Beispiel #1
0
def SlideGradient(which_content, offset, show=False):

    #留一点边界消除边界效应
    boundary = 10

    #自己定义一个梯度核函数
    kernel_gradient = [-0.25, -0.5, 0, 0.5, 0.25]

    #定义gauss核函数作为平滑
    kernel_smooth = GaussianKernel(0, 1, 5)

    #判断kernel的臂展是否为奇数
    if len(kernel_gradient) % 2 != 1 and len(kernel_smooth) % 2 != 1:

        print('ERROR:redefine the window_size')

    else:

        #臂展
        kernel_length = len(kernel_gradient) // 2

        #梯度计算的结果
        gradients = []

        #临时content列表
        temp_content = Dict.SortFromStart(which_content, offset)[0]

        #        print(len(temp_content))

        #总的content列表,plus些许边界
        total_content = which_content[:
                                      offset] + temp_content + temp_content[:
                                                                            boundary]

        #        print(len(total_content))

        #直接迭代吧
        for index in range(len(which_content)):

            #            total_content[offset+k]

            #            print(index)
            #            print(kernel_length)

            #初始化它
            that_gradient = 0

            #这个核内部的数值有哪些
            this_points = [
                total_content[index + offset + ix]
                for ix in range(-kernel_length, kernel_length + 1)
            ]

            #对应相乘
            if len(this_points) == len(kernel_gradient) == len(kernel_smooth):

                for k in range(len(this_points)):

                    that_gradient += this_points[k] * kernel_gradient[
                        k] * kernel_smooth[k]

            gradients.append(abs(that_gradient))

#        print(len(which_content))
#        print(len(gradients))

#绘图
        if show:

            plt.figure()
            plt.subplot(211), plt.plot(temp_content)
            plt.subplot(212), plt.plot(gradients)

        return gradients
Beispiel #2
0
def GetCorners(which_content,
               offset,
               energy_mode,
               img_tag,
               img_rgb,
               show=False):

    #滑动窗口求取梯度诶
    #平均值
    if energy_mode is 'mean':

        gradients = SlideGradient(AverageEnergy(which_content, 5, img_tag),
                                  offset)

    #最大值法
    if energy_mode is 'max':

        gradients = SlideGradient(MaximalEnergy(which_content, 5, img_tag),
                                  offset)

    #压制非极值点点,使它们为0
    peak_content = PickPeak(gradients, True)

    #寻找脉冲极值点的办法
    temp_peak_index = []

    for k in range(len(peak_content)):

        if peak_content[k] != 0:

            temp_peak_index.append(k)

    #极值窗口
    open_length = 10

    #在这个自定义区间内的都是极值
    temp_peak_index.sort()

    #定义一个字典
    #索引和周边索引的对应关系
    map_index_neighbor = {}

    #索引和他身边被录用的索引
    map_index_indexes = {}

    #开始创造其中元素
    for this_index in temp_peak_index:

        #单个的索引
        map_index_neighbor[this_index] = [
            this_index + k for k in range(-open_length, +open_length)
        ]

        #被录用的索引(肯定有自己)
        map_index_indexes[this_index] = []

    #判断每个索引和索隐门邻域的对应关系
    for this_index in temp_peak_index:

        for this_neighbor in list(map_index_neighbor.values()):

            #判断在哪里
            if this_index in this_neighbor:

                map_index_indexes[Dict.DictKeyOfValue(
                    map_index_neighbor, this_neighbor)].append(this_index)

    #print(map_index_indexes)

    #真假索引了
    temp_indexes = list(map_index_indexes.values())

    #真实的indexes集合
    indexes = []

    #唯一识别
    map_sum_indexes = {}

    #迭代合并同类项
    for this_indexes in temp_indexes:

        indexes.append(sorted(list(set(this_indexes))))

        #它们的和
        map_sum_indexes[sum(indexes[-1])] = indexes[-1]

    #print(indexes)
    #print(map_sum_indexes)

    #用于加工的indexes列表
    true_indexes = list(map_sum_indexes.values())

    #求取小区间里的最大值噢
    #消除偏移距之前的peak索引
    peak_index = []

    for this_indexes in true_indexes:

        #建立小区间内的索引与值的对应关系哦
        map_index_value = {}

        for this_index in this_indexes:

            map_index_value[this_index] = gradients[this_index]

        #找到最大值噢
        peak_value = np.max(list(map_index_value.values()))

        #获取最大值的索引
        peak_index.append(Dict.DictKeyOfValue(map_index_value, peak_value))

    #在gradients曲线上显示计算结果
    plt.figure()
    plt.plot(gradients)

    #画出峰值点吧
    for this_index in peak_index:

        plt.plot(this_index, gradients[this_index], marker='o', color='red')

    plt.axis('tight')

    #即将消除偏移距
    map_new_old_index = Dict.SortFromStart(which_content, offset)[1]

    #还原到真实的叻
    corner_index = [map_new_old_index[this_index] for this_index in peak_index]

    #在图像上还原真实的角点儿
    corner_points = [which_content[this_index] for this_index in corner_index]

    #显示吧
    if show:

        plt.figure()

        for this_pos in corner_points:

            Dis.ShowOnePoint(this_pos, img_rgb)

    return Dict.DictSortByIndex(dict(zip(corner_index, corner_points)),
                                sorted(corner_index))
def EdgeIndex(which_fraction,
              derivative_format,
              index_plot=False,
              derivative_plot=False,
              pick_from_img=False,
              pick_from_plot=False):

    #建立which_fraction.edge坐标索引
    x = [k for k in range(len(which_fraction.edge) - 1)]
    content = [
        which_fraction.edge[k] for k in range(len(which_fraction.edge) - 1)
    ]

    map_x_content = dict(zip(x, content))

    #边界位置索引的序列
    index_A = []
    index_B = []

    #头尾一致
    for k in range(len(which_fraction.edge) - 1):

        pos_A = which_fraction.edge[k]
        pos_B = which_fraction.edge[k + 1]

        #生成邻居索引
        index_A.append(Geom.NeighborIndex(pos_A, pos_B)[0])
        index_B.append(Geom.NeighborIndex(pos_A, pos_B)[1])

    #轮转的影子索引列表
    another_index_A, map_original_another_x_A = Dict.SortFromStart(index_A, 10)
    another_index_B, map_original_another_x_B = Dict.SortFromStart(index_B, 10)

    #    print(len(index_A))
    #    print(len(index_B))
    #
    #    print(len(another_index_A))
    #    print(len(another_index_B))

    #    print(map_original_another_x_A)
    #    print(map_original_another_x_B)

    #梯度模式
    if derivative_format is 'gradient':

        #从index中找出梯度较大的点
        gradient_A = np.gradient(index_A)
        gradient_B = np.gradient(index_B)

        derivative_A = cp.deepcopy(np.array(gradient_A))
        derivative_B = cp.deepcopy(np.array(gradient_B))

        #another
        another_gradient_A = np.gradient(another_index_A)
        another_gradient_B = np.gradient(another_index_B)

        another_derivative_A = cp.deepcopy(np.array(another_gradient_A))
        another_derivative_B = cp.deepcopy(np.array(another_gradient_B))

    #差分格式
    if derivative_format is 'difference':

        #差分计算法
        difference_A = [
            index_A[k] - index_A[k + 1] for k in range(len(index_A) - 1)
        ]
        difference_B = [
            index_B[k] - index_B[k + 1] for k in range(len(index_B) - 1)
        ]

        derivative_A = cp.deepcopy(np.array(difference_A))
        derivative_B = cp.deepcopy(np.array(difference_B))

        #another
        another_difference_A = [
            another_index_A[k] - another_index_A[k + 1]
            for k in range(len(another_index_A) - 1)
        ]
        another_difference_B = [
            another_index_B[k] - another_index_B[k + 1]
            for k in range(len(another_index_B) - 1)
        ]

        another_derivative_A = cp.deepcopy(np.array(another_difference_A))
        another_derivative_B = cp.deepcopy(np.array(another_difference_B))

    #极值大小阈值
    threshold = 4
    '''使用轮转换位的方法计算角点,然后取并集'''
    #潜在可疑点
    points_x_A = list(np.where(abs(derivative_A) >= threshold)[0])
    points_x_B = list(np.where(abs(derivative_B) >= threshold)[0])

    #另一半
    another_points_x_A = list(
        np.where(abs(another_derivative_A) >= threshold)[0])
    another_points_x_B = list(
        np.where(abs(another_derivative_B) >= threshold)[0])

    #    print(points_x_A)
    #    print(points_x_B)

    #    print(another_points_x_A)
    #    print(another_points_x_B)
    '''有问题!!!'''
    """梯度的计算需要加以改进,多点平滑"""

    #消除红利
    for k in range(len(another_points_x_A)):

        another_points_x_A[k] = map_original_another_x_A[another_points_x_A[k]]

    for k in range(len(another_points_x_B)):

        another_points_x_B[k] = map_original_another_x_B[another_points_x_B[k]]


#    print(another_points_x_A)
#    print(another_points_x_B)

#可以点列表
    points_x_temp=points_x_A+another_points_x_A\
                 +points_x_B+another_points_x_B

    #最后取个并集
    points_x = []

    for item in list(set(points_x_temp)):

        if item == len(another_derivative_B) or item == len(
                another_derivative_A):

            points_x.append(0)
        else:
            points_x.append(item + 1)

    print(points_x)
    '''再处理一波'''

    #从img上获取点做实验
    if pick_from_img:

        #返回四个点
        points = PickPointsFromImg(4, which_fraction.edge)

        #横坐标哦
        that_x = [content.index(this_point) for this_point in points]

    #显示吗哥
    if index_plot:

        plt.figure()

        if pick_from_img:

            #纵坐标哦
            index_A_y = [index_A[this_x] for this_x in that_x]
            index_B_y = [index_B[this_x] for this_x in that_x]

            #逐个输出可疑点
            for k in range(len(that_x)):

                plt.subplot(211), plt.plot(that_x[k],
                                           index_A_y[k],
                                           marker='o',
                                           color='red')
                plt.subplot(212), plt.plot(that_x[k],
                                           index_B_y[k],
                                           marker='o',
                                           color='red')

        #绘制整体曲线
        plt.subplot(211), plt.plot(index_A)
        plt.subplot(212), plt.plot(index_B)

        #看看梯度8
        if derivative_plot:

            #逐个输出可疑点
            for this_x in points_x:

                plt.subplot(211), plt.plot(this_x,
                                           index_A[this_x],
                                           marker='o',
                                           color='red')
                plt.subplot(212), plt.plot(this_x,
                                           index_B[this_x],
                                           marker='o',
                                           color='red')

            plt.figure()

            #从img上获取点做实验
            if pick_from_img:

                #纵坐标哦
                derivative_A_y = [derivative_A[this_x] for this_x in that_x]
                derivative_B_y = [derivative_B[this_x] for this_x in that_x]

                #逐个输出
                for k in range(len(that_x)):

                    plt.subplot(211), plt.plot(that_x[k],
                                               derivative_A_y[k],
                                               marker='o',
                                               color='red')
                    plt.subplot(212), plt.plot(that_x[k],
                                               derivative_B_y[k],
                                               marker='o',
                                               color='red')

            #整体曲线
            plt.subplot(211), plt.plot(derivative_A)
            plt.subplot(212), plt.plot(derivative_B)

            #逐个输出可疑点
            for this_x in points_x:

                plt.subplot(211), plt.plot(this_x,
                                           derivative_A[this_x],
                                           marker='o',
                                           color='red')
                plt.subplot(212), plt.plot(this_x,
                                           derivative_B[this_x],
                                           marker='o',
                                           color='red')

            return [content[this_x] for this_x in points_x]

        if pick_from_plot:

            return PickPointsFromPlot(4, map_x_content)