Beispiel #1
0
 def updateLabels(self, s11data: List[Datapoint], s21data: List[Datapoint]):
     from NanoVNASaver.Chart import PhaseChart
     from NanoVNASaver.NanoVNASaver import NanoVNASaver
     if self.location != -1:
         im50, re50, vswr = NanoVNASaver.vswr(s11data[self.location])
         if im50 < 0:
             im50str = " - j" + str(round(-1 * im50, 3))
         else:
             im50str = " + j" + str(round(im50, 3))
         self.frequency_label.setText(
             NanoVNASaver.formatFrequency(s11data[self.location].freq))
         self.impedance_label.setText(str(round(re50, 3)) + im50str)
         self.returnloss_label.setText(
             str(round(20 * math.log10((vswr - 1) / (vswr + 1)), 3)) +
             " dB")
         reactance = NanoVNASaver.reactanceEquivalent(
             im50, s11data[self.location].freq)
         self.reactance_label.setText(reactance)
         self.vswr_label.setText(str(round(vswr, 3)))
         if len(s21data) == len(s11data):
             _, _, vswr = NanoVNASaver.vswr(s21data[self.location])
             self.gain_label.setText(
                 str(round(20 * math.log10((vswr - 1) / (vswr + 1)), 3)) +
                 " dB")
             self.phase_label.setText(
                 str(round(PhaseChart.angle(s21data[self.location]), 2)) +
                 "\N{DEGREE SIGN}")
Beispiel #2
0
    def updateLabels(self, s11data: List[Datapoint], s21data: List[Datapoint]):
        from NanoVNASaver.Chart import PhaseChart
        from NanoVNASaver.NanoVNASaver import NanoVNASaver
        if self.location != -1:
            im50, re50, vswr = NanoVNASaver.vswr(s11data[self.location])
            rp = (re50**2 + im50**2) / re50
            xp = (re50**2 + im50**2) / im50
            re50 = round(re50, 4 - max(0, math.floor(math.log10(abs(re50)))))
            rp = round(rp, 4 - max(0, math.floor(math.log10(abs(rp)))))
            im50 = round(im50, 4 - max(0, math.floor(math.log10(abs(im50)))))
            xp = round(xp, 4 - max(0, math.floor(math.log10(abs(xp)))))
            if im50 < 0:
                im50str = " -j" + str(-1 * im50)
            else:
                im50str = " +j" + str(im50)
            im50str += "\N{OHM SIGN}"

            if xp < 0:
                xpstr = NanoVNASaver.capacitanceEquivalent(
                    xp, s11data[self.location].freq)
            else:
                xpstr = NanoVNASaver.inductanceEquivalent(
                    xp, s11data[self.location].freq)

            self.frequency_label.setText(
                NanoVNASaver.formatFrequency(s11data[self.location].freq))
            self.impedance_label.setText(str(re50) + im50str)
            self.parallel_r_label.setText(str(rp) + "\N{OHM SIGN}")
            self.parallel_x_label.setText(xpstr)
            self.returnloss_label.setText(
                str(round(20 * math.log10((vswr - 1) / (vswr + 1)), 3)) +
                " dB")
            capacitance = NanoVNASaver.capacitanceEquivalent(
                im50, s11data[self.location].freq)
            inductance = NanoVNASaver.inductanceEquivalent(
                im50, s11data[self.location].freq)
            self.inductance_label.setText(inductance)
            self.capacitance_label.setText(capacitance)
            vswr = round(vswr, 3)
            if vswr < 0:
                vswr = "-"
            self.vswr_label.setText(str(vswr))
            self.quality_factor_label.setText(
                str(
                    round(NanoVNASaver.qualifyFactor(s11data[self.location]),
                          1)))
            self.s11_phase_label.setText(
                str(round(-PhaseChart.angle(s11data[self.location]), 2)) +
                "\N{DEGREE SIGN}")
            if len(s21data) == len(s11data):
                _, _, vswr = NanoVNASaver.vswr(s21data[self.location])
                self.gain_label.setText(
                    str(round(20 * math.log10((vswr - 1) / (vswr + 1)), 3)) +
                    " dB")
                self.s21_phase_label.setText(
                    str(round(-PhaseChart.angle(s21data[self.location]), 2)) +
                    "\N{DEGREE SIGN}")
Beispiel #3
0
    def drawValues(self, qp: QtGui.QPainter):
        from NanoVNASaver.NanoVNASaver import NanoVNASaver
        if len(self.data) == 0 and len(self.reference) == 0:
            return
        pen = QtGui.QPen(self.sweepColor)
        pen.setWidth(2)
        line_pen = QtGui.QPen(self.sweepColor)
        line_pen.setWidth(1)
        highlighter = QtGui.QPen(QtGui.QColor(20, 0, 255))
        highlighter.setWidth(1)
        if len(self.data) > 0:
            fstart = self.data[0].freq
            fstop = self.data[len(self.data) - 1].freq
        else:
            fstart = self.reference[0].freq
            fstop = self.reference[len(self.reference) - 1].freq
        self.fstart = fstart
        self.fstop = fstop
        fspan = fstop - fstart
        # Find scaling
        minVSWR = 1
        maxVSWR = 3
        for d in self.data:
            _, _, vswr = NanoVNASaver.vswr(d)
            if vswr > maxVSWR:
                maxVSWR = vswr
        maxVSWR = min(25, math.ceil(maxVSWR))
        span = maxVSWR - minVSWR
        ticksize = 1
        if span > 10 and span % 5 == 0:
            ticksize = 5
        elif span > 12 and span % 4 == 0:
            ticksize = 4
        elif span > 8 and span % 3 == 0:
            ticksize = 3
        elif span > 7 and span % 2 == 0:
            ticksize = 2

        for i in range(minVSWR, maxVSWR, ticksize):
            y = 30 + round((maxVSWR - i) / span * (self.chartHeight - 10))
            if i != minVSWR and i != maxVSWR:
                qp.setPen(self.textColor)
                qp.drawText(3, y + 3, str(i))
            qp.setPen(QtGui.QPen(QtGui.QColor("lightgray")))
            qp.drawLine(self.leftMargin - 5, y,
                        self.leftMargin + self.chartWidth, y)
        qp.drawLine(self.leftMargin - 5, 30, self.leftMargin + self.chartWidth,
                    30)
        qp.setPen(self.textColor)
        qp.drawText(3, 35, str(maxVSWR))
        qp.drawText(3, self.chartHeight + 20, str(minVSWR))
        # At least 100 px between ticks
        qp.drawText(self.leftMargin - 20, 20 + self.chartHeight + 15,
                    Chart.shortenFrequency(fstart))
        ticks = math.floor(self.chartWidth /
                           100)  # Number of ticks does not include the origin
        for i in range(ticks):
            x = self.leftMargin + round((i + 1) * self.chartWidth / ticks)
            qp.setPen(QtGui.QPen(QtGui.QColor("lightgray")))
            qp.drawLine(x, 20, x, 20 + self.chartHeight + 5)
            qp.setPen(self.textColor)
            qp.drawText(
                x - 20, 20 + self.chartHeight + 15,
                Chart.shortenFrequency(round(fspan / ticks * (i + 1) +
                                             fstart)))

        if self.mouselocation != 0:
            qp.setPen(QtGui.QPen(QtGui.QColor(224, 224, 224)))
            x = self.leftMargin + 1 + round(
                self.chartWidth * (self.mouselocation - fstart) / fspan)
            qp.drawLine(x, 20, x, 20 + self.chartHeight + 5)

        qp.setPen(pen)
        for i in range(len(self.data)):
            _, _, vswr = NanoVNASaver.vswr(self.data[i])
            x = self.leftMargin + 1 + round(
                self.chartWidth / len(self.data) * i)
            y = 30 + round((maxVSWR - vswr) / span * (self.chartHeight - 10))
            if y < 30:
                continue
            qp.drawPoint(int(x), int(y))
            if self.drawLines and i > 0:
                _, _, vswr = NanoVNASaver.vswr(self.data[i - 1])
                prevx = self.leftMargin + 1 + round(
                    self.chartWidth / len(self.data) * (i - 1))
                prevy = 30 + round(
                    (maxVSWR - vswr) / span * (self.chartHeight - 10))
                if prevy < 30:
                    continue
                qp.setPen(line_pen)
                qp.drawLine(x, y, prevx, prevy)
                qp.setPen(pen)
        pen.setColor(self.referenceColor)
        line_pen.setColor(self.referenceColor)
        qp.setPen(pen)
        for i in range(len(self.reference)):
            if self.reference[i].freq < fstart or self.reference[
                    i].freq > fstop:
                continue
            _, _, vswr = NanoVNASaver.vswr(self.reference[i])
            x = self.leftMargin + 1 + round(
                self.chartWidth * (self.reference[i].freq - fstart) / fspan)
            y = 30 + round((maxVSWR - vswr) / span * (self.chartHeight - 10))
            if y < 30:
                continue
            qp.drawPoint(int(x), int(y))
            if self.drawLines and i > 0:
                _, _, vswr = NanoVNASaver.vswr(self.reference[i - 1])
                prevx = self.leftMargin + 1 + round(
                    self.chartWidth *
                    (self.reference[i - 1].freq - fstart) / fspan)
                prevy = 30 + round(
                    (maxVSWR - vswr) / span * (self.chartHeight - 10))
                if prevy < 30:
                    continue
                qp.setPen(line_pen)
                qp.drawLine(x, y, prevx, prevy)
                qp.setPen(pen)
        # Now draw the markers
        for m in self.markers:
            if m.location != -1:
                highlighter.setColor(m.color)
                qp.setPen(highlighter)
                _, _, vswr = NanoVNASaver.vswr(self.data[m.location])
                x = self.leftMargin + 1 + round(
                    self.chartWidth / len(self.data) * m.location)
                y = 30 + round(
                    (maxVSWR - vswr) / span * (self.chartHeight - 10))
                if y < 30:
                    continue
                qp.drawLine(int(x), int(y) + 3, int(x) - 3, int(y) - 3)
                qp.drawLine(int(x), int(y) + 3, int(x) + 3, int(y) - 3)
                qp.drawLine(int(x) - 3, int(y) - 3, int(x) + 3, int(y) - 3)