Beispiel #1
0
def sparse_init_from_random(
    n_neighbors,
    inds,
    indptr,
    data,
    query_inds,
    query_indptr,
    query_data,
    heap,
    rng_state,
    sparse_dist,
):
    for i in range(query_indptr.shape[0] - 1):
        indices = rejection_sample(n_neighbors, indptr.shape[0] - 1, rng_state)

        to_inds = query_inds[query_indptr[i]:query_indptr[i + 1]]
        to_data = query_data[query_indptr[i]:query_indptr[i + 1]]

        for j in range(indices.shape[0]):
            if indices[j] < 0:
                continue

            from_inds = inds[indptr[indices[j]]:indptr[indices[j] + 1]]
            from_data = data[indptr[indices[j]]:indptr[indices[j] + 1]]

            d = sparse_dist(from_inds, from_data, to_inds, to_data)
            heap_push(heap, i, d, indices[j], 1)
    return
Beispiel #2
0
def sparse_init_rp_tree(inds,
                        indptr,
                        data,
                        sparse_dist,
                        current_graph,
                        leaf_array,
                        tried=None):
    if tried is None:
        tried = set([(-1, -1)])

    for n in range(leaf_array.shape[0]):
        for i in range(leaf_array.shape[1]):
            p = leaf_array[n, i]
            if p < 0:
                break
            for j in range(i + 1, leaf_array.shape[1]):
                q = leaf_array[n, j]
                if q < 0:
                    break
                if (p, q) in tried:
                    continue

                from_inds = inds[indptr[p]:indptr[p + 1]]
                from_data = data[indptr[p]:indptr[p + 1]]

                to_inds = inds[indptr[q]:indptr[q + 1]]
                to_data = data[indptr[q]:indptr[q + 1]]
                d = sparse_dist(from_inds, from_data, to_inds, to_data)
                heap_push(current_graph, p, d, q, 1)
                tried.add((p, q))
                if p != q:
                    heap_push(current_graph, q, d, p, 1)
                    tried.add((q, p))
Beispiel #3
0
def nn_descent(
    data,
    n_neighbors,
    rng_state,
    max_candidates=50,
    dist=dist.euclidean,
    n_iters=10,
    delta=0.001,
    rho=0.5,
    rp_tree_init=True,
    leaf_array=None,
    low_memory=False,
    verbose=False,
):
    tried = set([(-1, -1)])

    current_graph = make_heap(data.shape[0], n_neighbors)
    for i in range(data.shape[0]):
        indices = rejection_sample(n_neighbors, data.shape[0], rng_state)
        for j in range(indices.shape[0]):
            d = dist(data[i], data[indices[j]])
            heap_push(current_graph, i, d, indices[j], 1)
            heap_push(current_graph, indices[j], d, i, 1)
            tried.add((i, indices[j]))
            tried.add((indices[j], i))

    if rp_tree_init:
        init_rp_tree(data, dist, current_graph, leaf_array, tried=tried)

    if low_memory:
        nn_descent_internal_low_memory(
            current_graph,
            data,
            n_neighbors,
            rng_state,
            max_candidates=max_candidates,
            dist=dist,
            n_iters=n_iters,
            delta=delta,
            rho=rho,
            verbose=verbose,
        )
    else:
        nn_descent_internal_high_memory(
            current_graph,
            data,
            n_neighbors,
            rng_state,
            tried,
            max_candidates=max_candidates,
            dist=dist,
            n_iters=n_iters,
            delta=delta,
            rho=rho,
            verbose=verbose,
        )

    return deheap_sort(current_graph)
Beispiel #4
0
def init_current_graph(data, dist, n_neighbors, rng_state):
    current_graph = make_heap(data.shape[0], n_neighbors)
    for i in range(data.shape[0]):
        indices = rejection_sample(n_neighbors, data.shape[0], rng_state)
        for j in range(indices.shape[0]):
            d = dist(data[i], data[indices[j]])
            heap_push(current_graph, i, d, indices[j], 1)
            heap_push(current_graph, indices[j], d, i, 1)
    return current_graph
Beispiel #5
0
def init_from_random(n_neighbors, data, query_points, heap, rng_state, dist):
    for i in range(query_points.shape[0]):
        indices = rejection_sample(n_neighbors, data.shape[0], rng_state)
        for j in range(indices.shape[0]):
            if indices[j] < 0:
                continue
            d = dist(data[indices[j]], query_points[i])
            heap_push(heap, i, d, indices[j], 1)
    return
Beispiel #6
0
def nn_descent_internal_low_memory(
    current_graph,
    data,
    n_neighbors,
    rng_state,
    max_candidates=50,
    dist=dist.euclidean,
    n_iters=10,
    delta=0.001,
    rho=0.5,
    verbose=False,
):
    n_vertices = data.shape[0]

    for n in range(n_iters):
        if verbose:
            print("\t", n, " / ", n_iters)

        (new_candidate_neighbors, old_candidate_neighbors) = new_build_candidates(
            current_graph, n_vertices, n_neighbors, max_candidates, rng_state, rho
        )

        c = 0
        for i in range(n_vertices):
            for j in range(max_candidates):
                p = int(new_candidate_neighbors[0, i, j])
                if p < 0:
                    continue
                for k in range(j, max_candidates):
                    q = int(new_candidate_neighbors[0, i, k])
                    if q < 0:
                        continue

                    d = dist(data[p], data[q])
                    c += heap_push(current_graph, p, d, q, 1)
                    if p != q:
                        c += heap_push(current_graph, q, d, p, 1)

                for k in range(max_candidates):
                    q = int(old_candidate_neighbors[0, i, k])
                    if q < 0:
                        continue

                    d = dist(data[p], data[q])
                    c += heap_push(current_graph, p, d, q, 1)
                    if p != q:
                        c += heap_push(current_graph, q, d, p, 1)

        if c <= delta * n_neighbors * data.shape[0]:
            return
Beispiel #7
0
def init_from_tree(tree, data, query_points, heap, rng_state, dist):
    for i in range(query_points.shape[0]):
        indices = search_flat_tree(
            query_points[i],
            tree.hyperplanes,
            tree.offsets,
            tree.children,
            tree.indices,
            rng_state,
        )

        for j in range(indices.shape[0]):
            if indices[j] < 0:
                continue
            d = dist(data[indices[j]], query_points[i])
            heap_push(heap, i, d, indices[j], 1)

    return
Beispiel #8
0
def init_rp_tree(data, dist, current_graph, leaf_array, tried=None):
    if tried is None:
        tried = set([(-1, -1)])

    for n in range(leaf_array.shape[0]):
        for i in range(leaf_array.shape[1]):
            p = leaf_array[n, i]
            if p < 0:
                break
            for j in range(i + 1, leaf_array.shape[1]):
                q = leaf_array[n, j]
                if q < 0:
                    break
                if (p, q) in tried:
                    continue
                d = dist(data[p], data[q])
                heap_push(current_graph, p, d, q, 1)
                tried.add((p, q))
                if p != q:
                    heap_push(current_graph, q, d, p, 1)
                    tried.add((q, p))
Beispiel #9
0
def sparse_init_from_tree(
    tree,
    inds,
    indptr,
    data,
    query_inds,
    query_indptr,
    query_data,
    heap,
    rng_state,
    sparse_dist,
):
    for i in range(query_indptr.shape[0] - 1):

        to_inds = query_inds[query_indptr[i]:query_indptr[i + 1]]
        to_data = query_data[query_indptr[i]:query_indptr[i + 1]]

        indices = search_sparse_flat_tree(
            to_inds,
            to_data,
            tree.hyperplanes,
            tree.offsets,
            tree.children,
            tree.indices,
            rng_state,
        )

        for j in range(indices.shape[0]):
            if indices[j] < 0:
                continue
            from_inds = inds[indptr[indices[j]]:indptr[indices[j] + 1]]
            from_data = data[indptr[indices[j]]:indptr[indices[j] + 1]]

            d = sparse_dist(from_inds, from_data, to_inds, to_data)
            heap_push(heap, i, d, indices[j], 1)

    return
Beispiel #10
0
def sparse_nn_descent_internal_low_memory(
    current_graph,
    inds,
    indptr,
    data,
    n_vertices,
    n_neighbors,
    rng_state,
    max_candidates=50,
    sparse_dist=Jvis.sparse.sparse_euclidean,
    n_iters=10,
    delta=0.001,
    rho=0.5,
    verbose=False,
):
    for n in range(n_iters):
        if verbose:
            print("\t", n, " / ", n_iters)

        (new_candidate_neighbors,
         old_candidate_neighbors) = new_build_candidates(
             current_graph, n_vertices, n_neighbors, max_candidates, rng_state,
             rho)

        c = 0
        for i in range(n_vertices):
            for j in range(max_candidates):
                p = int(new_candidate_neighbors[0, i, j])
                if p < 0:
                    continue
                for k in range(j, max_candidates):
                    q = int(new_candidate_neighbors[0, i, k])
                    if q < 0:
                        continue

                    from_inds = inds[indptr[p]:indptr[p + 1]]
                    from_data = data[indptr[p]:indptr[p + 1]]

                    to_inds = inds[indptr[q]:indptr[q + 1]]
                    to_data = data[indptr[q]:indptr[q + 1]]

                    d = sparse_dist(from_inds, from_data, to_inds, to_data)

                    c += heap_push(current_graph, p, d, q, 1)
                    if p != q:
                        c += heap_push(current_graph, q, d, p, 1)

                for k in range(max_candidates):
                    q = int(old_candidate_neighbors[0, i, k])
                    if q < 0:
                        continue

                    from_inds = inds[indptr[p]:indptr[p + 1]]
                    from_data = data[indptr[p]:indptr[p + 1]]

                    to_inds = inds[indptr[q]:indptr[q + 1]]
                    to_data = data[indptr[q]:indptr[q + 1]]

                    d = sparse_dist(from_inds, from_data, to_inds, to_data)

                    c += heap_push(current_graph, p, d, q, 1)
                    if p != q:
                        c += heap_push(current_graph, q, d, p, 1)

        if c <= delta * n_neighbors * n_vertices:
            return
Beispiel #11
0
def sparse_nn_descent(
    inds,
    indptr,
    data,
    n_vertices,
    n_neighbors,
    rng_state,
    max_candidates=50,
    sparse_dist=Jvis.sparse.sparse_euclidean,
    n_iters=10,
    delta=0.001,
    rho=0.5,
    low_memory=False,
    rp_tree_init=True,
    leaf_array=None,
    verbose=False,
):

    tried = set([(-1, -1)])

    current_graph = make_heap(n_vertices, n_neighbors)
    for i in range(n_vertices):
        indices = rejection_sample(n_neighbors, n_vertices, rng_state)
        for j in range(indices.shape[0]):

            from_inds = inds[indptr[i]:indptr[i + 1]]
            from_data = data[indptr[i]:indptr[i + 1]]

            to_inds = inds[indptr[indices[j]]:indptr[indices[j] + 1]]
            to_data = data[indptr[indices[j]]:indptr[indices[j] + 1]]

            d = sparse_dist(from_inds, from_data, to_inds, to_data)

            heap_push(current_graph, i, d, indices[j], 1)
            heap_push(current_graph, indices[j], d, i, 1)
            tried.add((i, indices[j]))
            tried.add((indices[j], i))

    if rp_tree_init:
        sparse_init_rp_tree(
            inds,
            indptr,
            data,
            sparse_dist,
            current_graph,
            leaf_array,
            tried=tried,
        )

    if low_memory:
        sparse_nn_descent_internal_low_memory(
            current_graph,
            inds,
            indptr,
            data,
            n_vertices,
            n_neighbors,
            rng_state,
            max_candidates=max_candidates,
            sparse_dist=sparse_dist,
            n_iters=n_iters,
            delta=delta,
            rho=rho,
            verbose=verbose,
        )
    else:
        sparse_nn_descent_internal_high_memory(
            current_graph,
            inds,
            indptr,
            data,
            n_vertices,
            n_neighbors,
            rng_state,
            tried,
            max_candidates=max_candidates,
            sparse_dist=sparse_dist,
            n_iters=n_iters,
            delta=delta,
            rho=rho,
            verbose=verbose,
        )

    return deheap_sort(current_graph)