def test_EasyMKL(self): self.base_evaluation(algorithms.EasyMKL()) self.base_evaluation(algorithms.EasyMKL(learner=SVC(C=10))) self.base_evaluation( algorithms.EasyMKL(learner=algorithms.KOMD(lam=1))) self.base_evaluation( algorithms.EasyMKL(solver='libsvm', learner=SVC(C=10)))
def test_multiclass_ovo(self): mkl = algorithms.EasyMKL(multiclass_strategy='ovo', learner=SVC()).fit(self.KLtr, self.Ytr) clf = multiclass.OneVsOneMKLClassifier(mkl).fit(self.KLtr, self.Ytr) classes = np.unique(self.Ytr) n = len(classes) self.assertEqual(len(mkl.solution), (n * (n - 1) / 2)) c1, c2 = classes[:2] self.assertListEqual(clf.solution[(c1, c2)].weights.tolist(), mkl.solution[(c1, c2)].weights.tolist())
def test_parameters(self): self.assertRaises(ValueError, algorithms.EasyMKL, lam=2) self.assertRaises(ValueError, algorithms.EasyMKL, lam=1.01) self.assertRaises(ValueError, algorithms.EasyMKL, lam=-0.1) self.assertRaises(ValueError, algorithms.EasyMKL, solver=0.1) algorithms.EasyMKL(solver='libsvm', lam=0.2)