def test_FA_iters_fine(self):
     task = StoppingTask(D=10,
                         nGEN=1000,
                         optType=OptimizationType.MINIMIZATION,
                         benchmark=Sphere())
     algo = FireflyAlgorithm(NP=25)
     algo.runTask(task)
     iters = task.iters()
     self.assertEqual(1000, iters)
 def test_BA_iters_to_fes(self):
     task = StoppingTask(D=10,
                         nGEN=1000,
                         optType=OptimizationType.MINIMIZATION,
                         benchmark=Sphere())
     algo = BatAlgorithm(NP=10)
     algo.runTask(task)
     evals = task.evals()
     self.assertEqual(10000, evals)
 def test_FA_evals_fine(self):
     task = StoppingTask(D=10,
                         nFES=1000,
                         optType=OptimizationType.MINIMIZATION,
                         benchmark=Sphere())
     algo = FireflyAlgorithm(NP=25)
     algo.runTask(task)
     evals = task.evals()
     self.assertEqual(1000, evals)
 def test_BA_iters_to_fes(self):
     task = Task(D=10,
                 nGEN=1000,
                 optType=OptimizationType.MINIMIZATION,
                 benchmark=Sphere())
     algo = BatAlgorithm(task=task, NP=10)
     algo.run()
     evals = algo.task.evals()
     self.assertEqual(evals, 10010)
 def test_DE_iters_fine(self):
     task = StoppingTask(D=10,
                         nGEN=1000,
                         optType=OptimizationType.MINIMIZATION,
                         benchmark=Sphere())
     algo = DifferentialEvolution(NP=40, CR=0.9, F=0.5)
     algo.runTask(task)
     iters = task.iters()
     self.assertEqual(1000, iters)
 def test_FA_evals_fine(self):
     task = Task(D=10,
                 nFES=1000,
                 optType=OptimizationType.MINIMIZATION,
                 benchmark=Sphere())
     algo = FireflyAlgorithm(task=task, NP=25)
     algo.run()
     evals = algo.task.evals()
     self.assertEqual(evals, 1000)
 def test_FA_iters_fine(self):
     task = Task(D=10,
                 nGEN=1000,
                 optType=OptimizationType.MINIMIZATION,
                 benchmark=Sphere())
     algo = FireflyAlgorithm(task=task, NP=25)
     algo.run()
     iters = algo.task.iters()
     self.assertEqual(iters, 1000)
 def test_DE_evals_fine(self):
     task = Task(D=10,
                 nFES=1000,
                 optType=OptimizationType.MINIMIZATION,
                 benchmark=Sphere())
     algo = DifferentialEvolution(task=task, NP=40, CR=0.9, F=0.5)
     algo.run()
     evals = algo.task.evals()
     self.assertEqual(evals, 1000)
Beispiel #9
0
 def function(self):
     return Sphere(self.Lower, self.Upper).function()
Beispiel #10
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
from NiaPy.benchmarks import Sphere
from NiaPy.task import StoppingTask
from NiaPy.algorithms.basic import BeesAlgorithm

import sys
sys.path.append('../')


# we will run Bees Algorithm for 5 independent runs
for i in range(5):
    task = StoppingTask(D=20, nGEN=2, benchmark=Sphere())
    algo = BeesAlgorithm(NP=50, m=20, e=10, nep=20, nsp=15, ngh=7)
    best = algo.run(task)
    print('%s -> %s' % (best[0], best[1]))
Beispiel #11
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys
sys.path.append('../')
# End of fix

import random
from NiaPy.algorithms.basic import CoralReefsOptimization
from NiaPy.util import StoppingTask, OptimizationType
from NiaPy.benchmarks import Sphere

#we will run Coral Reefs Optimization algorithm for 5 independent runs
for i in range(5):
    task = StoppingTask(D=10, nFES=1000, optType=OptimizationType.MINIMIZATION, benchmark=Sphere())
    algo = CoralReefsOptimization(NP=40)
    best = algo.run(task=task)
    print best
 
Beispiel #12
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
from NiaPy.algorithms.basic import CovarianceMatrixAdaptionEvolutionStrategy
from NiaPy.benchmarks import Sphere
from NiaPy.task import StoppingTask

import sys
sys.path.append('../')
# End of fix

# we will run CMA-ES for 5 independent runs
for i in range(5):
    task = StoppingTask(D=10, nFES=1000, logger=True, benchmark=Sphere())
    algo = CovarianceMatrixAdaptionEvolutionStrategy(NP=20)
    best = algo.run(task)
    print('%s -> %s' % (best[0], best[1]))

Beispiel #13
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys
sys.path.append('../')
# End of fix

from NiaPy.algorithms.modified import ParameterFreeBatAlgorithm

from NiaPy.task import StoppingTask
from NiaPy.benchmarks import Sphere

algo = ParameterFreeBatAlgorithm()

for i in range(10):
	task = StoppingTask(D=10, nFES=10000, benchmark=Sphere(Upper=5.12, Lower=-5.12))
	best = algo.run(task)
	print('%s -> %s' % (best[0], best[1]))
print(algo.getParameters())
Beispiel #14
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys
sys.path.append('../')
# End of fix

import random
import logging
from NiaPy.task import StoppingTask
from NiaPy.algorithms.basic import DifferentialEvolution
from NiaPy.benchmarks import Griewank, Sphere

# 1 Number of function evaluations (nFES) as a stopping criteria
for i in range(10):
    task = StoppingTask(D=10, nFES=10000, benchmark=Sphere())
    algo = DifferentialEvolution(NP=40, CR=0.9, F=0.5)
    best = algo.run(task)
    print('%s -> %s' % (best[0], best[1]))

print('---------------------------------------')

# 2 Number of generations (iterations) as a stopping criteria
for i in range(10):
    task = StoppingTask(D=10, nGEN=1000, benchmark=Sphere())
    algo = DifferentialEvolution(NP=40, CR=0.9, F=0.5)
    best = algo.run(task)
    print('%s -> %s' % (best[0], best[1]))

print('---------------------------------------')
Beispiel #15
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys
sys.path.append('../')
# End of fix

import random
from NiaPy.algorithms.basic import ComprehensiveLearningParticleSwarmOptimizer
from NiaPy.benchmarks import Sphere
from NiaPy.task import StoppingTask

# we will run ParticleSwarmAlgorithm for 5 independent runs
algo = ComprehensiveLearningParticleSwarmOptimizer(NP=50,
                                                   C1=.3,
                                                   C2=1.0,
                                                   m=5,
                                                   w=0.86,
                                                   vMin=-2,
                                                   vMax=2)
for i in range(5):
    task = StoppingTask(D=25, nFES=20000, benchmark=Sphere())
    best = algo.run(task=task)
    print('%s -> %f' % (best[0], best[1]))
print(algo.getParameters())

# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
Beispiel #16
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys
sys.path.append('../')
# End of fix

from NiaPy.algorithms.basic import KrillHerdV2
from NiaPy.task import StoppingTask
from NiaPy.benchmarks import Sphere

# we will run Fireworks Algorithm for 5 independent runs
for i in range(5):
    task = StoppingTask(D=10, nGEN=50, benchmark=Sphere())
    algo = KrillHerdV2(NP=70, Ainit=0.1, Afinal=0.9)
    best = algo.run(task)
    print('%s -> %s' % (best[0], best[1]))

# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
Beispiel #17
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys
sys.path.append('../')
# End of fix

import random
from NiaPy.algorithms.basic import AgingNpMultiMutationDifferentialEvolution
from NiaPy.algorithms.basic.de import CrossCurr2Best1, CrossBest2
from NiaPy.task import StoppingTask
from NiaPy.benchmarks import Sphere

# we will run Differential Evolution for 5 independent runs
for i in range(5):
    task = StoppingTask(D=10, nFES=5000, benchmark=Sphere())
    algo = AgingNpMultiMutationDifferentialEvolution(NP=10, F=0.2, CR=0.65, strategies=(CrossCurr2Best1, CrossBest2), delta_np=0.05, omega=0.9)
    best = algo.run(task)
    print('%s -> %s' % (best[0], best[1]))

# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
Beispiel #18
0
    Ackley,
    Griewank,
    Sphere,
    HappyCat
)


"""Example demonstrating the use of NiaPy Runner."""


runner = Runner(
    D=40,
    nFES=100,
    nRuns=2,
    useAlgorithms=[
        GreyWolfOptimizer(),
        "FlowerPollinationAlgorithm",
        ParticleSwarmAlgorithm(),
        "HybridBatAlgorithm",
        "SimulatedAnnealing",
        "CuckooSearch"],
    useBenchmarks=[
        Ackley(),
        Griewank(),
        Sphere(),
        HappyCat(),
        "rastrigin"]
)

print(runner.run(verbose=True))
Beispiel #19
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys
sys.path.append('../')
# End of fix

from NiaPy.algorithms.basic import GravitationalSearchAlgorithm
from NiaPy.util import StoppingTask, OptimizationType
from NiaPy.benchmarks import Sphere

# we will run Gravitational Search Algorithm for 5 independent runs
for i in range(5):
    task = StoppingTask(D=10,
                        nFES=10000,
                        optType=OptimizationType.MINIMIZATION,
                        benchmark=Sphere())
    algo = GravitationalSearchAlgorithm(NP=40)
    best = algo.run(task=task)
    print(best)
Beispiel #20
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys
sys.path.append('../')
# End of fix

from NiaPy.task import StoppingTask
from NiaPy.benchmarks import Sphere
from NiaPy.algorithms.other import RandomSearch

for i in range(1):
    task = StoppingTask(D=5, nGEN=5000, benchmark=Sphere())
    algo = RandomSearch()
    best = algo.run(task=task)
    print(best)