Beispiel #1
0
 def _CreateScheme(self):
     domain_size = self.GetComputingModelPart().ProcessInfo[
         KratosMultiphysics.DOMAIN_SIZE]
     # Cases in which the element manages the time integration
     if self.element_integrates_in_time:
         # "Fake" scheme for those cases in where the element manages the time integration
         # It is required to perform the nodal update once the current time step is solved
         scheme = KratosMultiphysics.ResidualBasedIncrementalUpdateStaticSchemeSlip(
             domain_size, domain_size + 1)
         # In case the BDF2 scheme is used inside the element, the BDF time discretization utility is required to update the BDF coefficients
         if (self.settings["time_scheme"].GetString() == "bdf2"):
             time_order = 2
             self.time_discretization = KratosMultiphysics.TimeDiscretization.BDF(
                 time_order)
         else:
             err_msg = "Requested elemental time scheme \"" + self.settings[
                 "time_scheme"].GetString() + "\" is not available.\n"
             err_msg += "Available options are: \"bdf2\""
             raise Exception(err_msg)
     # Cases in which a time scheme manages the time integration
     else:
         # Time scheme without turbulence modelling
         if not hasattr(self, "_turbulence_model_solver"):
             # Bossak time integration scheme
             if self.settings["time_scheme"].GetString() == "bossak":
                 if self.settings["consider_periodic_conditions"].GetBool(
                 ) == True:
                     scheme = KratosCFD.ResidualBasedPredictorCorrectorVelocityBossakSchemeTurbulent(
                         self.settings["alpha"].GetDouble(), domain_size,
                         KratosCFD.PATCH_INDEX)
                 else:
                     scheme = KratosCFD.ResidualBasedPredictorCorrectorVelocityBossakSchemeTurbulent(
                         self.settings["alpha"].GetDouble(),
                         self.settings["move_mesh_strategy"].GetInt(),
                         domain_size)
             # BDF2 time integration scheme
             elif self.settings["time_scheme"].GetString() == "bdf2":
                 scheme = KratosCFD.GearScheme()
             # Time scheme for steady state fluid solver
             elif self.settings["time_scheme"].GetString() == "steady":
                 scheme = KratosCFD.ResidualBasedSimpleSteadyScheme(
                     self.settings["velocity_relaxation"].GetDouble(),
                     self.settings["pressure_relaxation"].GetDouble(),
                     domain_size)
             else:
                 err_msg = "Requested time scheme " + self.settings[
                     "time_scheme"].GetString() + " is not available.\n"
                 err_msg += "Available options are: \"bossak\", \"bdf2\" and \"steady\""
                 raise Exception(err_msg)
         # Time scheme with turbulence modelling
         else:
             self._turbulence_model_solver.Initialize()
             if self.settings["time_scheme"].GetString() == "bossak":
                 scheme = KratosCFD.ResidualBasedPredictorCorrectorVelocityBossakSchemeTurbulent(
                     self.settings["alpha"].GetDouble(),
                     self.settings["move_mesh_strategy"].GetInt(),
                     domain_size,
                     self.settings["turbulence_model_solver_settings"]
                     ["velocity_pressure_relaxation_factor"].GetDouble(),
                     self._turbulence_model_solver.
                     GetTurbulenceSolvingProcess())
             # Time scheme for steady state fluid solver
             elif self.settings["time_scheme"].GetString() == "steady":
                 scheme = KratosCFD.ResidualBasedSimpleSteadyScheme(
                     self.settings["velocity_relaxation"].GetDouble(),
                     self.settings["pressure_relaxation"].GetDouble(),
                     domain_size,
                     self._turbulence_model_solver.
                     GetTurbulenceSolvingProcess())
     return scheme
    def Initialize(self):

        self.computing_model_part = self.GetComputingModelPart()

        # If needed, create the estimate time step utility
        if (self.settings["time_stepping"]["automatic_time_step"].GetBool()):
            self.EstimateDeltaTimeUtility = self._GetAutomaticTimeSteppingUtility()

        # Creating the solution strategy
        self.conv_criteria = KratosCFD.VelPrCriteria(self.settings["relative_velocity_tolerance"].GetDouble(),
                                                     self.settings["absolute_velocity_tolerance"].GetDouble(),
                                                     self.settings["relative_pressure_tolerance"].GetDouble(),
                                                     self.settings["absolute_pressure_tolerance"].GetDouble())

        (self.conv_criteria).SetEchoLevel(self.settings["echo_level"].GetInt())

        # Creating the time integration scheme
        if (self.element_integrates_in_time):
            # "Fake" scheme for those cases in where the element manages the time integration
            # It is required to perform the nodal update once the current time step is solved
            self.time_scheme = KratosMultiphysics.ResidualBasedIncrementalUpdateStaticSchemeSlip(
                self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE],
                self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE]+1)
            # In case the BDF2 scheme is used inside the element, the BDF process is required to update the BDF coefficients
            if (self.settings["time_scheme"].GetString() == "bdf2"):
                time_order = 2
                self.bdf_process = KratosMultiphysics.ComputeBDFCoefficientsProcess(self.computing_model_part, time_order)
            else:
                err_msg = "Requested elemental time scheme " + self.settings["time_scheme"].GetString() + " is not available.\n"
                err_msg += "Available options are: \"bdf2\""
                raise Exception(err_msg)
        else:
            if (self.settings["turbulence_model"].GetString() == "None"):
                # Bossak time integration scheme
                if self.settings["time_scheme"].GetString() == "bossak":
                    if self.settings["consider_periodic_conditions"].GetBool() == True:
                        self.time_scheme = KratosCFD.ResidualBasedPredictorCorrectorVelocityBossakSchemeTurbulent(
                            self.settings["alpha"].GetDouble(),
                            self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE],
                            KratosCFD.PATCH_INDEX)
                    else:
                        self.time_scheme = KratosCFD.ResidualBasedPredictorCorrectorVelocityBossakSchemeTurbulent(
                            self.settings["alpha"].GetDouble(),
                            self.settings["move_mesh_strategy"].GetInt(),
                            self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE])
                # BDF2 time integration scheme
                elif self.settings["time_scheme"].GetString() == "bdf2":
                    self.time_scheme = KratosCFD.GearScheme()
                # Time scheme for steady state fluid solver
                elif self.settings["time_scheme"].GetString() == "steady":
                    self.time_scheme = KratosCFD.ResidualBasedSimpleSteadyScheme(
                            self.settings["velocity_relaxation"].GetDouble(),
                            self.settings["pressure_relaxation"].GetDouble(),
                            self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE])
                else:
                    err_msg = "Requested time scheme " + self.settings["time_scheme"].GetString() + " is not available.\n"
                    err_msg += "Available options are: \"bossak\", \"bdf2\" and \"steady\""
                    raise Exception(err_msg)
            else:
                raise Exception("Turbulence models are not added yet.")

        if self.settings["consider_periodic_conditions"].GetBool() == True:
            builder_and_solver = KratosCFD.ResidualBasedBlockBuilderAndSolverPeriodic(self.linear_solver,
                                                                                KratosCFD.PATCH_INDEX)
        else:
            builder_and_solver = KratosMultiphysics.ResidualBasedBlockBuilderAndSolver(self.linear_solver)


        self.solver = KratosMultiphysics.ResidualBasedNewtonRaphsonStrategy(self.computing_model_part,
                                                                            self.time_scheme,
                                                                            self.linear_solver,
                                                                            self.conv_criteria,
                                                                            builder_and_solver,
                                                                            self.settings["maximum_iterations"].GetInt(),
                                                                            self.settings["compute_reactions"].GetBool(),
                                                                            self.settings["reform_dofs_at_each_step"].GetBool(),
                                                                            self.settings["move_mesh_flag"].GetBool())

        (self.solver).SetEchoLevel(self.settings["echo_level"].GetInt())

        self.formulation.SetProcessInfo(self.computing_model_part)

        (self.solver).Initialize()

        KratosMultiphysics.Logger.PrintInfo("NavierStokesSolverMonolithic", "Solver initialization finished.")
Beispiel #3
0
    def Initialize(self):

        self.computing_model_part = self.GetComputingModelPart()

        # If needed, create the estimate time step utility
        if (self.settings["time_stepping"]["automatic_time_step"].GetBool()):
            self.EstimateDeltaTimeUtility = self._GetAutomaticTimeSteppingUtility(
            )

        # Creating the solution strategy
        self.conv_criteria = KratosCFD.VelPrCriteria(
            self.settings["relative_velocity_tolerance"].GetDouble(),
            self.settings["absolute_velocity_tolerance"].GetDouble(),
            self.settings["relative_pressure_tolerance"].GetDouble(),
            self.settings["absolute_pressure_tolerance"].GetDouble())

        (self.conv_criteria).SetEchoLevel(self.settings["echo_level"].GetInt())

        if (self.settings["turbulence_model"].GetString() == "None"):
            if self.settings["time_scheme"].GetString() == "bossak":
                if self.settings["consider_periodic_conditions"].GetBool(
                ) == True:
                    self.time_scheme = KratosPFEM2.ResidualBasedPredictorCorrectorVelocityBossakAleScheme(
                        self.settings["alpha"].GetDouble(),
                        self.computing_model_part.ProcessInfo[
                            KratosMultiphysics.DOMAIN_SIZE],
                        KratosCFD.PATCH_INDEX)
                else:
                    self.time_scheme = KratosPFEM2.ResidualBasedPredictorCorrectorVelocityBossakAleScheme(
                        self.settings["alpha"].GetDouble(),
                        self.settings["move_mesh_strategy"].GetInt(),
                        self.computing_model_part.ProcessInfo[
                            KratosMultiphysics.DOMAIN_SIZE])
            elif self.settings["time_scheme"].GetString() == "bdf2":
                self.time_scheme = KratosCFD.GearScheme()
            elif self.settings["time_scheme"].GetString() == "steady":
                self.time_scheme = KratosCFD.ResidualBasedSimpleSteadyScheme(
                    self.settings["velocity_relaxation"].GetDouble(),
                    self.settings["pressure_relaxation"].GetDouble(),
                    self.computing_model_part.ProcessInfo[
                        KratosMultiphysics.DOMAIN_SIZE])
        else:
            raise Exception("Turbulence models are not added yet.")

        if self.settings["consider_periodic_conditions"].GetBool() == True:
            builder_and_solver = KratosCFD.ResidualBasedBlockBuilderAndSolverPeriodic(
                self.linear_solver, KratosCFD.PATCH_INDEX)
        else:
            builder_and_solver = KratosMultiphysics.ResidualBasedBlockBuilderAndSolver(
                self.linear_solver)

        self.solver = KratosMultiphysics.ResidualBasedNewtonRaphsonStrategy(
            self.computing_model_part, self.time_scheme, self.linear_solver,
            self.conv_criteria, builder_and_solver,
            self.settings["maximum_iterations"].GetInt(),
            self.settings["compute_reactions"].GetBool(),
            self.settings["reform_dofs_at_each_step"].GetBool(),
            self.settings["move_mesh_flag"].GetBool())

        (self.solver).SetEchoLevel(self.settings["echo_level"].GetInt())

        self.formulation.SetProcessInfo(self.computing_model_part)

        (self.solver).Initialize()

        KratosMultiphysics.Logger.PrintInfo(
            "PFEM2NavierStokesMonolithicSolver",
            "Solver initialization finished.")