def _init_BN(self, BNnodesdef):
		BNnodes = {}
		BNconnections = []
		BN = BNet()  

		# Save the nodesdef for future use (saving)
		self._BNDef = BNnodesdef

		for node in BNnodesdef:
			(nodename , isdiscrete, numstates, leafnode) = node
			BNnodes[nodename] = BN.add_v( BVertex(nodename, isdiscrete, numstates))
		
		#TODO: Find a way to improve this and avoid to have to loop a second time
		# reason is because BNnodes[leafnode] is not sure to be there when going through the first loop
		for node in BNnodesdef:
			(nodename , isdiscrete, numstates, leafnode) = node
			if type(leafnode)==type([]):
				for r in leafnode:
					if r!=None:	BNconnections.append( (BNnodes[nodename], BNnodes[r]) )
			elif leafnode!=None:
				BNconnections.append( (BNnodes[nodename], BNnodes[leafnode]) )
			else:
				#do nothing 
				pass
		
		for ep in BNconnections:
			BN.add_e( DirEdge( len( BN.e ), *ep ) )
			
		# Ok our Bnet has been created, let's save it in the controller
		self._BN = BN

		# Let's not forget to initialize the distribution
		self._BN.InitDistributions()
Beispiel #2
0
def CreateOpenBayesNetwork(network):
    G = BNet( network.name )
    
    node_dict = {}

    for node in network.nodes.all():
       pynode =  BVertex( node.name, True, node.states.count() )
       node_dict[node.id] = pynode
       G.add_v(pynode)

    for edge in network.edges.all():
        pyedge = DirEdge( len( G.e ),node_dict[edge.parent_node.id] , node_dict[edge.child_node.id])
        G.add_e( pyedge )    

    G.InitDistributions()

    for node in network.nodes.all():
        if not node.is_root():        
            
            result = node.get_indexed_value_sets()[0]            
            index = node.get_indexed_value_sets()[1]
            for i in range(len(index)):
                index_dict = {}
                check_dict = {}
                result_i_parents = result[i][0]
                values_i = result[i][1]
                index_i_parents = index[i][0]
                for j in range(len(index_i_parents)):
                    index_dict[result_i_parents[j].node.name] = index_i_parents[j]
                    check_dict[result_i_parents[j].node.name] = result_i_parents[j].name
                     
                node_dict[node.id].distribution[index_dict] = [v.value for v in values_i]                 
            print "\n"    
        else:
            node_dict[node.id].setDistributionParameters([state.probability for state in node.states.all()])

    return (G,node_dict)
Beispiel #3
0
    def _init_BN(self, BNName, BNnodesdef):
        BNnodes = {}
        BNconnections = []
        BN = BNet(BNName)

        # Save the nodesdef for future use (saving)
        self._BNDef = BNnodesdef

        for node in BNnodesdef:
            (nodename, isdiscrete, numstates, leafnode) = node
            BNnodes[nodename] = BN.add_v(BVertex(nodename, isdiscrete, numstates))

        # TODO: Find a way to improve this and avoid to have to loop a
        # second time
        # reason is because BNnodes[leafnode] is not sure to be there when
        # going through the first loop

        for node in BNnodesdef:
            (nodename, isdiscrete, numstates, leafnode) = node
            if type(leafnode) == type([]):
                for r in leafnode:
                    if r != None:
                        BNconnections.append((BNnodes[nodename], BNnodes[r]))
            elif leafnode != None:
                BNconnections.append((BNnodes[nodename], BNnodes[leafnode]))
            else:
                #do nothing
                pass

        for ep in BNconnections:
            BN.add_e(DirEdge(len(BN.e), *ep))

        # Ok our Bnet has been created, let's save it in the controller
        self._BN = BN

        # Let's not forget to initialize the distribution
        self._BN.InitDistributions()
import site
import sys

from OpenBayes import BNet, BVertex, DirEdge, JoinTree # @UnresolvedImport


dir = r'W:\ilmb\vic\geobc\bier\p14\p14_0053_BBN_CumEffects\wrk\scripts\deps\Lib\site-packages'
site.addsitedir(dir)  # @UndefinedVariable



network = BNet('Asia Bayesian Network')

# Create a discrete node for all nodes with 2 states
visit_to_asia = network.add_v(BVertex('Visit to Asia', True, 2))  # TRUE used to indicate the data is discrete as oppose to continuous
smoking = network.add_v(BVertex('Smoking', True, 2))
tuberculosis = network.add_v(BVertex('Tuberculosis', True, 2))
lung_cancer = network.add_v(BVertex('Lung Cancer', True, 2))
bronchitis = network.add_v(BVertex('Bronchitis', True, 2))
tub_or_cancer = network.add_v(BVertex('Tuberculosis or Cancer', True, 2))
xray_result = network.add_v(BVertex('X-Ray Result', True, 2))
dyspnea = network.add_v(BVertex('Dyspnea', True, 2))

# Connect the nodes

# V -> T
network.add_e(DirEdge(len(network.e), visit_to_asia, tuberculosis))

# T -> TC
network.add_e(DirEdge(len(network.e), tuberculosis, tub_or_cancer))
""" this examples creates a continuous bayesian network
        A
       / 
      B      
       \ 
        C
all edges point downwards
A,B and C are univariate gaussian distributions
"""

from OpenBayes import BNet, BVertex, DirEdge, MCMCEngine

# create the network
G = BNet( 'Water Sprinkler Bayesian Network' )
a,b,c = [G.add_v( BVertex( nm, False, 1 ) ) for nm in 'a b c'.split()]
for ep in [( a, b ), ( b, c )]:
    G.add_e( DirEdge( len( G.e ), *ep ) )

print G

# finalize the bayesian network once all edges have been added   
G.InitDistributions()

# fill in the parameters
a.distribution.setParameters(mu=1.0, sigma=0.5)
b.distribution.setParameters(mu=2.0, sigma=1.0, wi=2.0)
c.distribution.setParameters(mu=2.0, sigma=1.0, wi=1.0)

# NOTE : for the moment only MCMCEngine can work for continuous networks
ie = MCMCEngine(G)
Beispiel #6
0
""" this examples creates a hybrid bayesian network
        A
       / 
      B      
       \ 
        C
all edges point downwards
B and C are univariate gaussian distributions
A is a boolean discrete distribution
"""

from OpenBayes import BNet, BVertex, DirEdge, MCMCEngine

# create the network
G = BNet( 'Water Sprinkler Bayesian Network' )
b,c = [G.add_v( BVertex( nm, False, 1 ) ) for nm in 'b c'.split()]
a = G.add_v(BVertex('a',True,2))

for ep in [( a, b ), ( b, c )]:
    G.add_e( DirEdge( len( G.e ), *ep ) )

print G

# finalize the bayesian network once all edges have been added   
G.InitDistributions()

# fill in the parameters
a.distribution.setParameters([0.7,0.3])
b.distribution.setParameters(mu=[2.0,0.0], sigma=[1.0,1.0])
c.distribution.setParameters(mu=2.0, sigma=1.0, wi=1.0)
Beispiel #7
0
from OpenBayes import BNet, BVertex, DirEdge, JoinTree

network = BNet('Asia Bayesian Network')

# Create a discrete node for all nodes with 2 states
visit_to_asia = network.add_v(BVertex('Visit to Asia', True, 2))
smoking = network.add_v(BVertex('Smoking', True, 2))
tuberculosis = network.add_v(BVertex('Tuberculosis', True, 2))
lung_cancer = network.add_v(BVertex('Lung Cancer', True, 2))
bronchitis = network.add_v(BVertex('Bronchitis', True, 2))
tub_or_cancer = network.add_v(BVertex('Tuberculosis or Cancer', True, 2))
xray_result = network.add_v(BVertex('X-Ray Result', True, 2))
dyspnea = network.add_v(BVertex('Dyspnea', True, 2))

# Connect the nodes

# V -> T
network.add_e(DirEdge(len(network.e), visit_to_asia, tuberculosis))

# T -> TC
network.add_e(DirEdge(len(network.e), tuberculosis, tub_or_cancer))

# TC -> X
network.add_e(DirEdge(len(network.e), tub_or_cancer, xray_result))

# TC -> D
network.add_e(DirEdge(len(network.e), tub_or_cancer, dyspnea))

# S -> LC
network.add_e(DirEdge(len(network.e), smoking, lung_cancer))
from OpenBayes import BNet, BVertex, DirEdge
from OpenBayes import learning
from copy import deepcopy
from time import time

# create the network
G = BNet( 'A Simple Bayesian Network' )
a, b = [G.add_v( BVertex( nm, True, 2 ) ) for nm in 'a b'.split()]
for ep in [( a, b )]:
    G.add_e( DirEdge( len( G.e ), *ep ) )


G2 = deepcopy(G)
print G


# finalize the bayesian network once all edges have been added   
G.InitDistributions()

print a.distribution.cpt, b.distribution.cpt

print '+++++++++++++++++++++++++++++++++\n'
G2.InitDistributions()
print G2.all_v[0].distribution.cpt

engine = learning.MLLearningEngine(G)

cases = engine.ReadFile('test.xls')
print 'cases:', cases
##cases = []
t = time()
Beispiel #9
0
from OpenBayes import BNet, BVertex, DirEdge, JoinTree

network = BNet('Asia Bayesian Network')

# Create a discrete node for all nodes with 2 states
visit_to_asia = network.add_v(BVertex('Visit to Asia', True, 2))
smoking = network.add_v(BVertex('Smoking', True, 2))
tuberculosis = network.add_v(BVertex('Tuberculosis', True, 2))
lung_cancer = network.add_v(BVertex('Lung Cancer', True, 2))
bronchitis = network.add_v(BVertex('Bronchitis', True, 2))
tub_or_cancer = network.add_v(BVertex('Tuberculosis or Cancer', True, 2))
xray_result = network.add_v(BVertex('X-Ray Result', True, 2))
dyspnea = network.add_v(BVertex('Dyspnea', True, 2))

# Connect the nodes

# V -> T
network.add_e(DirEdge(len(network.e), visit_to_asia, tuberculosis))

# T -> TC
network.add_e(DirEdge(len(network.e), tuberculosis, tub_or_cancer))

# TC -> X
network.add_e(DirEdge(len(network.e), tub_or_cancer, xray_result))

# TC -> D
network.add_e(DirEdge(len(network.e), tub_or_cancer, dyspnea))

# S -> LC
network.add_e(DirEdge(len(network.e), smoking, lung_cancer))
# This is an attempt to figure out how to model the mule 
# deer model using the openbayes module.
#
import site
import sys

from OpenBayes import BNet, BVertex, DirEdge, JoinTree # @UnresolvedImport
dir = r'W:\ilmb\vic\geobc\bier\p14\p14_0053_BBN_CumEffects\wrk\scripts\deps\Lib\site-packages'
site.addsitedir(dir)  # @UndefinedVariable



network = BNet('Mule Deer Hazard')  # @UndefinedVariable

# create discrete node for all nodes with 2 states??
road_Density = network.add_v(BVertex('Road Density', True, 3))
unregulated_Hunting_Rate = network.add_v(BVertex('Unregulated Hunting Rate', True, 3))
cougar_risk_level = network.add_v(BVertex('Cougar Risk Level', True, 3))
wolfPresence = network.add_v(BVertex('Wolf Presence', True, 2))
predation_risk = network.add_v(BVertex('Predation Risk', True, 3))
population_hazard = network.add_v(BVertex('Population Hazard', True, 5))
proportion_of_lu_in_UWR = network.add_v(BVertex('Proportion of LU in UWR', True, 4))
uwr_hazard_rating = network.add_v(BVertex('UWR Hazard Rating', True, 5))
habitat_hazard_rating = network.add_v(BVertex('Habitat Hazard Rating', True, 5))
muleDeerHazardRating = network.add_v(BVertex('Mule Deer Hazard Rating', True, 5))
regulated_Hunting_Rate = network.add_v(BVertex('Regulated Hunting Rate', True, 3))
# now describe the connections
# population side of model
network.add_e(DirEdge(len(network.e), road_Density, unregulated_Hunting_Rate))
network.add_e(DirEdge(len(network.e), road_Density, predation_risk))
network.add_e(DirEdge(len(network.e), cougar_risk_level, predation_risk))
Beispiel #11
0
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."""

import OpenBayes
from OpenBayes import BNet, BVertex, DirEdge, JoinTree

import logging
logging.getLogger(__name__).setLevel(logging.CRITICAL)
logging.getLogger("").setLevel(logging.CRITICAL)

import numpy

network = BNet('Number Guessing')

# Create a discrete node for all nodes with 2 states
numbers = network.add_v(BVertex('numbers', True, 10))
bigger_3 = network.add_v(BVertex('Is your number bigger than 3?', True, 2))
bigger_5 = network.add_v(BVertex('bigger_5', True, 2))
IsTheNumberBiggerThan7 = network.add_v(BVertex('IsTheNumberBiggerThan7', True, 2))
prime = network.add_v(BVertex('prime', True, 2))
even = network.add_v(BVertex('even', True, 2))
odd = network.add_v(BVertex('odd', True, 2))

network.add_e(DirEdge(len(network.e), numbers, bigger_3))
network.add_e(DirEdge(len(network.e), numbers, bigger_5))
network.add_e(DirEdge(len(network.e), numbers, IsTheNumberBiggerThan7))
network.add_e(DirEdge(len(network.e), numbers, even))
network.add_e(DirEdge(len(network.e), numbers, prime))

network.add_e(DirEdge(len(network.e), even, odd))
        /    \
       /      \
 Sprinkler  Rainy
     \        /
      \      /
       \    /
    Wet grass
    
all edges are pointing downwards

"""
from OpenBayes import BNet, BVertex, DirEdge

# create the network
G = BNet( 'Water Sprinkler Bayesian Network' )
c, s, r, w = [G.add_v( BVertex( nm, True, 2 ) ) for nm in 'c s r w'.split()]
for ep in [( c, r ), ( c, s ), ( r, w ), ( s, w )]:
    G.add_e( DirEdge( len( G.e ), *ep ) )

print G

# finalize the bayesian network once all edges have been added   
G.InitDistributions()

# c | Pr(c)
#---+------
# 0 |  0.5
# 1 |  0.5
c.setDistributionParameters([0.5, 0.5])
# c s | Pr(s|c)
#-----+--------
Beispiel #13
0
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."""

import OpenBayes
from OpenBayes import BNet, BVertex, DirEdge, JoinTree

import logging

logging.getLogger(__name__).setLevel(logging.CRITICAL)
logging.getLogger("").setLevel(logging.CRITICAL)

import numpy

network = BNet('Number Guessing')

# Create a discrete node for all nodes with 2 states
numbers = network.add_v(BVertex('numbers', True, 10))
bigger_3 = network.add_v(BVertex('Is your number bigger than 3?', True, 2))
bigger_5 = network.add_v(BVertex('bigger_5', True, 2))
IsTheNumberBiggerThan7 = network.add_v(
    BVertex('IsTheNumberBiggerThan7', True, 2))
prime = network.add_v(BVertex('prime', True, 2))
even = network.add_v(BVertex('even', True, 2))
odd = network.add_v(BVertex('odd', True, 2))

network.add_e(DirEdge(len(network.e), numbers, bigger_3))
network.add_e(DirEdge(len(network.e), numbers, bigger_5))
network.add_e(DirEdge(len(network.e), numbers, IsTheNumberBiggerThan7))
network.add_e(DirEdge(len(network.e), numbers, even))
network.add_e(DirEdge(len(network.e), numbers, prime))

network.add_e(DirEdge(len(network.e), even, odd))