Beispiel #1
0
    width = w.factory('%s_effsigma[3, 0.1, 20]' % pdfname)
    pdf = ParametrizedKeysPdf(pdfname + '_pkeys', pdfname + '_pkyes',
                              mmgMass, peak, width, sdata,
                              ROOT.RooKeysPdf.NoMirror, 1.5)
    savrange = (mmgMass.getMin(), mmgMass.getMax())
    normrange = (40, 130)
    fitrange = (60, 120)
    mmgMass.setRange(*fitrange)
    peak.setVal(pdf.shapemode)
    width.setVal(pdf.shapewidth)
    pdf.fitTo(sdata, roo.Range(*fitrange), roo.Strategy(2))
    w.Import(pdf)
    ## peak.setConstant()
    ## width.setConstant()

    hist = pdf.createHistogram(pdfname + '_hist', mmgMass, roo.Binning(1000))
    dhist = ROOT.RooDataHist(pdfname + '_dhist', pdfname + '_hist',
                             ROOT.RooArgList(mmgMass), hist)
    w.Import(dhist)
    hpdf = w.factory('HistPdf::{name}({{mmgMass}}, {name}_dhist, 1)'.format(
        name=pdfname
        ))
    ## bdata = data.reduce(ROOT.RooArgSet(mmgMass))
    ## bdata = bdata.binnedClone(data.GetName() + '_binned', data.GetTitle())
    ## pdf = ROOT.RooHistPdf(pdfname, pdfname, ROOT.RooArgSet(mmgMass), bdata, 2)
    pdf.Print()
    # w.Import(pdf)
    rpdflist.append(pdfname)
    ## Store the target parameters in the workspaces
    phoScaleTarget.setVal(starget)
    phoResTarget.setVal(rtarget)
Beispiel #2
0
    def __init__(self, name, title, mass, phos, phor, data, workspace, 
                 phostarget, phortargets, rho=1.5,
                 mirror=ROOT.RooKeysPdf.NoMirror,
                 mrangetrain=(40,140), mrangenorm=(50,130), mrangefit=(60,120)):
        '''PhosphorModel4(str name, str title, RooRealVar mass, RooRealVar phos,
            RooRealVar phor, RooDataSet data, float phostarget,
            [float] phortargets, float rho=1.5,
            int mirror=ROOT.RooKeysPdf.NoMirror)
        name - PDF name
        title - PDF title
        mass - mumugamma invariant mass (GeV), observable
        phos - photon energy scale (%), parameter
        phor - photon energy resolution (%), paramter
        data - (mmMass, mmgMass, phoERes = 100*(phoEreco/phoEgen - 1), dataset
            on which the shapes of reference PDFs are trained.
        phostarget - target reference value of the photon energy scale at which
            the model is being trained
        phortargetss - a list of target photon energy resolution values for the
            moment morphing
        rho - passed to trained RooKeysPdfs
        mirror - passed to trained RooKeysPdfs        
        '''
        ## Attach args.
        self._name = name
        self._title = title
        self._mass = mass
        self._phos = phos
        self._phor = phor
        self._data = data
        self._phostarget = phostarget
        self._phortargets = phortargets[:]
        self._rho = rho
        self._mirror = mirror
        ## Attach other attributes.
        self._massrange = (mass.getMin(), mass.getMax())
        self._sdata_list = []
        self._phostrue_list = []
        self._phortrue_list = []
        self._dlogm_dphos_list = []
        self._msubs_list = []
        self._keys_pdfs = []
        self._keys_modes = []
        self._keys_effsigmas = []
        self._keys_fitresults = []
        self._pdfs = []
        self._custs = []
        self._pdfrefs = []
        self._mrefs = []
        self._workspace = workspace
        ## self._workspace = ROOT.RooWorkspace(name + '_workspace',
        ##                                     title + ' workspace')
        w = self._workspace
        self.w = w
        ## Import important args in workspace.
        # w.Import(ROOT.RooArgSet(mass, phos, phor))
        w.Import(mass)
        w.Import(phos)
        w.Import(phor)
        w.Import(self._data)
        w.factory(
            'ConstVar::{name}_phostarget({value})'.format(
                name=name, value=self._phostarget
                )
            )
        ## Define the morphing parameter. This an identity with the
        ## photon resolution for now.
        mpar = self._mpar = w.factory(            
            'expr::{name}_mpar("{phor}", {{{phor}}})'.format(
            ## 'expr::{name}_mpar("sqrt(3^2 + {phor}^2)", {{{phor}}})'.format(
            ## 'expr::{name}_mpar("2.325+sqrt(0.4571 + (0.1608*{phor})^2)", {{{phor}}})'.format(
                name=name, phor=phor.GetName()
                )
            )
        ## Define the formula for dlog(m)/dphos.
        self._dlogm_dphos_func = w.factory('''
            expr::dlogm_dphos_func("0.5 * (1 - mmMass^2 / mmgMass^2) * mmgMass",
                                   {mmMass, mmgMass})
            ''')
        ## Get the calibrator.
        self._calibrator = MonteCarloCalibrator(self._data)
        ## Loop over target reference photon energy resolutions in phortargets.
        for index, phortarget in enumerate(self._phortargets):
            ## Store the target photon resolution value.
            w.factory(
                'ConstVar::{name}_phortarget_{index}({value})'.format(
                    name=name, index=index, value=phortarget
                    )
                )

            ## Get the corresponding smeared RooDataSet sdata named
            ##     {name}_sdata_{index} and attach it to self._sdata
            sdata = self._calibrator.get_smeared_data(
                self._phostarget, phortarget, name + '_sdata_%d' % index,
                title + ' sdata %d' % index,
                ## Get the true scale and resolution with errors. (This can be
                ##     added to the calibrator and snapshots of
                ##     self._calibrator.s and self._calibrator.r stored as
                ##     {name}_sdata_{index}_sr in self._calibrator.w)
                dofit=True
                )
            self._sdata_list.append(sdata)
            w.Import(sdata)
            phostrue = ROOT.RooRealVar(self._calibrator.s,
                                       name + '_phostrue_%d' % index)
            phortrue = ROOT.RooRealVar(self._calibrator.r,
                                       name + '_phortrue_%d' % index)
            phostrue.setConstant(True)
            phortrue.setConstant(True)
            self._phostrue_list.append(phostrue)
            self._phortrue_list.append(phortrue)
            w.Import(phostrue)
            w.Import(phortrue)            

            ## Calculate the dlogm/dphos {name}_dlogm_dphos_{index}
            ##     for the smeared dataset.
            sdata.addColumn(self._dlogm_dphos_func)
            dlogm_dphos = w.factory(
                '''
                {name}_dlogm_dphos_{index}[{mean}, 0, 1]
                '''.format(name=name, index=index,
                           mean=sdata.mean(sdata.get()['dlogm_dphos_func']))
                )
            dlogm_dphos.setConstant(True)
            self._dlogm_dphos_list.append(dlogm_dphos)

            ## Define the mass scaling {name}_msubs{i} introducing
            ##     the dependence on phos. This needs self._calibrator.s and
            ##     dlogm_dphos.
            ## msubs = w.factory(
            ##     '''
            ##     cexpr::{msubs}(
            ##         "{mass}*(1 - 0.01 * {dlogm_dphos} * ({phos} - {phostrue}))",
            ##         {{ {mass}, {dlogm_dphos}, {phos}, {phostrue} }}
            ##         )
            ##     '''.format(msubs = name + '_msubs_%d' % index,
            ##                mass = self._mass.GetName(),
            ##                dlogm_dphos = dlogm_dphos.GetName(),
            ##                phos = self._phos.GetName(),
            ##                phostrue = phostrue.GetName())
            ## )
            ## msubs = w.factory(
            ##     '''
            ##     LinearVar::{msubs}(
            ##         {mass},
            ##         expr::{slope}(
            ##             "(1 - 0.01 * {dlogm_dphos} * ({phos} - {phostrue}))",
            ##             {{ {dlogm_dphos}, {phos}, {phostrue} }}
            ##             ),
            ##         0
            ##         )
            ##     '''.format(msubs = name + '_msubs_%d' % index,
            ##                slope = name + '_msubs_slope_%d' % index,
            ##                mass = self._mass.GetName(),
            ##                dlogm_dphos = dlogm_dphos.GetName(),
            ##                phos = self._phos.GetName(),
            ##                phostrue = phostrue.GetName())
            ## )
            msubs = w.factory(
                '''
                LinearVar::{msubs}(
                    {mass}, 1,
                    expr::{offset}(
                        "- 0.01 * {dlogm_dphos} * ({phos} - {phostrue})",
                        {{ {dlogm_dphos}, {phos}, {phostrue} }}
                        )
                    )
                '''.format(msubs = name + '_msubs_%d' % index,
                           offset = name + '_msubs_offset_%d' % index,
                           mass = self._mass.GetName(),
                           dlogm_dphos = dlogm_dphos.GetName(),
                           phos = self._phos.GetName(),
                           phostrue = phostrue.GetName())
            )
            self._msubs_list.append(msubs)
            
            ## Build the corresponding parametrized KEYS PDF {name}_kyes_{index}
            ##     with {name}_keys_mode_{index} and
            ##     {name}_keys_effsigma_{index}.
            keys_mode = w.factory(
                '{name}_keys_mode_{index}[91.2, 60, 120]'.format(
                    name=name, index=index
                    )
                )
            keys_effsigma = w.factory(
                '{name}_keys_effsigma_{index}[3, 0.1, 60]'.format(
                    name=name, index=index
                    )
                )
            mass.setRange(*mrangetrain)
            keys_pdf = ParametrizedKeysPdf(name + '_keys_pdf_%d' % index,
                                           name + '_keys_pdf_%d' % index,
                                           mass, keys_mode, keys_effsigma,
                                           sdata)
            self._keys_modes.append(keys_mode)
            self._keys_effsigmas.append(keys_effsigma)
            self._keys_pdfs.append(keys_pdf)
                                       
            ## Fit the KEYS PDF to the training data and save the result
            ##     {name}_keys_fitresult_{index} and parameter snapshots
            ##     {name}_keys_mctrue_{index}.
            mass.setRange(*mrangenorm)
            keys_fitresult = keys_pdf.fitTo(sdata, roo.Range(*mrangefit),
                                            roo.Strategy(2), roo.NumCPU(8),
                                            roo.Save(True))
            self._keys_fitresults.append(keys_fitresult)
            w.Import(keys_fitresult, name + '_keys_fitresult_%d' % index)
            w.saveSnapshot(name + '_mctrue_%d' % index,
                           ','.join([phostrue.GetName(),
                                     phortrue.GetName(),
                                     keys_mode.GetName(),
                                     keys_effsigma.GetName()]))
            
            ## Sample the fitted KEYS PDF to a histogram {name}_hist_{index}.
            mass.setRange(*mrangetrain)
            hist = keys_pdf.createHistogram(name + '_hist_%d' % index,
                                            mass, roo.Binning(1000))

            ## Build a RooDataHist {name}_dhist{index} of the sampled histogram.
            dhist = ROOT.RooDataHist(name + '_dhist_%d' % index,
                                     name + '_dhist_%d' % index,
                                     ROOT.RooArgList(mass), hist)
            w.Import(dhist)
            
            ## Build a RooHistPdf {name}_pdf_{index} using the dhist and msubs.
            ## pdf = w.factory(
            ##     'HistPdf::{name}({{{msubs}}}, {{{mass}}}, {dhist}, 1)'.format(
            ##         name = name + '_pdf_%d' % index, msubs = msubs.GetName(),
            ##         mass = mass.GetName(), dhist = dhist.GetName()
            ##         )
            ##     )
            pdf = w.factory(
                'HistPdf::{name}({{{mass}}}, {dhist}, 1)'.format(
                    name = name + '_pdf_%d' % index, msubs = msubs.GetName(),
                    mass = mass.GetName(), dhist = dhist.GetName()
                    )
                )
            self._pdfs.append(pdf)
            mass.setRange(*self._massrange)

            ## Supstitute for mass using customizer.
            cust = ROOT.RooCustomizer(pdf, 'msubs_%d' % index)
            self._custs.append(cust)
            cust.replaceArg(mass, msubs)
            pdfref = cust.build()
            pdfref.addOwnedComponents(ROOT.RooArgSet(msubs))
            pdfref.SetName(name + '_pdfref_%d' % index)
            pdfref.SetTitle(name + '_pdfref_%d' % index)
            w.Import(pdfref)
            self._pdfrefs.append(pdfref)
            
            ## Calculate morphing parameter reference values float mref[index].
            phorval = phor.getVal()
            phor.setVal(phortrue.getVal())
            self._mrefs.append(mpar.getVal())
            phor.setVal(phorval)
        ## End of loop over target phortargets

        ## Define the RooMomentMorph model.
        model = w.factory(
            '''
            MomentMorph::{name}({mpar}, {{{mass}}}, {{{pdfs}}}, {{{mrefs}}})
            '''.format(name=name, mpar=mpar.GetName(), mass=mass.GetName(),
                       pdfs=','.join([f.GetName() for f in self._pdfs]),
                       # pdfs=','.join([f.GetName() for f in self._pdfrefs]),
                       mrefs=','.join([str(m) for m in self._mrefs]))
            )
        
        ## Quick hack to make things work.
        cust = ROOT.RooCustomizer(model, 'msub')
        cust.replaceArg(mass, self._msubs_list[0])
        model2 = cust.build()
        
        ROOT.RooMomentMorph.__init__(self, model2)
        self.SetName(name)
        self.SetTitle(title)
Beispiel #3
0
    def __init__(self,
                 name,
                 title,
                 mass,
                 phos,
                 phor,
                 data,
                 workspace,
                 phostarget,
                 phortargets,
                 rho=1.5,
                 mirror=ROOT.RooKeysPdf.NoMirror,
                 mrangetrain=(40, 140),
                 mrangenorm=(50, 130),
                 mrangefit=(60, 120)):
        '''PhosphorModel4(str name, str title, RooRealVar mass, RooRealVar phos,
            RooRealVar phor, RooDataSet data, float phostarget,
            [float] phortargets, float rho=1.5,
            int mirror=ROOT.RooKeysPdf.NoMirror)
        name - PDF name
        title - PDF title
        mass - mumugamma invariant mass (GeV), observable
        phos - photon energy scale (%), parameter
        phor - photon energy resolution (%), paramter
        data - (mmMass, mmgMass, phoERes = 100*(phoEreco/phoEgen - 1), dataset
            on which the shapes of reference PDFs are trained.
        phostarget - target reference value of the photon energy scale at which
            the model is being trained
        phortargetss - a list of target photon energy resolution values for the
            moment morphing
        rho - passed to trained RooKeysPdfs
        mirror - passed to trained RooKeysPdfs        
        '''
        ## Attach args.
        self._name = name
        self._title = title
        self._mass = mass
        self._phos = phos
        self._phor = phor
        self._data = data
        self._phostarget = phostarget
        self._phortargets = phortargets[:]
        self._rho = rho
        self._mirror = mirror
        ## Attach other attributes.
        self._massrange = (mass.getMin(), mass.getMax())
        self._sdata_list = []
        self._phostrue_list = []
        self._phortrue_list = []
        self._dm_dphos_list = []
        self._msubs_list = []
        self._keys_pdfs = []
        self._keys_modes = []
        self._keys_effsigmas = []
        self._keys_fitresults = []
        self._pdfs = []
        self._custs = []
        # self._pdfrefs = []
        self._mrefs = []
        self._phormorphs = []
        self._phorhists = []
        self._workspace = workspace
        ## self._workspace = ROOT.RooWorkspace(name + '_workspace',
        ##                                     title + ' workspace')
        w = self._workspace
        self.w = w
        ## Import important args in workspace.
        # w.Import(ROOT.RooArgSet(mass, phos, phor))
        w.Import(mass)
        w.Import(phos)
        w.Import(phor)
        w.Import(self._data)
        w.factory('ConstVar::{name}_phostarget({value})'.format(
            name=name, value=self._phostarget))
        ## Define the morphing parameter. This an identity with the
        ## photon resolution for now.
        mpar = self._mpar = w.factory(
            'expr::{name}_mpar("{phor}", {{{phor}}})'.format(
                ## 'expr::{name}_mpar("2 + sqrt(0.5^2 + 0.05 * {phor}^2)", {{{phor}}})'.format(
                ## 'expr::{name}_mpar("2.325+sqrt(0.4571 + (0.1608*{phor})^2)", {{{phor}}})'.format(
                name=name,
                phor=phor.GetName()))
        ## Define the formula for dlog(m)/dphos.
        self._dm_dphos_func = w.factory('''
            expr::dm_dphos_func("0.5 * (1 - mmMass^2 / mmgMass^2) * mmgMass",
                                   {mmMass, mmgMass})
            ''')
        ## Get the calibrator.
        self._calibrator = MonteCarloCalibrator(self._data)
        ## Loop over target reference photon energy resolutions in phortargets.
        for index, phortarget in enumerate(self._phortargets):
            ## Store the target photon resolution value.
            w.factory('ConstVar::{name}_phortarget_{index}({value})'.format(
                name=name, index=index, value=phortarget))

            ## Get the corresponding smeared RooDataSet sdata named
            ##     {name}_sdata_{index} and attach it to self._sdata
            sdata = self._calibrator.get_smeared_data(
                self._phostarget,
                phortarget,
                name + '_sdata_%d' % index,
                title + ' sdata %d' % index,
                ## Get the true scale and resolution with errors. (This can be
                ##     added to the calibrator and snapshots of
                ##     self._calibrator.s and self._calibrator.r stored as
                ##     {name}_sdata_{index}_sr in self._calibrator.w)
                dofit=True)
            self._sdata_list.append(sdata)
            w.Import(sdata)
            phostrue = ROOT.RooRealVar(self._calibrator.s,
                                       name + '_phostrue_%d' % index)
            phortrue = ROOT.RooRealVar(self._calibrator.r,
                                       name + '_phortrue_%d' % index)
            phostrue.setConstant(True)
            phortrue.setConstant(True)
            self._phostrue_list.append(phostrue)
            self._phortrue_list.append(phortrue)
            w.Import(phostrue)
            w.Import(phortrue)

            ## Calculate the dlogm/dphos {name}_dm_dphos_{index}
            ##     for the smeared dataset.
            sdata.addColumn(self._dm_dphos_func)
            dm_dphos = w.factory('''
                {name}_dm_dphos_{index}[{mean}, 0, 1]
                '''.format(name=name,
                           index=index,
                           mean=sdata.mean(sdata.get()['dm_dphos_func'])))
            dm_dphos.setConstant(True)
            self._dm_dphos_list.append(dm_dphos)

            ## Define the mass scaling {name}_msubs{i} introducing
            ##     the dependence on phos. This needs self._calibrator.s and
            ##     dm_dphos.
            ## msubs = w.factory(
            ##     '''
            ##     LinearVar::{msubs}(
            ##         {mass}, 1,
            ##         expr::{offset}(
            ##             "- 0.01 * {dm_dphos} * ({phos} - {phostrue})",
            ##             {{ {dm_dphos}, {phos}, {phostrue} }}
            ##             )
            ##         )
            ##     '''.format(msubs = name + '_msubs_%d' % index,
            ##                offset = name + '_msubs_offset_%d' % index,
            ##                mass = self._mass.GetName(),
            ##                dm_dphos = dm_dphos.GetName(),
            ##                phos = self._phos.GetName(),
            ##                phostrue = phostrue.GetName())
            ## )
            ## LinearVar cannot be persisted.
            msubs = w.factory('''
                expr::{msubs}(
                     "{mass} - 0.01 * {dm_dphos} * ({phos} - {phostrue})",
                     {{ {mass}, {dm_dphos}, {phos}, {phostrue} }}
                     )
                '''.format(msubs=name + '_msubs_%d' % index,
                           mass=self._mass.GetName(),
                           dm_dphos=dm_dphos.GetName(),
                           phos=self._phos.GetName(),
                           phostrue=phostrue.GetName()))
            self._msubs_list.append(msubs)

            ## Build the corresponding parametrized KEYS PDF {name}_kyes_{index}
            ##     with {name}_keys_mode_{index} and
            ##     {name}_keys_effsigma_{index}.
            keys_mode = w.factory(
                '{name}_keys_mode_{index}[91.2, 60, 120]'.format(name=name,
                                                                 index=index))
            keys_effsigma = w.factory(
                '{name}_keys_effsigma_{index}[3, 0.1, 60]'.format(name=name,
                                                                  index=index))
            mass.setRange(*mrangetrain)
            keys_pdf = ParametrizedKeysPdf(name + '_keys_pdf_%d' % index,
                                           name + '_keys_pdf_%d' % index,
                                           mass,
                                           keys_mode,
                                           keys_effsigma,
                                           sdata,
                                           rho=self._rho)
            self._keys_modes.append(keys_mode)
            self._keys_effsigmas.append(keys_effsigma)
            self._keys_pdfs.append(keys_pdf)

            ## Fit the KEYS PDF to the training data and save the result
            ##     {name}_keys_fitresult_{index} and parameter snapshots
            ##     {name}_keys_mctrue_{index}.
            mass.setRange(*mrangenorm)
            keys_fitresult = keys_pdf.fitTo(sdata, roo.Range(*mrangefit),
                                            roo.Strategy(2), roo.NumCPU(8),
                                            roo.Save(True))
            self._keys_fitresults.append(keys_fitresult)
            w.Import(keys_fitresult, name + '_keys_fitresult_%d' % index)
            w.saveSnapshot(
                name + '_mctrue_%d' % index, ','.join([
                    phostrue.GetName(),
                    phortrue.GetName(),
                    keys_mode.GetName(),
                    keys_effsigma.GetName()
                ]))

            ## Sample the fitted KEYS PDF to a histogram {name}_hist_{index}.
            mass.setRange(*mrangetrain)
            hist = keys_pdf.createHistogram(name + '_hist_%d' % index, mass,
                                            roo.Binning('cache'))

            ## Build a RooDataHist {name}_dhist{index} of the sampled histogram.
            dhist = ROOT.RooDataHist(name + '_dhist_%d' % index,
                                     name + '_dhist_%d' % index,
                                     ROOT.RooArgList(mass), hist)
            w.Import(dhist)

            ## Build a RooHistPdf {name}_pdf_{index} using the dhist and msubs.
            ## pdf = w.factory(
            pdf = w.factory('HistPdf::{name}({{{mass}}}, {dhist}, 1)'.format(
                name=name + '_pdf_%d' % index,
                msubs=msubs.GetName(),
                mass=mass.GetName(),
                dhist=dhist.GetName()))
            self._pdfs.append(pdf)
            mass.setRange(*self._massrange)

            ## Calculate morphing parameter reference values float mref[index].
            phorval = phor.getVal()
            phor.setVal(phortrue.getVal())
            self._mrefs.append(mpar.getVal())
            phor.setVal(phorval)
        ## End of loop over target phortargets

        ## Make the reference and cache binnings in phor
        self._check_phor_ranges()
        partitions = self._partition_binning(self._phor, 'cache', 'reference')

        ## Loop over phor reference bins and define pairwise RooMomentMorphs.
        for ilo in range(len(self._mrefs) - 1):
            ihi = ilo + 1
            mlo = self._mrefs[ilo]
            mhi = self._mrefs[ihi]
            pdflo = self._pdfs[ilo]
            pdfhi = self._pdfs[ihi]
            phormorph = w.factory('''
                MomentMorph::{name}_phormorph_{ilo}to{ihi}(
                    {mpar}, {{{mass}}}, {{{pdfs}}}, {{{mrefs}}}
                    )
                '''.format(name=name,
                           ilo=ilo,
                           ihi=ihi,
                           mpar=mpar.GetName(),
                           mass=mass.GetName(),
                           pdfs='%s, %s' % (pdflo.GetName(), pdfhi.GetName()),
                           mrefs='%f, %f' % (mlo, mhi)))
            self._phormorphs.append(phormorph)
            ## Sample the morph in a 2D histogram in mass and phor.
            phorhist = phormorph.createHistogram(
                name + '_phorhist_%dto%d' % (ilo, ihi), mass,
                roo.Binning('cache'),
                roo.YVar(phor, roo.Binning(partitions[ilo])))
            self._phorhists.append(phorhist)
        ## End of loop over phor reference bins.
        self._stitch_phorhists()
        self._phor_dhist = phor_dhist = ROOT.RooDataHist(
            name + '_phor_dhist', name + '_phor_dhist',
            ROOT.RooArgList(mass, phor), self._phorhist)

        average_index = (len(self._msubs_list) + 1) / 2
        msubs = self._msubs_list[average_index]

        ## self._model = model = ROOT.RooHistPdf(
        ##     name + '_phor_histpdf', name + '_phor_histpdf',
        ##     ROOT.RooArgList(msubs, phor), ROOT.RooArgList(mass, phor), phor_dhist, 2
        ##     )
        ## self._model = model = ROOT.RooPhosphorPdf(
        ##     name + '_phor_histpdf', name + '_phor_histpdf', mass, msubs, phor, phor_dhist, 2
        ##     )

        ## ## Quick hack to make things work.
        ## self._customizer = customizer = ROOT.RooCustomizer(model, 'msub')
        ## customizer.replaceArg(mass, msubs)
        ## model = customizer.build()

        # ROOT.RooHistPdf.__init__(self, model)
        ROOT.RooPhosphorPdf.__init__(self, name, title, mass, msubs, phos,
                                     phor, phor_dhist, 2)
        self.SetName(name)
        self.SetTitle(title)
Beispiel #4
0
    width = w.factory('%s_effsigma[3, 0.1, 20]' % pdfname)
    pdf = ParametrizedKeysPdf(pdfname + '_pkeys', pdfname + '_pkyes', mmgMass,
                              peak, width, sdata, ROOT.RooKeysPdf.NoMirror,
                              1.5)
    savrange = (mmgMass.getMin(), mmgMass.getMax())
    normrange = (40, 130)
    fitrange = (60, 120)
    mmgMass.setRange(*fitrange)
    peak.setVal(pdf.shapemode)
    width.setVal(pdf.shapewidth)
    pdf.fitTo(sdata, roo.Range(*fitrange), roo.Strategy(2))
    w.Import(pdf)
    ## peak.setConstant()
    ## width.setConstant()

    hist = pdf.createHistogram(pdfname + '_hist', mmgMass, roo.Binning(1000))
    dhist = ROOT.RooDataHist(pdfname + '_dhist', pdfname + '_hist',
                             ROOT.RooArgList(mmgMass), hist)
    w.Import(dhist)
    hpdf = w.factory(
        'HistPdf::{name}({{mmgMass}}, {name}_dhist, 1)'.format(name=pdfname))
    ## bdata = data.reduce(ROOT.RooArgSet(mmgMass))
    ## bdata = bdata.binnedClone(data.GetName() + '_binned', data.GetTitle())
    ## pdf = ROOT.RooHistPdf(pdfname, pdfname, ROOT.RooArgSet(mmgMass), bdata, 2)
    pdf.Print()
    # w.Import(pdf)
    rpdflist.append(pdfname)
    ## Store the target parameters in the workspaces
    phoScaleTarget.setVal(starget)
    phoResTarget.setVal(rtarget)
    w.saveSnapshot(pdfname, params, True)
mode4 = w.factory('mode4[91,60,120]')
mode8 = w.factory('mode8[91,60,120]')

seff4 = w.factory('seff4[4,0.1,50]')
seff8 = w.factory('seff8[4,0.1,50]')

pdf4 = ParametrizedKeysPdf('pdf4', 'pdf4', mmgMass, mode4, seff4,
                           sdata4, mirror, 1.5)
pdf8 = ParametrizedKeysPdf('pdf8', 'pdf8', mmgMass, mode8, seff8,
                           sdata8, mirror, 1.5)

mmgMass.setRange(50, 130)

pdf4.fitTo(sdata4, roo.Range(60, 120))
h4 = pdf4.createHistogram('h4', mmgMass, roo.Binning(1000))

pdf8.fitTo(sdata8, roo.Range(60, 120))
h8 = pdf8.createHistogram('h8', mmgMass, roo.Binning(1000))

d4 = ROOT.RooDataHist('d4', 'd4', ROOT.RooArgList(mmgMass), h4)
d8 = ROOT.RooDataHist('d8', 'd8', ROOT.RooArgList(mmgMass), h8)

f4 = ROOT.RooHistPdf('f4', 'f4', ROOT.RooArgSet(mmgMass), d4, 1)
f8 = ROOT.RooHistPdf('f8', 'f8', ROOT.RooArgSet(mmgMass), d8, 1)

w.Import(f4)
w.Import(f8)

fm = w.factory('MomentMorph::fm(phoRes, {mmgMass}, {f4, f8}, {4, 6})')