if __name__ == "__main__": i = 0 w = np.random.rand(num_features + 1, 1) * 2 - 1 w *= 5 m = LinearRegression.LinearRegressionStream(draw=False, output=output, alpha=0.001) x = Stream('x') linear_regression.init_plot() model = Stream_Learn(data_train=x, data_out=x, train_func=m.train, predict_func=m.predict, min_window_size=min_window_size, max_window_size=max_window_size, step_size=step_size, num_features=num_features, all_func=all_func) y = model.run() stream_func(inputs=y, f=print_stream, f_type='element', num_outputs=0) while i < num_points: w[1] += 0.01 x_value = np.ones((1, num_features)) * i x_b = np.hstack((np.ones((1, 1)), x_value)).transpose() y_value = w.transpose().dot(x_b)[0][0] values = x_value.tolist()[0] values.append(y_value) x.extend([tuple(values)]) if i % 100 == 0 and i != 0:
num_centroids = 5 k = 5 max_window_size = 1000 num_points = 15000 step_size = 1 if __name__ == "__main__": i = 0 centroids = kmeans.initialize(num_centroids, -5, 5) x = Stream('x') m = KMeans.KMeansStream(draw=draw, output=output, k=k) model = Stream_Learn(data_train=x, data_out=x, train_func=m.train, predict_func=m.predict, min_window_size=k, max_window_size=max_window_size, step_size=step_size, num_features=2) y = model.run() while i < num_points: index = np.random.randint(0, num_centroids) z = np.random.rand(1, 2) * 2 - 1 centroids[index] = centroids[index].reshape(1, 2) + z * 2 x.extend([tuple(kmeans.initializeDataCenter(centroids[index], 1, 1).tolist()[0])]) print i i += 1 print "Average number of iterations: ", m.avg_iterations print "Average error: ", m.avg_error
import requests import json def all_func(x, y, model, state, window_state): if state is None: state = Geomap.Geomap(llcrnrlat = 20, llcrnrlon = -126, urcrnrlat = 60, urcrnrlon = -65) state.clear() state.plot(x, kmeans.findClosestCentroids(x, model.centroids), s = 70) # state.plot(model.centroids, color = 'Red', s = 50) return state x = Stream('x') m = KMeans.KMeansStream(draw = False, output = False, k = 5) model = Stream_Learn(x, x, m.train, m.predict, 5, 30, 1, 2, all_func = all_func) y = model.run() r = requests.get('http://stream.meetup.com/2/rsvps', stream=True) i = 0 for line in r.iter_lines(): if line: data = json.loads(line) lat, lon = data['group']['group_lat'], data['group']['group_lon'] if data['group']['group_country'] == 'us': x.extend([(lat, lon)]) print i i += 1
def all_func(x, y, model, state, window_state): if state is None: state = Geomap.Geomap(llcrnrlat=20, llcrnrlon=-126, urcrnrlat=60, urcrnrlon=-65) state.clear() state.plot(x, kmeans.findClosestCentroids(x, model.centroids), s=70) # state.plot(model.centroids, color = 'Red', s = 50) return state x = Stream('x') m = KMeans.KMeansStream(draw=False, output=False, k=5) model = Stream_Learn(x, x, m.train, m.predict, 5, 30, 1, 2, all_func=all_func) y = model.run() r = requests.get('http://stream.meetup.com/2/rsvps', stream=True) i = 0 for line in r.iter_lines(): if line: data = json.loads(line) lat, lon = data['group']['group_lat'], data['group']['group_lon'] if data['group']['group_country'] == 'us': x.extend([(lat, lon)]) print i i += 1