Beispiel #1
0
def filterClusterStationMinimumNumber(CentroidList, StationClusterList,
                                      Config):

    newCentroidList = []
    newStationClusterList = []

    for i in CentroidList:
        counter = 0

        for j in StationClusterList:
            if i.rank == j.member:
                counter += 1
                streamID = j.net + '.' + j.sta + '.' + j.loc + '.' + j.comp
                delta = loc2degrees(i, j)
                #print i.lat,i.lon,': ',streamID,j.lat,j.lon,delta

        if counter < int(Config['minclusterstation']): s1 = 'OUT'
        else:
            s1 = 'IN '
            newCentroidList.append(i)

        Logfile.red('Centroid %s %d %s %5.2f %5.2f' %
                    (i.rank, counter, s1, i.lat, i.lon))

    for i in newCentroidList:
        for j in StationClusterList:
            if i.rank == j.member:
                newStationClusterList.append(j)

    return newStationClusterList, newCentroidList
Beispiel #2
0
def compareClusterCentre(oldCluster, newCluster, Config):

    counter = 0

    for i in range(int(Config['maxcluster'])):
        if newCluster[i].rank == -1: continue  #hs-1

        delta = loc2degrees(oldCluster[i], newCluster[i])

        #print i,' OLD: ',oldCluster[i].lat,oldCluster[i].lon,' NEW: ',newCluster[i].lat,newCluster[i].lon,' DELTA: ',delta
        msg = str(i) + ' OLD: ' + str(oldCluster[i].lat) + ' ' + str(
            oldCluster[i].lon)
        msg += ' NEW: ' + str(newCluster[i].lat) + ' ' + str(
            newCluster[i].lon) + ' DELTA: ' + str(delta)
        Logfile.add(msg)
        s = 'NO'

        if delta < float(Config['comparedelta']):
            s = 'JO'
            counter += 1

        Logfile.add(s)
    #endfor

    return counter
Beispiel #3
0
def filterStations(StationList, Config, Origin, network):

    F = []
    cfg = ConfigObj(dict=Config)

    minDist, maxDist = cfg.FloatRange('mindist', 'maxdist')
    origin = Location(Origin['lat'], Origin['lon'])

    Logfile.red('Filter stations with configured parameters...')
    print 'nr networks = ', len(network)
    print 'nr stations = ', len(StationList)

    for j in network:
        #print j

        for i in StationList:
            if fnmatch.fnmatch(i.getcmpName(), j):
                pos = Location(i.lat, i.lon)
                sdelta = loc2degrees(origin, pos)

                if sdelta > minDist and sdelta < maxDist:
                    s = Station(i.net, i.sta, i.loc, i.comp, i.lat, i.lon,
                                i.ele, i.dip, i.azi, i.gain)

                    if s not in F: F.append(s)

    Logfile.red('%d STATIONS LEFT IN LIST' % len(F))
    return F
Beispiel #4
0
def calctakeoff(Station, Event, Config):

    de = loc2degrees(Event, Station)
    Phase = cake.PhaseDef('P')
    model = cake.load_model()
    arrivals = model.arrivals([de, de], phases=Phase, zstart=Event.depth * km)

    return arrivals[0].takeoff_angle()
    def traveltimes(self, phase):

        Logfile.red('Enter AUTOMATIC CROSSCORRELATION ')
        Logfile.red('\n\n+++++++++++++++++++++++++++++++++++++++++++++++\n ')
        T = []
        Wdict = OrderedDict()
        SNR = OrderedDict()
        Config = self.Config
        cfg = ConfigObj(dict=Config)
        for i in self.StationMeta:
            Logfile.red('read in %s ' % (i))
            de = loc2degrees(self.Origin, i)
            Phase = cake.PhaseDef(phase)
            traveltime_model = cfg.Str('traveltime_model')
            model = cake.load_model('../data/' + traveltime_model)
            if cfg.colesseo_input() is True:
                arrivals = model.arrivals([de, de],
                                          phases=Phase,
                                          zstart=self.Origin.depth,
                                          zstop=0.)
            else:
                arrivals = model.arrivals([de, de],
                                          phases=Phase,
                                          zstart=self.Origin.depth * km,
                                          zstop=0.)
            try:
                ptime = arrivals[0].t
            except Exception:
                try:
                    arrivals = model.arrivals([de, de],
                                              phases=Phase,
                                              zstart=self.Origin.depth * km -
                                              2.1)
                    ptime = arrivals[0].t
                except Exception:
                    ptime = 0
            T.append(ptime)
            if ptime == 0:
                Logfile.red('Available phases for station %s in\
                            range %f deegree' % (i, de))
                Logfile.red('you tried phase %s' % (phase))
                raise Exception("ILLEGAL: phase definition")
            else:
                tw = self.calculateTimeWindows(ptime)
                if cfg.pyrocko_download() is True:
                    w, snr = self.readWaveformsCross_pyrocko(i, tw, ptime)
                elif cfg.colesseo_input() is True:
                    w, snr = self.readWaveformsCross_colesseo(i, tw, ptime)
                else:
                    w, snr = self.readWaveformsCross(i, tw, ptime)
                Wdict[i.getName()] = w
                SNR[i.getName()] = snr

            Logfile.red('\n\n+++++++++++++++++++++++++++++++++++++++++++++++ ')

        Logfile.red('Exit AUTOMATIC FILTER ')
        return Wdict, SNR
Beispiel #6
0
def calcMeanCentroidDistance(CentroidList):

    sumdelta = 0

    for i in CentroidList:
        for j in CentroidList:
            sumdelta += loc2degrees(i, j)

    meanCentroidDistance = sumdelta / len(CentroidList)
    return meanCentroidDistance
Beispiel #7
0
def checkStationAroundInitialCentroid(station, Config, StationMetaList):

    cfg = ConfigObj(dict=Config)
    initDist = cfg.Float('initialstationdistance')
    counter = 0

    for i in StationMetaList:
        sdelta = loc2degrees(station, i)
        if sdelta < initDist: counter += 1

    return counter
    def traveltimes(self):

        Logfile.red('Enter AUTOMATIC CROSSCORRELATION ')
        Logfile.red(
            '\n\n+++++++++++++++++++++++++++++++++++++++++++++++++++\n ')
        T = []
        Wdict = {}
        SNR = {}

        for i in self.StationMeta:

            Logfile.red('read in %s ' % (i))
            de = loc2degrees(self.Origin, i)
            tt = obs_TravelTimes(de, self.Origin.depth)

            ptime = 0
            phasename = ('%sphase') % (os.path.basename(self.AF))

            for j in tt:
                if j['phase_name'] == self.Config[phasename] or j[
                        'phase_name'] == ('%sdiff') % (self.Config[phasename]):
                    ptime = j['time']
                    T.append(ptime)

                    Logfile.add('%sdiff' % (self.Config[phasename]))
                    Logfile.add('j = ' + str(j))

            if ptime == 0:
                Logfile.red(
                    'Available phases for station %s in range %f deegree' %
                    (i, de))
                #   print '\033[31m'+'|'.join([str(item['phase_name']) for item in tt])+''           ???
                Logfile.red('you tried phase %s' % (self.Config[phasename]))
                raise Exception("ILLEGAL: phase definition")

            tw = self.calculateTimeWindows(ptime)

            try:
                w, snr = self.readWaveformsCross(i, tw, ptime)
                Wdict[i.getName()] = w
                SNR[i.getName()] = snr

            except:
                continue

            Logfile.red(
                '\n\n+++++++++++++++++++++++++++++++++++++++++++++++++++ ')

        Logfile.red('Exit AUTOMATIC FILTER ')
        return Wdict, SNR
Beispiel #9
0
def calcMinValue(CentroidList):

    mCD = calcMeanCentroidDistance(CentroidList)

    sumdelta = 0

    for i in CentroidList:
        for j in CentroidList:
            delta = loc2degrees(i, j)
            x = (delta - mCD)
            sumdelta += math.pow(x, 2)

    minval = sumdelta / len(CentroidList)

    return minval
Beispiel #10
0
def deleteFarStations(CentroidList, StationClusterList, Config):

    cfg = ConfigObj(dict=Config)
    stationdistance = int(cfg.Distance('stationdistance'))

    for i in CentroidList:
        for j in StationClusterList:
            if i.rank == j.member:
                if loc2degrees(i, j) > stationdistance:
                    j.member = -1
    #endfor

    for index, k in enumerate(StationClusterList):
        if k.member == -1: del StationClusterList[index]

    return StationClusterList
Beispiel #11
0
def kmean(Config, inputCentroid, FilterMeta, counter, Folder, Origin, flag):

    counter += 1
    Logfile.add('COUNTER ' + str(counter) + ' CUTOFF ' + Config['cutoff'])

    cfg = ConfigObj(dict=Config)

    if counter == cfg.UInt('cutoff'):
        endcheck(inputCentroid, FilterMeta, Config, Folder, Origin, flag)
        sys.exit()

    scl = stationBelongToCluster(Config, inputCentroid, FilterMeta)
    #sys.exit()

    #print scl,len(scl)
    acounter = 1

    for a in inputCentroid:
        #print a
        for i in scl:
            if acounter == i.member:
                delta = loc2degrees(i, a)

                if delta > cfg.Float('initialstationdistance'):
                    i.member = -1
                    #print 'delete ',a,i,i.member,delta
                    #b=scl.index(i)
                    #del scl[b]

                #else:
                #   print a,i,i.member,delta
        acounter += 1
    #endfor

    #sys.exit()
    nsc = calculateClusterCentre(Config, scl)
    t = compareClusterCentre(inputCentroid, nsc, Config)

    Logfile.add('ITERATIONSTEP: ---> ' + str(counter) +
                ' <-----------------------------')

    while t != cfg.UInt('maxcluster'):
        Logfile.add('ANZAHL DER JO in KMEAN: ' + str(t))
        kmean(Config, nsc, FilterMeta, counter, Folder, Origin, flag)

    endcheck(inputCentroid, FilterMeta, Config, Folder, Origin, flag)
    sys.exit()
Beispiel #12
0
def filterStations(StationList, Config, Origin):
    F = []
    cfg = ConfigObj(dict=Config)

    minDist, maxDist = cfg.FloatRange('mindist', 'maxdist')
    origin = DataTypes.dictToLocation(Origin)

    Logfile.red('Filter stations with configured parameters')

    for i in StationList:
        sdelta = loc2degrees(origin, i)

        if sdelta > minDist and sdelta < maxDist:
            F.append(
                Station(i.net, i.sta, i.loc, i.comp, i.lat, i.lon, i.ele,
                        i.dip, i.azi, i.gain))
    Logfile.red('%d STATIONS LEFT IN LIST' % len(F))
    return F
Beispiel #13
0
    def traveltimes(self):

        Logfile.red('Enter AUTOMATIC FILTER')
        T = []
        Wdict = {}

        for i in self.StationMeta:
            de = loc2degrees(self.Origin, i)
            tt = obs_TravelTimes(de, self.Origin.depth)

            if tt[0]['phase_name'] == 'P':
                time = tt[0]['time']
                T.append(time)
            tw = self.calculateTimeWindows(time)
            w = self.readWaveformsCross(i, tw)
            Wdict[i.getName()] = w

        Logfile.red('Exit AUTOMATIC FILTER')

        return Wdict
Beispiel #14
0
def calctakeoff(Station, Event, Config):

    de = loc2degrees(Event, Station)
    tt = obs_TravelTimes(de, Event.depth)
    cfgPhase = Config['phasename']

    for k in tt:
        phase_name = k['phase_name']

        if phase_name == cfgPhase or phase_name == ('%sdiff') % (cfgPhase):
            ttime = k['time']

    if tt[0]['phase_name'] == Config['ttphase']:
        takeoff = tt[0]['take-off angle']

    #for r in tt:
    #    if r['phase_name'] is Config [phasename]:
    #        takeoff = r['take-off angle']

    return takeoff
Beispiel #15
0
def traveltimes(MetaDict, Config, Event, Folder, evpath):

    Logfile.red('Enter AUTOMATIC FILTER')
    T = []

    for i in MetaDict:
        delta = loc2degrees(Event, i)
        tt = obs_TravelTimes(delta, Event.depth)

        if tt[0]['phase_name'] == Config['ttphase']:
            time = tt[0]['time']
            T.append(time)

        mint = min(T)
        maxt = max(T)

        tw = times.calculateTimeWindows(mint, maxt, Config, Event, switch)
        readWaveformsCross(i, tw, evpath, Event)
    #endfor

    Logfile.red('Exit AUTOMATIC FILTER')
Beispiel #16
0
def stationBelongToCluster(Config, CentroidList, StationMetaList):

    ClusterList = []

    for i in StationMetaList:
        mind = 100000
        c = 0

        for j in CentroidList:
            delta = loc2degrees(j, i)
            c += 1

            if mind > delta:
                mind = delta
                i.member = c
        #endfor

        ClusterList.append(
            Station(i.net, i.sta, i.loc, i.comp, i.lat, i.lon, i.ele, i.dip,
                    i.azi, i.gain, i.member))
    #endfor

    return ClusterList
Beispiel #17
0
def addOK(station, stationList, Config, MetaList):

    cfg = ConfigObj(dict=Config)
    minDist = cfg.Distance('centroidmindistance')
    minAround = cfg.UInt('minstationaroundinitialcluster')
    t = 0

    for i in stationList:
        sdelta = loc2degrees(station, i)

        if sdelta > minDist:
            aroundcounter = checkStationAroundInitialCentroid(
                station, Config, MetaList)

            if aroundcounter >= minAround: t = 1
            else:
                t = 0
                return t
        else:
            t = 0
            return t

    return t
Beispiel #18
0
    def traveltimes(self):

        logger.info('\033[31m Enter AUTOMATIC FILTER \033[0m')
        T = []
        Wdict = {}
        SNR = {}

        for i in self.StationMeta:

            #de = locations2degrees (float(self.Origin.lat), float(self.Origin.lon), float(i.lat), float(i.lon))
            de = loc2degrees(self.Origin, i)
            tt = getTravelTimes(delta=de,
                                depth=float(self.Origin.depth),
                                model='ak135')

            if tt[0]['phase_name'] == 'P':
                ptime = tt[0]['time']
                T.append(ptime)

            logger.info(
                '\033[31m \n\n+++++++++++++++++++++++++++++++++++++++++++++++++++ \033[0m'
            )
            print i.getName(), i.lat, i.lon, ptime
            ttime = ptime

            tw = self.calculateTimeWindows(ptime)
            try:
                w, snr = self.readWaveformsCross(i, tw, ttime)
                Wdict[i.getName()] = w
                SNR[i.getName()] = snr
            except:
                continue

            logger.info('\033[31m Exit AUTOMATIC FILTER \033[0m')

        return Wdict, SNR
Beispiel #19
0
def createRandomInitialCentroids(Config, StationMetaList):
    Logfile.red('Begin initial centroid search')

    initialCentroids = []
    usedIndexes = []
    random.seed(time.clock())

    if len(StationMetaList) == 0:
        Logfile.red('Empty station list')
        return initialCentroids

    MAX_TIME_ALLOWED = 50
    start = time.time()

    while len(initialCentroids) < int(Config['maxcluster']):
        dist_centroids = float(Config['centroidmindistance'])

        randomIndex = random.randint(0, len(StationMetaList) - 1)
        redraw = True
        while redraw is True:
            if randomIndex in usedIndexes:
                randomIndex = random.randint(0, len(StationMetaList) - 1)
            else:
                if len(usedIndexes) > 2:
                    for rdx in usedIndexes:
                        s1 = StationMetaList[randomIndex]
                        s2 = StationMetaList[rdx]
                        delta = loc2degrees(s1, s2)
                        if delta >= dist_centroids:
                            redraw = False
                else:
                    redraw = False
        usedIndexes.append(randomIndex)

        around = checkStationAroundInitialCentroid(
            StationMetaList[randomIndex], Config, StationMetaList)
        found = False

        if len(initialCentroids) == 0:
            initialCentroids.append(StationMetaList[randomIndex])
            found = True
            start = time.time()

        else:
            t = addOK(StationMetaList[randomIndex], initialCentroids, Config,
                      StationMetaList)
            if (time.time() - start) > MAX_TIME_ALLOWED:
                break
            if t == 1:
                if len(usedIndexes) > 1:
                    for rdx in usedIndexes:
                        s1 = StationMetaList[randomIndex]
                        s2 = StationMetaList[rdx]
                        delta = loc2degrees(s1, s2)
                        if delta >= dist_centroids:
                            initialCentroids.append(
                                StationMetaList[randomIndex])
                            found = True
                else:
                    initialCentroids.append(StationMetaList[randomIndex])
                    found = True

            else:
                continue

        if found:
            Logfile.red('found initial cluster %d' % (len(initialCentroids)))
            Logfile.red('centroid %s with %d stations around %s deegree' %
                        (StationMetaList[randomIndex], around,
                         Config['centroidmindistance']))

    Logfile.red('Initial centroid search finished')
    return initialCentroids
Beispiel #20
0
def calcTTTAdv(Config, station, Origin, flag, arrayname, Xcorrshift, Refshift,
               phase):

    cfg = ConfigObj(dict=Config)
    if cfg.Bool('correct_shifts_empirical') is True:
        dimX = cfg.Int('dimx_emp')
        dimY = cfg.Int('dimy_emp')
    else:
        dimX = cfg.Int('dimx')
        dimY = cfg.Int('dimy')
    gridspacing = cfg.Float('gridspacing')
    traveltime_model = cfg.Str('traveltime_model')

    o_lat = float(Origin['lat'])
    o_lon = float(Origin['lon'])
    o_depth = float(Origin['depth'])

    oLator = o_lat + dimX / 2
    oLonor = o_lon + dimY / 2
    oLatul = 0
    oLonul = 0
    o_dip = 80.
    plane = False

    TTTGridMap = {}
    LMINMAX = []
    GridArray = {}
    locStation = Location(station.lat, station.lon)
    sdelta = loc2degrees(Location(o_lat, o_lon), locStation)
    Phase = cake.PhaseDef(phase)
    model = cake.load_model('../data/' + traveltime_model)

    z = 0
    if plane is True:
        depth = np.linspace(0., 40., num=dimY)
        for i in xrange(70):
            oLatul = o_lat - ((dimX - 1) / 2) * gridspacing + i * gridspacing
            if z == 0 and i == 0:
                Latul = oLatul
            o = 0
            start_time = time.clock()

            for j in xrange(40):
                oLonul = o_lon - (
                    (dimY - 1) /
                    2) * gridspacing + j * gridspacing / np.cos(o_dip)
                if o == 0 and j == 0:
                    Lonul = oLonul
                de = loc2degrees(Location(oLatul, oLonul), locStation)
                arrivals = model.arrivals([de, de],
                                          phases=Phase,
                                          zstart=depth[j] * km,
                                          zstop=0.)
            try:
                ttime = arrivals[0].t
            except Exception:
                try:
                    arrivals = model.arrivals([de, de],
                                              phases=Phase,
                                              zstart=depth[j] * km - 2.5,
                                              zstop=depth[j] * km + 2.5,
                                              refine=True)
                    ttime = arrivals[0].t
                except Exception:
                    tt = obs_TravelTimes(de, o_depth)
                    for k in tt:
                        if k['phase_name'] == 'P' or k['phase_name'] == (
                                '%sdiff') % (Config[phasename]):
                            ttime = k['time']
                        print("Something wrong with phase arrival, too large\
                             distances choosen?")

                GridArray[(i, j)] = GridElem(oLatul, oLonul, depth[j], ttime,
                                             de)
                LMINMAX.append(ttime)

                GridArray[(i, j)] = GridElem(oLatul, oLonul, o_depth, ttime,
                                             de)
                LMINMAX.append(ttime)

                if ttime == 0:
                    raise Exception("\033[31mILLEGAL: phase definition\033[0m")
    else:
        for i in xrange(dimX):
            oLatul = o_lat - ((dimX - 1) / 2) * gridspacing + i * gridspacing

            if z == 0 and i == 0:
                Latul = oLatul
            o = 0
            for j in xrange(dimY):
                oLonul = o_lon - (
                    (dimY - 1) / 2) * gridspacing + j * gridspacing

                if o == 0 and j == 0:
                    Lonul = oLonul
                de = loc2degrees(Location(oLatul, oLonul), locStation)
                arrivals = model.arrivals([de, de],
                                          phases=Phase,
                                          zstart=o_depth * km)
                try:
                    ttime = arrivals[0].t
                except:
                    try:
                        arrivals = model.arrivals([de, de],
                                                  phases=Phase,
                                                  zstart=o_depth * km,
                                                  zstop=o_depth * km,
                                                  refine=True)
                        ttime = arrivals[0].t
                    except:
                        arrivals = model.arrivals([de, de],
                                                  phases=Phase,
                                                  zstart=o_depth * km - 2.5,
                                                  zstop=o_depth * km + 2.5,
                                                  refine=True)
                        ttime = arrivals[0].t

                GridArray[(i, j)] = GridElem(oLatul, oLonul, o_depth, ttime,
                                             de)
                LMINMAX.append(ttime)

                GridArray[(i, j)] = GridElem(oLatul, oLonul, o_depth, ttime,
                                             de)
                LMINMAX.append(ttime)
                if ttime == 0:
                    raise Exception("\033[31mILLEGAL: phase definition\033[0m")

    mint = min(LMINMAX)
    maxt = max(LMINMAX)
    TTTGridMap[station.getName()] = TTTGrid(o_depth, mint, maxt, Latul, Lonul,
                                            oLator, oLonor, GridArray)
    k = MinTMaxT(mint, maxt)

    Basic.dumpToFile(str(flag) + '-ttt.pkl', TTTGridMap)
    Basic.dumpToFile('minmax-' + str(flag) + '.pkl', k)
    Basic.dumpToFile('station-' + str(flag) + '.pkl', station)
Beispiel #21
0
def calcTTTAdv(Config,
               station,
               Origin,
               flag,
               arrayname,
               Xcorrshift=None,
               Refshift=None):

    phasename = ('%sphase') % (os.path.basename(arrayname))

    cfg = ConfigObj(dict=Config)
    dimX = cfg.Int('dimx')
    dimY = cfg.Int('dimy')
    gridspacing = cfg.Float('gridspacing')

    o_lat = float(Origin['lat'])
    o_lon = float(Origin['lon'])
    o_depth = float(Origin['depth'])

    oLator = o_lat + dimX / 2
    oLonor = o_lon + dimY / 2
    oLatul = 0
    oLonul = 0
    #mint= 100000  #maxt=-100000

    TTTGridMap = {}
    LMINMAX = []
    GridArray = {}
    locStation = Location(station.lat, station.lon)
    sdelta = loc2degrees(Location(o_lat, o_lon), locStation)
    tt = obs_TravelTimes(sdelta, o_depth)

    for r in tt:
        if r['phase_name'] is Config[phasename] or r['phase_name'] == (
                '%sdiff') % (Config[phasename]):
            station.takeoff = r['take-off angle']
            ph = r['phase_name']
    #endfor

    #15.12.2015 : rauskommentiert
    #Logfile.add ('STATIONINFO ' + str(station) + ' ' + str(station.takeoff) + ' ' + str(ph),
    #             'PROCESS %d STATION: %s --> DELTA: %f' % (flag,station,sdelta), ' ')
    z = 0

    for i in xrange(dimX):
        oLatul = o_lat - ((dimX - 1) / 2) * gridspacing + i * gridspacing

        if z == 0 and i == 0:
            Latul = oLatul
        o = 0

        for j in xrange(dimY):
            ttime = 0
            oLonul = o_lon - ((dimY - 1) / 2) * gridspacing + j * gridspacing

            if o == 0 and j == 0: Lonul = oLonul

            de = loc2degrees(Location(oLatul, oLonul), locStation)
            tt = obs_TravelTimes(de, o_depth)

            for k in tt:
                if k['phase_name'] == Config[phasename] or k['phase_name'] == (
                        '%sdiff') % (Config[phasename]):
                    ttime = k['time']

                    if int(Config['xcorr']) == 1:
                        ttime = ttime - float(
                            Xcorrshift[station.getName()].shift) - Refshift

                    GridArray[(i, j)] = GridElem(oLatul, oLonul, o_depth,
                                                 ttime, de)
                    LMINMAX.append(ttime)
            #endfor

            if ttime == 0:
                print '\033[31mAvailable phases for station %s in range %f deegree\033[0m' % (
                    station, de)
                print '\033[31m' + '|'.join(
                    [str(item['phase_name']) for item in tt]) + '\033[0m'
                print '\033[31myou tried phase %s\033[0m' % (Config[phasename])

                raise Exception("\033[31mILLEGAL: phase definition\033[0m")
            #endif
        #endfor
    #endfor

    mint = min(LMINMAX)
    maxt = max(LMINMAX)  #       maxt = time

    TTTGridMap[station.getName()] = TTTGrid(o_depth, mint, maxt, Latul, Lonul,
                                            oLator, oLonor, GridArray)

    k = MinTMaxT(mint, maxt)

    Basic.dumpToFile(str(flag) + '-ttt.pkl', TTTGridMap)
    Basic.dumpToFile('minmax-' + str(flag) + '.pkl', k)
    Basic.dumpToFile('station-' + str(flag) + '.pkl', station)
Beispiel #22
0
def collectSembweighted(SembList, Config, Origin, Folder, ntimes, arrays,
                        switch, weights):
    '''
    method to collect semblance matrizes from all processes and write them to file for each timestep
    '''
    Logfile.add('start collect in collectSemb')

    cfg = ConfigObj(dict=Config)
    origin = ConfigObj(dict=Origin)

    dimX = cfg.dimX()  # ('dimx')
    dimY = cfg.dimY()  # ('dimy')
    winlen = cfg.winlen()  # ('winlen')
    step = cfg.step()  # ('step')

    latv = []
    lonv = []

    gridspacing = cfg.Float('gridspacing')
    migpoints = dimX * dimY
    o_lat = origin.lat()  # float (Origin['lat'])
    o_lon = origin.lon()  # float (Origin['lon'])
    oLatul = 0
    oLonul = 0

    z = 0

    for i in xrange(dimX):
        oLatul = o_lat - ((dimX - 1) / 2) * gridspacing + i * gridspacing

        if z == 0 and i == 0:
            Latul = oLatul
        o = 0

        for j in xrange(dimY):
            oLonul = o_lon - ((dimY - 1) / 2) * gridspacing + j * gridspacing

            if o == 0 and j == 0:
                Lonul = oLonul

            latv.append(oLatul)
            lonv.append(oLonul)

    tmp = 1
    for a, w in zip(SembList, weights):
        tmp *= a
    #sys.exit()

    sembmaxvaluev = num.ndarray(ntimes, dtype=float)
    sembmaxlatv = num.ndarray(ntimes, dtype=float)
    sembmaxlonv = num.ndarray(ntimes, dtype=float)

    rc = UTCDateTime(Origin['time'])
    rcs = '%s-%s-%s_%02d:%02d:%02d' % (rc.day, rc.month, rc.year, rc.hour,
                                       rc.minute, rc.second)
    d = rc.timestamp
    usedarrays = 5

    folder = Folder['semb']
    fobjsembmax = open(os.path.join(folder, 'sembmax_%s.txt' % (switch)), 'w')

    for a, i in enumerate(tmp):
        logger.info('timestep %d' % a)

        fobj = open(
            os.path.join(
                folder, '%s-%s_%03d._weighted_semblance.ASC' %
                (switch, Origin['depth'], a)), 'w')
        #fobj = open (os.path.join (folder, '%03d.ASC'    % a),'w')

        fobj.write('# %s , %s\n' % (d, rcs))
        fobj.write('# step %ds| ntimes %d| winlen: %ds\n' %
                   (step, ntimes, winlen))
        fobj.write('# \n')
        fobj.write('# southwestlat: %.2f dlat: %f nlat: %f \n' %
                   (Latul, gridspacing, dimX))
        fobj.write('# southwestlon: %.2f dlon: %f nlon: %f \n' %
                   (Lonul, gridspacing, dimY))
        fobj.write('# ddepth: 0 ndepth: 1 \n')

        sembmax = 0
        sembmaxX = 0
        sembmaxY = 0

        origin = DataTypes.dictToLocation(Origin)
        uncert = num.std(i)  #maybe not std?
        for j in range(migpoints):
            x = latv[j]
            y = lonv[j]
            semb = i[j]

            fobj.write('%.2f %.2f %.20f\n' % (x, y, semb))

            if semb > sembmax:
                sembmax = semb
                # search for maximum and position of maximum on semblance grid for given time step
                sembmaxX = x
                sembmaxY = y

        delta = loc2degrees(Location(sembmaxX, sembmaxY), origin)
        azi = toAzimuth(float(Origin['lat']), float(Origin['lon']),
                        float(sembmaxX), float(sembmaxY))

        sembmaxvaluev[a] = sembmax
        sembmaxlatv[a] = sembmaxX
        sembmaxlonv[a] = sembmaxY

        fobjsembmax.write('%d %.2f %.2f %.20f %.20f %d %03f %f %03f\n' %
                          (a * step, sembmaxX, sembmaxY, sembmax, uncert,
                           usedarrays, delta, float(azi), delta * 119.19))
        fobj.close()

    fobjsembmax.close()

    durationpath = os.path.join(folder, "duration.txt")
    trigger.writeSembMaxValue(sembmaxvaluev, sembmaxlatv, sembmaxlonv, ntimes,
                              Config, Folder)
    print 'DD2: ', durationpath
    trigger.semblancestalta(sembmaxvaluev, sembmaxlatv, sembmaxlonv)
def filterBestSolution(solution):

    evp = os.path.join('/', *solution.path.split('/')[:-2])
    C = Config(evp)
    Conf = C.parseConfig('config')
    cfg = ConfigObj(dict=Conf)

    SL = []
    M = []
    fobj = open(os.path.join(solution.path, 'event.stations'), 'r')

    for s in fobj:
        try:
            line = s.split()
            net, sta, loc, comp = line[0].split('.')

            slat = line[1]
            slon = line[2]
            smember = line[3]

            M.append(smember)
            SL.append(
                Station(net,
                        sta,
                        loc,
                        comp,
                        lat=slat,
                        lon=slon,
                        member=smember))

        except:
            Logfile.exception('filterBestSolution', '<' + s + '>')
            continue
    #endfor

    fobj.close()

    M = list(set(M))

    Logfile.add('number of clusters ' + str(len(M)),
                'number of stations ' + str(len(SL)))

    kd = obs_kilometer2degrees(cfg.Distance('intraclusterdistance'))
    Logfile.add('icd ' + str(kd))

    maxdist = -1

    for i in SL:
        counter = 0

        for k in SL:
            if i.member == '8' and k.member == '8':
                if i.getName() != k.getName():
                    delta = loc2degrees(i, k)

                    if delta > maxdist: maxdist = delta

                    print i, i.member, ' <--> ', k, k.member, ' delta: ', delta, ' allowed ', kd

                    if delta < kd: counter += 1
                #endif
            #endif
        #endfor

        print i, 'less then allowd ', counter
    #endfor

    print 'masxdist ', maxdist
Beispiel #24
0
    def refTrigger(self, RefWaveform):
        Config = self.Config
        cfg = ConfigObj(dict=Config)
        name = ('%s.%s.%s.%s') % (
            RefWaveform[0].stats.network, RefWaveform[0].stats.station,
            RefWaveform[0].stats.location, RefWaveform[0].stats.channel)

        i = self.searchMeta(name, self.StationMeta)
        de = loc2degrees(self.Origin, i)
        ptime = 0

        Phase = cake.PhaseDef('P')
        model = cake.load_model()
        if cfg.colesseo_input() == True:
            arrivals = model.arrivals([de, de],
                                      phases=Phase,
                                      zstart=self.Origin.depth,
                                      zstop=0.)
        else:
            arrivals = model.arrivals([de, de],
                                      phases=Phase,
                                      zstart=self.Origin.depth * km,
                                      zstop=0.)
        try:
            ptime = arrivals[0].t
        except:
            arrivals = model.arrivals([de, de],
                                      phases=Phase,
                                      zstart=o_depth * km - 0.1)
            ptime = arrivals[0].t
        phasename = ('%sphase') % (os.path.basename(self.AF))

        if ptime == 0:
            print '\033[31mAvailable phases for reference station %s in range %f deegree\033[0m' % (
                i, de)
            print '\033[31m' + '|'.join(
                [str(item['phase_name']) for item in tt]) + '\033[0m'
            print '\033[31myou tried phase %s\033[0m' % (
                self.Config[phasename])
            raise Exception("\033[31mILLEGAL: phase definition\033[0m")

        tw = self.calculateTimeWindows(ptime)

        if cfg.pyrocko_download() == True:
            stP = self.readWaveformsPicker_pyrocko(i, tw, self.Origin, ptime)
        elif cfg.colesseo_input() == True:
            stP = self.readWaveformsPicker_colos(i, tw, self.Origin, ptime)
        else:
            stP = self.readWaveformsPicker(i, tw, self.Origin, ptime)

        refuntouchname = os.path.basename(self.AF) + '-refstation-raw.mseed'
        stP.write(os.path.join(self.EventPath, refuntouchname),
                  format='MSEED',
                  byteorder='>')
        stP.filter("bandpass",
                   freqmin=float(self.Config['refstationfreqmin']),
                   freqmax=float(self.Config['refstationfreqmax']))

        stP.trim(tw['xcorrstart'], tw['xcorrend'])
        trP = stP[0]

        trP.stats.starttime = UTCDateTime(3600)
        refname = os.path.basename(self.AF) + '-refstation-filtered.mseed'
        trP.write(os.path.join(self.EventPath, refname),
                  format='MSEED',
                  byteorder='>')

        sta = float(self.Config['refsta'])
        lta = float(self.Config['reflta'])
        cft = recSTALTA(trP.data, int(sta * trP.stats.sampling_rate),
                        int(lta * trP.stats.sampling_rate))

        t = triggerOnset(cft, lta, sta)

        try:
            onset = t[0][0] / trP.stats.sampling_rate
            print 'ONSET ', onset

        except:
            onset = self.mintforerun

        trigger = trP.stats.starttime + onset

        print 'TRIGGER ', trigger
        print 'THEORETICAL: ', UTCDateTime(3600) + self.mintforerun
        tdiff = (trP.stats.starttime + onset) - (UTCDateTime(3600) +
                                                 self.mintforerun)
        print 'TDIFF: ', tdiff

        refp = UTCDateTime(self.Origin.time) + ptime
        reftriggeronset = refp + onset - self.mintforerun

        if int(self.Config['autoxcorrcorrectur']) == 1:
            try:

                refmarkername = os.path.join(self.EventPath, ('%s-marker') %
                                             (os.path.basename(self.AF)))
                fobjrefmarkername = open(refmarkername, 'w')
                fobjrefmarkername.write(
                    '# Snuffler Markers File Version 0.2\n')
                fobjrefmarkername.write((
                    'phase: %s 0 %s    None           None         None         XWStart        None False\n'
                ) % (tw['xcorrstart'].strftime('%Y-%m-%d %H:%M:%S.%f'), name))
                fobjrefmarkername.write((
                    'phase: %s 0 %s    None           None         None         XWEnd        None False\n'
                ) % (tw['xcorrend'].strftime('%Y-%m-%d %H:%M:%S.%f'), name))
                fobjrefmarkername.write((
                    'phase: %s 1 %s    None           None         None         TheoP        None False\n'
                ) % (refp.strftime('%Y-%m-%d %H:%M:%S.%f'), name))
                fobjrefmarkername.write((
                    'phase: %s 3 %s    None           None         None         XTrig        None False'
                ) % (reftriggeronset.strftime('%Y-%m-%d %H:%M:%S.%f'), name))
                fobjrefmarkername.close()

                cmd = 'snuffler %s --markers=%s&' % (os.path.join(
                    self.EventPath, refuntouchname), refmarkername)
                os.system(cmd)

                thrOn = float(self.Config['reflta'])  # 4
                thrOff = float(self.Config['refsta'])  # 0.7
                plotTrigger(trP, cft, thrOn, thrOff)

                selection = float(
                    raw_input('Enter self picked phase in seconds: '))
                tdiff = selection - self.mintforerun

                refname = os.path.basename(self.AF) + '-shift.mseed'
                trP.stats.starttime = trP.stats.starttime - selection
                trP.write(os.path.join(self.EventPath, refname),
                          format='MSEED')

            except:
                selection = 0.
                refname = os.path.basename(self.AF) + '-shift.mseed'
                trP.stats.starttime = trP.stats.starttime - selection - self.mintforerun
                trP.write(os.path.join(self.EventPath, refname),
                          format='MSEED')
        '''
        tdiff = 0
        trigger = trP.stats.starttime
        '''
        To = Trigger(name, trigger, os.path.basename(self.AF), tdiff)

        return tdiff, To
Beispiel #25
0
def calcTTTAdv(Config,
               station,
               Origin,
               flag,
               arrayname,
               Xcorrshift=None,
               Refshift=None):

    phasename = ('%sphase') % (os.path.basename(arrayname))

    cfg = ConfigObj(dict=Config)
    dimX = cfg.Int('dimx')
    dimY = cfg.Int('dimy')
    gridspacing = cfg.Float('gridspacing')

    o_lat = float(Origin['lat'])
    o_lon = float(Origin['lon'])
    o_depth = float(Origin['depth'])

    oLator = o_lat + dimX / 2
    oLonor = o_lon + dimY / 2
    oLatul = 0
    oLonul = 0
    o_dip = 80.
    plane = False

    TTTGridMap = {}
    LMINMAX = []
    GridArray = {}
    locStation = Location(station.lat, station.lon)
    sdelta = loc2degrees(Location(o_lat, o_lon), locStation)
    Phase = cake.PhaseDef(Config[phasename])
    model = cake.load_model()

    z = 0
    if plane is True:
        depth = np.linspace(0., 40., num=dimY)
        for i in xrange(70):
            oLatul = o_lat - ((dimX - 1) / 2) * gridspacing + i * gridspacing
            if z == 0 and i == 0:
                Latul = oLatul
            o = 0
            start_time = time.clock()

            for j in xrange(40):
                oLonul = o_lon - (
                    (dimY - 1) /
                    2) * gridspacing + j * gridspacing / np.cos(o_dip)
                if o == 0 and j == 0: Lonul = oLonul
                de = loc2degrees(Location(oLatul, oLonul), locStation)
                arrivals = model.arrivals([de, de],
                                          phases=Phase,
                                          zstart=depth[j] * km,
                                          zstop=0.)
            try:
                ttime = arrivals[0].t
            except:
                try:
                    arrivals = model.arrivals([de, de],
                                              phases=Phase,
                                              zstart=depth[j] * km - 2.5,
                                              zstop=depth[j] * km + 2.5,
                                              refine=True)
                    ttime = arrivals[0].t
                except:
                    tt = obs_TravelTimes(de, o_depth)
                    for k in tt:
                        if k['phase_name'] == 'P' or k['phase_name'] == (
                                '%sdiff') % (Config[phasename]):
                            ttime = k['time']
                        print "Something wrong with phase arrival too large\
                             distances choosen?"

                GridArray[(i, j)] = GridElem(oLatul, oLonul, depth[j], ttime,
                                             de)
                LMINMAX.append(ttime)
                if int(Config['xcorr']) == 1:
                    ttime = ttime-float(Xcorrshift[station.getName()].shift)\
                     - Refshift
                GridArray[(i, j)] = GridElem(oLatul, oLonul, o_depth, ttime,
                                             de)
                LMINMAX.append(ttime)

                if ttime == 0:
                    print '\033[31mAvailable phases for station %s in range %f deegree\033[0m' % (
                        station, de)
                    print '\033[31m' + '|'.join(
                        [str(item['phase_name']) for item in tt]) + '\033[0m'
                    print '\033[31myou tried phase %s\033[0m' % (
                        Config[phasename])
                    raise Exception("\033[31mILLEGAL: phase definition\033[0m")
    else:
        for i in xrange(dimX):
            oLatul = o_lat - ((dimX - 1) / 2) * gridspacing + i * gridspacing

            if z == 0 and i == 0:
                Latul = oLatul
            o = 0
            for j in xrange(dimY):
                oLonul = o_lon - (
                    (dimY - 1) / 2) * gridspacing + j * gridspacing

                if o == 0 and j == 0: Lonul = oLonul
                de = loc2degrees(Location(oLatul, oLonul), locStation)
                arrivals = model.arrivals([de, de],
                                          phases=Phase,
                                          zstart=o_depth * km)
                try:
                    ttime = arrivals[0].t
                except:
                    try:
                        arrivals = model.arrivals([de, de],
                                                  phases=Phase,
                                                  zstart=o_depth * km - 2.5,
                                                  zstop=o_depth * km - 2.5,
                                                  refine=True)
                        ttime = arrivals[0].t
                    except:
                        arrivals = model.arrivals([de, de],
                                                  phases=Phase,
                                                  zstart=o_depth * km - 2.5,
                                                  zstop=0.,
                                                  refine=True)
                        ttime = arrivals[0].t

                GridArray[(i, j)] = GridElem(oLatul, oLonul, o_depth, ttime,
                                             de)
                LMINMAX.append(ttime)
                if int(Config['xcorr']) == 1:
                    ttime = ttime-float(Xcorrshift[station.getName()].shift)\
                     - Refshift
                GridArray[(i, j)] = GridElem(oLatul, oLonul, o_depth, ttime,
                                             de)
                LMINMAX.append(ttime)
                if ttime == 0:
                    print '\033[31mAvailable phases for station %s in range %f deegree\033[0m' % (
                        station, de)
                    print '\033[31m' + '|'.join(
                        [str(item['phase_name']) for item in tt]) + '\033[0m'
                    print '\033[31myou tried phase %s\033[0m' % (
                        Config[phasename])

                    raise Exception("\033[31mILLEGAL: phase definition\033[0m")

    mint = min(LMINMAX)
    maxt = max(LMINMAX)
    TTTGridMap[station.getName()] = TTTGrid(o_depth, mint, maxt, Latul, Lonul,
                                            oLator, oLonor, GridArray)
    k = MinTMaxT(mint, maxt)

    Basic.dumpToFile(str(flag) + '-ttt.pkl', TTTGridMap)
    Basic.dumpToFile('minmax-' + str(flag) + '.pkl', k)
    Basic.dumpToFile('station-' + str(flag) + '.pkl', station)
Beispiel #26
0
def calcTTTAdvTauP(Config,
                   station,
                   Origin,
                   flag,
                   Xcorrshift=None,
                   Refshift=None):

    cfg = ConfigObj(dict=Config)

    dimX = cfg.Int('dimx')
    dimY = cfg.Int('dimy')
    gridspacing = cfg.Float('gridspacing')

    o_lat = float(Origin['lat'])
    o_lon = float(Origin['lon'])
    o_depth = float(Origin['depth'])

    oLator = o_lat + dimX / 2
    oLonor = o_lon + dimY / 2
    oLatul = 0
    oLonul = 0

    TTTGridMap = {}
    LMINMAX = []
    GridArray = {}
    locStation = Location(station.lat, station.lon)

    sdelta = loc2degrees(Location(o_lat, o_lon), locStation)
    Logfile.add('TTT PROCESS %d STATION: %s --> DELTA: %f' %
                (flag, station.getName(), sdelta))

    inputpath = str(flag) + '-' + station.getName() + ".input"
    outputpath = str(flag) + '-' + station.getName() + ".output"
    errorpath = str(flag) + '-' + station.getName() + '.error'

    fobjinput = open(inputpath, 'w')

    fobjinput.write('s\n')
    fobjinput.write(('%s %s\n') % (station.lat, station.lon))
    fobjinput.write('h\n')
    fobjinput.write(('%s\n') % (o_depth))

    for i in xrange(dimX):
        oLatul = o_lat - ((dimX - 1) / 2) * gridspacing + i * gridspacing

        for j in xrange(dimY):
            oLonul = o_lon - ((dimY - 1) / 2) * gridspacing + j * gridspacing

            fobjinput.write('e\n')
            fobjinput.write(('%s %s\n') % (oLatul, oLonul))
    #endfor

    fobjinput.close()

    cmd = ('taup_time -ph P -mod ak135 -time -o %s < %s > %s') % (
        outputpath, inputpath, errorpath)
    #os.system(cmd)
    p = subprocess.Popen(cmd,
                         shell=True,
                         stdout=subprocess.PIPE,
                         stderr=subprocess.STDOUT)
    p.wait()

    L = []
    output = open(outputpath, 'r')
    'OUTPUT: ', outputpath

    for k in output:
        k = k.split()

        if len(k) == 1:
            tt = k[0].replace('\n', '')
            tt = float(tt) - float(Xcorrshift[station.getName()].shift)
            L.append(tt)
    #endfor

    output.close()

    z = 0

    for i in xrange(dimX):
        oLatul = o_lat - ((dimX - 1) / 2) * gridspacing + i * gridspacing

        if z == 0 and i == 0:
            Latul = oLatul
        o = 0

        for j in xrange(dimY):
            oLonul = o_lon - ((dimY - 1) / 2) * gridspacing + j * gridspacing

            if o == 0 and j == 0:
                Lonul = oLonul

            de = loc2degrees(Location(oLatul, oLonul), locStation)
            time = L[i * dimX + j]

            GridArray[(i, j)] = GridElem(oLatul, oLonul, o_depth, time, de)
            LMINMAX.append(time)
    #endfor

    mint = float(min(LMINMAX))
    maxt = float(max(LMINMAX))
    k = MinTMaxT(mint, maxt)

    TTTGridMap[station.getName()] = TTTGrid(o_depth, mint, maxt, Latul, Lonul,
                                            oLator, oLonor, GridArray)

    tttname = str(flag) + '-ttt.pkl'
    Basic.dumpToFile(tttname, TTTGridMap)
    Basic.dumpToFile('minmax-' + str(flag) + '.pkl', k)

    try:
        os.remove(inputpath)
        os.remove(outputpath)
        os.remove(errorpath)

    except:
        Logfile.exception('cannot delete files')