparse_frame(row, col, data.shape, itype=np.uint16)
    spf.set_pixels("intensity", intensity, dict(header))
    return spf
Beispiel #4
0
 def test_coo2(self):
     npx = self.src.sum()
     i = np.empty(npx, np.uint16)
     j = np.empty(npx, np.uint16)
     tmp = np.empty(self.target.shape[0], np.int32)
     ok = cImageD11.mask_to_coo(self.src.astype(np.int8), i, j, tmp)
     self.assertTrue(ok == 0)
     pi, pj = py_coo(self.src)
     self.assertTrue((pi == i).all())
     self.assertTrue((pj == j).all())
Beispiel #5
0
def from_data_mask(mask, data, header):
    """
    Create a sparse from a dense array
    """
    assert mask.shape == data.shape
    # using uint16 here - perhaps make this general in the future
    # ... but not for now
    assert data.shape[0] < pow(2, 16) - 1
    assert data.shape[1] < pow(2, 16) - 1
    nnz = (mask > 0).sum()
    tmp = np.empty(data.shape[0], 'i')  # tmp hold px per row cumsums
    row = np.empty(nnz, np.uint16)
    col = np.empty(nnz, np.uint16)
    cImageD11.mask_to_coo(mask, row, col, tmp)
    intensity = data[mask > 0]
    return sparse_frame(row,
                        col,
                        data.shape,
                        itype=np.uint16,
                        pixels={"intensity": Container(intensity, **header)})
def apply_threshold(series, nsigma):
    """ converts the data to sparse array """
    msk = None
    for img in series:
        if msk is None:
            msk = np.empty(img.data.shape, np.uint8)
            cln = np.empty(img.data.shape, np.uint8)
            tmp = np.empty(img.data.shape[0], 'i')
            row = np.empty(img.data.size, np.uint16)
            col = np.empty(img.data.size, np.uint16)
        a, s = cImageD11.array_mean_var_cut(img.smoothed, nsigma)
        nnz = cImageD11.make_clean_mask(img.smoothed, a + nsigma * s, msk, cln)
        cImageD11.mask_to_coo(cln, row[:nnz], col[:nnz], tmp)
        header = {"filename": img.filename}
        img.mask = cln
        intensity = sparseframe.Container(img.signal[cln > 0], **header)
        img.sparseframe = sparseframe.sparse_frame(
            row[:nnz],
            col[:nnz],
            img.data.shape,
            itype=np.uint16,
            pixels={"intensity": intensity})
        yield img