Beispiel #1
0
    def form_table(self):

        # 將共整合係數標準化,此權重為資金權重,因此必須依股價高低轉為張數權重。
        for i in range(len(self.name)):

            total = abs(self.weight.w1[i]) + abs(self.weight.w2[i])

            self.weight.w2[i] = (self.weight.w2[i] / total)
            self.weight.w1[i] = (self.weight.w1[i] / total)

        table = pd.concat([self.name, self.select_model, self.weight], axis=1)

        #print("共整合係數標準化 done in " + str(end - start))
        #------------------------------------------------------------------------------
        #計算spread序列,做單根檢定,並刪除非定態spread序列

        spread = np.zeros((len(self.data), len(table)))

        for i in range(len(table)):
            spread[:, i] = table.w1[i] * self.data[
                table.stock1[i]] + table.w2[i] * self.data[table.stock2[i]]

        self.spread = pd.DataFrame(spread)

        #print("刪除非定態spread序列 done in " + str(end - start))
        #------------------------------------------------------------------------------
        # 計算信噪比 ( spread )------------------------------

        for i in range(len(self.spread.T)):

            y = self.spread.iloc[:, i]
            self.s_n_r.append(snr(y, 100))

        self.s_n_r = pd.DataFrame(self.s_n_r)
        self.s_n_r.columns = ["snr"]

        #print("計算信噪比 done in " + str(end - start))
        #------------------------------------------------------------------------------
        # 計算過零率 ( spread )------------------------------

        #pool = Pool(processes=16)
        Boot = 500

        for j in range(len(self.spread.T)):
            y = self.spread.iloc[:, j]
            #t = pool.apply_async(zcr, (y,Boot,con.stock1[j],con.stock2[j],),callback=self.append_zcr_result)
            self.z_c_r.append(zcr(y, Boot))
        #pool.close()
        #pool.join()

        #self.stock1_name = pd.DataFrame(self.stock1_name) ; self.stock1_name.columns = ["stock1"]
        #self.stock2_name = pd.DataFrame(self.stock2_name) ; self.stock2_name.columns = ["stock2"]
        self.z_c_r = pd.DataFrame(self.z_c_r)
        self.z_c_r.columns = ["zcr"]

        #mix = pd.concat([self.stock1_name,self.stock2_name,self.z_c_r],axis=1)

        #print("計算過零率 done in " + str(end - start))
        #------------------------------------------------------------------------------
        # 開倉門檻and平倉門檻and偏度--------------------------------------

        for i in range(len(self.spread.T)):

            y = self.spread.iloc[:, i]

            # 有時間趨勢項的模型必須分開計算
            if table.model_type[i] == 'model4':

                x = np.arange(0, len(y))
                b1, b0 = np.polyfit(x, y, 1)

                trend_line = x * b1 + b0
                y = y - trend_line

            self.ave.append(np.mean(y))
            self.std.append(np.std(y))
            self.ske.append(skew(y))

        self.ave = pd.DataFrame(self.ave)
        self.ave.columns = ["mu"]
        self.std = pd.DataFrame(self.std)
        self.std.columns = ["stdev"]
        self.ske = pd.DataFrame(self.ske)
        self.ske.columns = ["skewness"]
        #print("開倉門檻and平倉門檻 done in " + str(end - start))
        #------------------------------------------------------------------------------
        # 整理表格
        #start = datetime.now()

        #con = pd.concat([con,self.s_n_r],axis=1)

        #con = pd.merge( con , mix , on=["stock1","stock2"] , how="outer" )

        table = pd.concat(
            [table, self.s_n_r, self.z_c_r, self.ave, self.std, self.ske],
            axis=1)
        print(table)

        #end = datetime.now()
        del self.s_n_r
        del self.z_c_r
        del self.ave
        del self.std
        del self.ske
        del self.select_model
        del self.weight
        del self.name

        stock1_name = table.stock1.astype('str', copy=False)
        stock2_name = table.stock2.astype('str', copy=False)
        test_stock1 = np.array(self.data[stock1_name].T)
        test_stock2 = np.array(self.data[stock2_name].T)
        mean = np.zeros(len(table))
        std = np.zeros(len(table))
        for i in range(len(table)):
            spread_m, spread = spread_mean(test_stock1, test_stock2, i, table)
            mean[i] = np.mean(spread_m[-1:])
            #std[i] = np.sqrt(np.mean(np.square(spread_m-spread)))
            std[i] = get_Estd(test_stock1, test_stock2, i, table)
        table['e_mu'] = mean
        table['e_stdev'] = std
        return table
Beispiel #2
0
def formation_period_single(day1):

    # 合併二日資料
    #min_price = np.log(pd.concat([day1,day2]))

    min_price = day1
    min_price = min_price.dropna(axis=1)

    min_price.index = np.arange(0, len(min_price), 1)

    unit_stock = np.where(
        min_price.apply(lambda x: adfuller(x)[1] > 0.05,
                        axis=0) == True)  # 找出單跟的股票
    min_price.drop(min_price.columns[unit_stock], axis=1,
                   inplace=True)  # 刪除單跟股票,剩餘為定態序列。

    spread = min_price
    #------------------------------------------------------------------------------
    # 無母數開倉門檻--------------------------------------

    ave = []
    std = []
    for i in range(len(spread.T)):

        y = spread.iloc[:, i]

        ave.append(np.mean(y))
        std.append(np.std(y))

    ave = pd.DataFrame(ave)
    ave.columns = ["mu"]
    std = pd.DataFrame(std)
    std.columns = ["stdev"]

    # 程式防呆
    a = np.array(np.where(std < 0.0000001))

    if a.size > 1:

        a = int(np.delete(a, -1, axis=0))

        spread.drop(spread.columns[a], axis=1, inplace=True)
        ave.drop(ave.index[a], axis=0, inplace=True)
        ave.index = np.arange(0, len(ave), 1)
        std.drop(std.index[a], axis=0, inplace=True)
        std.index = np.arange(0, len(std), 1)

    #------------------------------------------------------------------------------
    # 計算過零率 ( spread )------------------------------

    Boot = 500
    z_c_r = []
    for j in range(len(spread.T)):

        y = spread.iloc[:, j]

        z_c_r.append(zcr(y, Boot))

    z_c_r = pd.DataFrame(z_c_r)
    z_c_r.columns = ["zcr"]

    # -----------------------------------------------------------------------------
    stock_name = pd.DataFrame(spread.columns)
    stock_name.columns = ["stock"]

    con = pd.concat([stock_name, z_c_r, ave, std], axis=1)

    return con
Beispiel #3
0
    def form_table(self):

        # 將共整合係數標準化,此權重為資金權重,因此必須依股價高低轉為張數權重。
        for i in range(len(self.name)):

            total = abs(self.weight.w1[i]) + abs(self.weight.w2[i])

            self.weight.w2[i] = (self.weight.w2[i] / total)
            self.weight.w1[i] = (self.weight.w1[i] / total)

        con = pd.concat([self.name, self.select_model, self.weight, self.pval],
                        axis=1)

        #print("共整合係數標準化 done in " + str(end - start))
        #------------------------------------------------------------------------------
        #計算spread序列

        spread = np.zeros((len(self.data), len(con)))

        for i in range(len(con)):
            spread[:, i] = con.w1[i] * self.data[
                con.stock1[i]] + con.w2[i] * self.data[con.stock2[i]]

        self.spread = pd.DataFrame(spread)

        #print("刪除非定態spread序列 done in " + str(end - start))
        #------------------------------------------------------------------------------
        # 計算信噪比 ( spread )------------------------------

        for i in range(len(self.spread.T)):

            y = self.spread.iloc[:, i]
            self.s_n_r.append(snr(y, 100))

        self.s_n_r = pd.DataFrame(self.s_n_r)
        self.s_n_r.columns = ["snr"]

        #print("計算信噪比 done in " + str(end - start))
        #------------------------------------------------------------------------------
        # 計算過零率 ( spread )------------------------------

        #pool = Pool(processes=16)
        Boot = 500

        for j in range(len(self.spread.T)):
            y = self.spread.iloc[:, j]
            #t = pool.apply_async(zcr, (y,Boot,con.stock1[j],con.stock2[j],),callback=self.append_zcr_result)
            self.z_c_r.append(zcr(y, Boot))
        #pool.close()
        #pool.join()

        #self.stock1_name = pd.DataFrame(self.stock1_name) ; self.stock1_name.columns = ["stock1"]
        #self.stock2_name = pd.DataFrame(self.stock2_name) ; self.stock2_name.columns = ["stock2"]
#        self.z_c_r = np.zeros(len(self.spread.T))
        self.z_c_r = pd.DataFrame(self.z_c_r)
        self.z_c_r.columns = ["zcr"]

        #mix = pd.concat([self.stock1_name,self.stock2_name,self.z_c_r],axis=1)

        #print("計算過零率 done in " + str(end - start))
        #------------------------------------------------------------------------------
        # 開倉門檻and平倉門檻and偏度--------------------------------------

        for i in range(len(self.spread.T)):

            y = self.spread.iloc[:, i]

            # 有時間趨勢項的模型必須分開計算
            if con.model_type[i] == 'model4':

                x = np.arange(0, len(y))
                b1, b0 = np.polyfit(x, y, 1)

                trend_line = x * b1 + b0
                y = y - trend_line

                # 將spread消除趨勢項後,計算mu與std
                self.ave.append(np.mean(y))
                self.std.append(np.std(y))
                self.ske.append(skew(y))

            else:

                self.ave.append(np.mean(y))
                self.std.append(np.std(y))
                self.ske.append(skew(y))

        self.ave = pd.DataFrame(self.ave)
        self.ave.columns = ["mu"]
        self.std = pd.DataFrame(self.std)
        self.std.columns = ["stdev"]
        self.ske = pd.DataFrame(self.ske)
        self.ske.columns = ["skewness"]
        #print("開倉門檻and平倉門檻 done in " + str(end - start))
        #------------------------------------------------------------------------------
        # 整理表格
        #start = datetime.now()

        #con = pd.concat([con,self.s_n_r],axis=1)

        #con = pd.merge( con , mix , on=["stock1","stock2"] , how="outer" )

        con = pd.concat(
            [con, self.s_n_r, self.z_c_r, self.ave, self.std, self.ske],
            axis=1)

        #end = datetime.now()
        del self.s_n_r
        del self.z_c_r
        del self.ave
        del self.std
        del self.ske
        del self.select_model
        del self.weight
        del self.name
        #print("整理表格 done in " + str(end - start))
        #print(con)
        return con