def rayleigh_test(): print('\n\n---------- RAYLEIGH DISTRIBUTION TEST ----------\n') x0 = 0 xf = 4 sigma = 1 N = 10**5 t0 = current_milli_time() numpy_rand = np.random.rayleigh(scale=sigma, size=N) tf = current_milli_time() print('Numpy rayleigh random generator mean: ', np.mean(numpy_rand)) print('NumPy std error:', np.std(numpy_rand) / np.sqrt(N) * 100, '%') print('Elapsed time: %.4f ms' % (tf - t0, )) t0 = current_milli_time() rand = rg.sample(rayleigh, x0, xf, N, sigma) tf = current_milli_time() print('\nMC rayleigh random generator mean: ', np.mean(rand)) print('MCRand std error:', np.std(rand) / np.sqrt(N) * 100, '%') print('Elapsed time: %.4f ms' % (tf - t0, )) x = np.linspace(x0, xf, N) plt.hist(numpy_rand, bins=30, density=True, color=(0, 0, 1, 0.8), label='NumPy sample') plt.hist(rand, bins=30, density=True, color=(0, 1, 0, 0.5), label='MCRand sample') plt.plot(x, rayleigh(x, sigma), color='r', label=r'Rayleigh PDF $\sigma=%.2f$' % sigma) plt.text(2.5, 0.3, r'$PDF(x)=\frac{x\cdot\exp(-\frac{x^2}{2\sigma^2})}{\sigma^2}$', size=15) plt.title('Rayleigh distribution test') plt.xlabel('Sample number') plt.ylabel('Probability') plt.legend() plt.show()
def exponential_test(): print('\n\n---------- EXPONENTIAL DISTRIBUTION TEST ----------\n') x0 = 0 xf = 10 N = 10**5 t0 = current_milli_time() numpy_rand = np.random.exponential(size=N) tf = current_milli_time() print('Numpy exponential random generator mean: ', np.mean(numpy_rand)) print('NumPy std error:', np.std(numpy_rand) / np.sqrt(N) * 100, '%') print('Elapsed time: %.4f ms' % (tf - t0, )) t0 = current_milli_time() rand = rg.sample(exponential, x0, xf, N) tf = current_milli_time() print('\nMC exponential random generator mean: ', np.mean(rand)) print('MCRand std error:', np.std(rand) / np.sqrt(N) * 100, '%') print('Elapsed time: %.4f ms' % (tf - t0, )) x = np.linspace(x0, xf, N) plt.hist(numpy_rand, bins=30, density=True, color=(0, 0, 1, 0.8), label='NumPy sample') plt.hist(rand, bins=30, density=True, color=(0, 1, 0, 0.5), label='MCRand sample') plt.plot(x, exponential(x), color='r', label='Exponential PDF') plt.text(2, 0.95, r'$PDF(x)=e^{-x}$', size=15) plt.title('Exponential distribution test') plt.xlabel('Sample number') plt.ylabel('Probability') plt.legend() plt.show()
def invented_test(): print('\n\n---------- MODIFIED RAYLEIGH DISTRIBUTION TEST ----------\n') x0 = -4 xf = 4 sigma = 1 N = 10**5 t0 = current_milli_time() rand = rg.sample(invented, x0, xf, N, sigma) tf = current_milli_time() print('\nMC invented random generator mean: ', np.mean(rand)) print('Elapsed time: %.4f ms' % (tf - t0, )) x = np.linspace(x0, xf, N) plt.figure(figsize=(12, 5)) plt.hist(rand, bins=40, density=True, color=(0, 1, 0, 0.5), label='MCRand sample') plt.plot(x, invented(x, sigma), color='r', label=r'Modified Rayleigh PDF $\sigma=%.2f$' % sigma) plt.text( -4.5, 0.3, r'$PDF(x)=\frac{x^2\exp(-\frac{x^2}{2\sigma^2})}{2.506628\cdot\sigma^2}$', size=15) plt.title('Modified Rayleigh distribution test') plt.xlabel('Sample number') plt.ylabel('Probability') plt.xlim(-5, 5) plt.ylim(0, 0.35) plt.legend() plt.show()
def symmetric_maxwell_boltzmann_test(): print( '\n\n---------- SYMMETRIC MAXWELL-BOLTZMANN DISTRIBUTION TEST ----------\n' ) x0 = -10 xf = 10 sigma = 2 N = 10**5 t0 = current_milli_time() rand = rg.sample(symmetric_maxwell_boltzmann, x0, xf, N, sigma) tf = current_milli_time() print('\nMC Symmetric Maxwell-Boltzmann random generator mean: ', np.mean(rand)) print('Elapsed time: %.4f ms' % (tf - t0, )) x = np.linspace(x0, xf, N) plt.figure(figsize=(12, 6)) plt.hist(rand, bins=40, density=True, color=(0, 1, 0, 0.5), label='MCRand sample') plt.plot(x, symmetric_maxwell_boltzmann(x, sigma), color='r', label=r'Maxwell-Boltzmann PDF $\sigma=%.2f$' % sigma) plt.text( -10.5, 0.135, r'$PDF(x)=\sqrt{\frac{1}{2\pi}}\cdot\frac{x^2\exp(-\frac{x^2}{2\sigma^2})}{\sigma^3}$', size=15) plt.title('Symmetric Maxwell-Boltmann distribution test') plt.xlabel('Sample number') plt.ylabel('Probability') plt.legend() plt.show()
def gaussian_test(): print('---------- GAUSSIAN TEST ----------\n') x0 = -5 xf = 5 N = 50000 sigma = 1 mu = 0 print('sigma=%.2f, mu=%.2f\n' % (sigma, mu)) t0 = current_milli_time() numpy_rand = np.random.normal(mu, sigma, N) tf = current_milli_time() print('NumPy gaussian random generator mean: ', np.mean(numpy_rand)) print('NumPy std error:', np.std(numpy_rand) / np.sqrt(N) * 100, '%') print('Elapsed time: %.4f ms' % (tf - t0, )) t0 = current_milli_time() rand = rg.sample(gaussian, x0, xf, N, mu, sigma) tf = current_milli_time() print('\nMC gaussian random generator mean: ', np.mean(rand)) print('MCRand std error:', np.std(rand) / np.sqrt(N) * 100, '%') print('Elapsed time: %.4f ms' % (tf - t0, )) x = np.linspace(x0, xf, N) plt.figure(figsize=(9, 6)) plt.hist(numpy_rand, bins=30, density=True, color=(0, 0, 1, 0.8), label='NumPy sample') plt.hist(rand, bins=30, density=True, color=(0, 1, 0, 0.5), label='MCRand sample') plt.plot(x, gaussian(x, mu, sigma), color='r', label=r'Gaussian PDF $\mu=%.2f$, $\sigma=%.2f$' % (mu, sigma)) plt.text( -5.3, 0.45, r'PDF(x)=$\frac{1}{\sqrt{2\pi\sigma^2}}\cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$', size=15) #(1/(np.sqrt(2*np.pi*sigma**2))) * np.exp(-(x-mu)**2/(2*sigma**2)) plt.title('Gaussian distribution test') plt.xlabel('Sample number') plt.ylabel('Probability') plt.ylim(0, 0.5) plt.legend() plt.show()
def cauchy_test(): print('\n\n---------- CAUCHY DISTRIBUTION TEST ----------\n') x0 = -10 xf = 10 N = 10**5 x0_cauchy = 0 gamma = 1 t0 = current_milli_time() s = np.random.standard_cauchy(size=N) numpy_cauchy = s[(s > -10) & (s < 10)] # truncate distribution so it plots well tf = current_milli_time() print('NumPy Cauchy random generator mean: ', np.mean(numpy_cauchy)) print('NumPy std error:', np.std(numpy_cauchy) / np.sqrt(N) * 100, '%') print('Elapsed time: %.4f ms' % (tf - t0, )) t0 = current_milli_time() rand = rg.sample(cauchy, x0, xf, N, x0_cauchy, gamma) tf = current_milli_time() print('\nMC Cauchy random generator mean: ', np.mean(rand)) print('MCRand std error:', np.std(rand) / np.sqrt(N) * 100, '%') print('Elapsed time: %.4f ms' % (tf - t0, )) x = np.linspace(x0, xf, N) plt.figure(figsize=(9, 6)) plt.hist(numpy_cauchy, bins=50, density=True, color=(0, 0, 1, 0.8), label='NumPy sample') plt.hist(rand, bins=50, density=True, color=(0, 1, 0, 0.5), label='MCRand sample') plt.plot(x, cauchy(x, x0_cauchy, gamma), color='r', label=r'Cauchy PDF $\gamma=%.2f$, $x_0=%.2f$' % (gamma, x0_cauchy)) plt.text(-10, 0.34, r'PDF(x)=$\frac{1}{\pi\gamma[1+(\frac{x-x_0}{\gamma})^2]}$', size=15) plt.title('Cauchy distribution test') plt.xlabel('Sample number') plt.ylabel('Probability') plt.xlim(-11, 11) plt.ylim(0, 0.38) plt.legend(loc='upper right') plt.show()