Beispiel #1
0
def results_add_by_model(x, y):
    def is_empty(res):
        return (getattr(res, "models", None) is None
                and getattr(res, "row_indices", None) is None)

    if is_empty(x):
        return y
    elif is_empty(y):
        return x

    assert (x.row_indices == y.row_indices).all()
    assert (x.actual == y.actual).all()

    res = testing.Results()
    res.data = x.data
    res.row_indices = x.row_indices
    res.folds = x.folds
    res.actual = x.actual
    res.predicted = numpy.vstack((x.predicted, y.predicted))
    if x.probabilities is not None and y.probabilities is not None:
        res.probabilities = numpy.vstack((x.probabilities, y.probabilities))

    if x.models is not None:
        res.models = [xm + ym for xm, ym in zip(x.models, y.models)]
    return res
    def test_init(self):
        res = testing.Results(nmethods=2, nrows=100)
        res.actual[:50] = 0
        res.actual[50:] = 1
        res.predicted = np.vstack((res.actual, res.actual))
        np.testing.assert_almost_equal(scoring.CA(res), [1, 1])

        res.predicted[0][0] = 1
        np.testing.assert_almost_equal(scoring.CA(res), [0.99, 1])

        res.predicted[1] = 1 - res.predicted[1]
        np.testing.assert_almost_equal(scoring.CA(res), [0.99, 0])
Beispiel #3
0
def split_by_model(results):
    """
    Split evaluation results by models
    """
    data = results.data
    nmethods = len(results.predicted)
    for i in range(nmethods):
        res = testing.Results()
        res.data = data
        res.row_indices = results.row_indices
        res.actual = results.actual
        res.predicted = results.predicted[(i,), :]
        if results.probabilities is not None:
            res.probabilities = results.probabilities[(i,), :, :]

        if results.models:
            res.models = [mf[i] for mf in results.models]

        if results.folds:
            res.folds = results.folds

        yield res
Beispiel #4
0
def results_merge(results):
    return functools.reduce(results_add_by_model, results, testing.Results())
Beispiel #5
0
    def commit(self):
        if self.data is None or not self.predictors:
            self.send("Predictions", None)
            self.send("Evaluation Results", None)
            return

        predictor = next(iter(self.predictors.values())).predictor
        class_var = predictor.domain.class_var
        classification = is_discrete(class_var)

        newattrs = []
        newcolumns = []
        slots = list(self.predictors.values())

        if classification:
            if self.show_class:
                mc = [
                    Orange.data.DiscreteVariable(name=p.name,
                                                 values=class_var.values)
                    for p in slots
                ]
                newattrs.extend(mc)
                newcolumns.extend(p.results[0].reshape((-1, 1)) for p in slots)

            if self.show_probabilities:
                for p in slots:
                    m = [
                        Orange.data.ContinuousVariable(name="%s(%s)" %
                                                       (p.name, value))
                        for value in class_var.values
                    ]
                    newattrs.extend(m)
                newcolumns.extend(p.results[1] for p in slots)

        else:
            # regression
            mc = [
                Orange.data.ContinuousVariable(name=p.name)
                for p in self.predictors.values()
            ]
            newattrs.extend(mc)
            newcolumns.extend(p.results[0].reshape((-1, 1)) for p in slots)

        domain = Orange.data.Domain(self.data.domain.attributes,
                                    self.data.domain.class_var,
                                    metas=tuple(newattrs))

        if newcolumns:
            newcolumns = [numpy.atleast_2d(cols) for cols in newcolumns]
            newcolumns = numpy.hstack(tuple(newcolumns))
        else:
            newcolumns = None

        predictions = Orange.data.Table.from_numpy(domain,
                                                   self.data.X,
                                                   self.data.Y,
                                                   metas=newcolumns)

        predictions.name = self.data.name

        results = None
        if self.data.domain.class_var == class_var:
            N = len(self.data)
            results = testing.Results(self.data, store_data=True)
            results.folds = None
            results.row_indices = numpy.arange(N)
            results.actual = self.data.Y.ravel()
            results.predicted = numpy.vstack(tuple(p.results[0]
                                                   for p in slots))
            if classification:
                results.probabilities = numpy.array(
                    [p.results[1] for p in slots])
            results.learner_names = [pname(p.predictor) for p in slots]

        self.send("Predictions", predictions)
        self.send("Evaluation Results", results)