Beispiel #1
0
 def test_nanvar_with_ddof(self):
     x = np.random.uniform(0, 10, (20, 100))
     np.fill_diagonal(x, np.nan)
     for axis in [None, 0, 1]:
         np.testing.assert_almost_equal(
             np.nanvar(x, axis=axis, ddof=10),
             nanvar(csr_matrix(x), axis=axis, ddof=10),
         )
Beispiel #2
0
 def test_nanvar_with_ddof(self):
     x = np.random.uniform(0, 10, (20, 100))
     np.fill_diagonal(x, np.nan)
     for axis in [None, 0, 1]:
         np.testing.assert_almost_equal(
             np.nanvar(x, axis=axis, ddof=10),
             nanvar(csr_matrix(x), axis=axis, ddof=10),
         )
Beispiel #3
0
    def __compute_statistics(self):
        # Since data matrices can of mixed sparsity, we need to compute
        # attributes separately for each of them.
        matrices = [self.__attributes, self.__class_vars, self.__metas]
        # Filter out any matrices with size 0
        matrices = list(filter(lambda tup: tup[1].size, matrices))

        self._variable_types = np.array([type(var) for var in self.variables])
        self._variable_names = np.array(
            [var.name.lower() for var in self.variables])
        self._min = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.nanmin(x, axis=0),
            continuous_f=lambda x: ut.nanmin(x, axis=0),
            time_f=lambda x: ut.nanmin(x, axis=0),
        )
        self._dispersion = self.__compute_stat(
            matrices,
            discrete_f=_categorical_entropy,
            continuous_f=lambda x: np.sqrt(ut.nanvar(x, axis=0)) / ut.nanmean(
                x, axis=0),
        )
        self._missing = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.countnans(x, axis=0),
            continuous_f=lambda x: ut.countnans(x, axis=0),
            string_f=lambda x: (x == StringVariable.Unknown).sum(axis=0),
            time_f=lambda x: ut.countnans(x, axis=0),
        )
        self._max = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.nanmax(x, axis=0),
            continuous_f=lambda x: ut.nanmax(x, axis=0),
            time_f=lambda x: ut.nanmax(x, axis=0),
        )

        # Since scipy apparently can't do mode on sparse matrices, cast it to
        # dense. This can be very inefficient for large matrices, and should
        # be changed
        def __mode(x, *args, **kwargs):
            if sp.issparse(x):
                x = x.todense(order="C")
            # return ss.mode(x, *args, **kwargs)[0]
            return ut.nanmode(
                x, *args,
                **kwargs)[0]  # Temporary replacement for scipy < 1.2.0

        self._center = self.__compute_stat(
            matrices,
            discrete_f=lambda x: __mode(x, axis=0),
            continuous_f=lambda x: ut.nanmean(x, axis=0),
            time_f=lambda x: ut.nanmean(x, axis=0),
        )
Beispiel #4
0
    def __compute_statistics(self):
        # Since data matrices can of mixed sparsity, we need to compute
        # attributes separately for each of them.
        matrices = [self.__attributes, self.__class_vars, self.__metas]
        # Filter out any matrices with size 0
        matrices = list(filter(lambda tup: tup[1].size, matrices))

        self._variable_types = np.array([type(var) for var in self.variables])
        self._variable_names = np.array([var.name.lower() for var in self.variables])
        self._min = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.nanmin(x, axis=0),
            continuous_f=lambda x: ut.nanmin(x, axis=0),
            time_f=lambda x: ut.nanmin(x, axis=0),
        )
        self._dispersion = self.__compute_stat(
            matrices,
            discrete_f=_categorical_entropy,
            continuous_f=lambda x: np.sqrt(ut.nanvar(x, axis=0)) / ut.nanmean(x, axis=0),
        )
        self._missing = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.countnans(x, axis=0),
            continuous_f=lambda x: ut.countnans(x, axis=0),
            string_f=lambda x: (x == StringVariable.Unknown).sum(axis=0),
            time_f=lambda x: ut.countnans(x, axis=0),
        )
        self._max = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.nanmax(x, axis=0),
            continuous_f=lambda x: ut.nanmax(x, axis=0),
            time_f=lambda x: ut.nanmax(x, axis=0),
        )

        # Since scipy apparently can't do mode on sparse matrices, cast it to
        # dense. This can be very inefficient for large matrices, and should
        # be changed
        def __mode(x, *args, **kwargs):
            if sp.issparse(x):
                x = x.todense(order="C")
            # return ss.mode(x, *args, **kwargs)[0]
            return ut.nanmode(x, *args, **kwargs)[0]  # Temporary replacement for scipy

        self._center = self.__compute_stat(
            matrices,
            discrete_f=lambda x: __mode(x, axis=0),
            continuous_f=lambda x: ut.nanmean(x, axis=0),
            time_f=lambda x: ut.nanmean(x, axis=0),
        )
 def get_continuous_stats(self, column):
     """
     Return mean, variance and distance betwwen pairs of missing values
     for the given columns. The method is called by inherited `fit_rows`
     to construct a row-distance model
     """
     mean = util.nanmean(column)
     var = util.nanvar(column)
     if self.normalize:
         if var == 0:
             return None
         dist_missing2_cont = 1
     else:
         dist_missing2_cont = 2 * var
         if np.isnan(dist_missing2_cont):
             dist_missing2_cont = 0
     return mean, var, dist_missing2_cont
Beispiel #6
0
 def get_continuous_stats(self, column):
     """
     Return mean, variance and distance betwwen pairs of missing values
     for the given columns. The method is called by inherited `fit_rows`
     to construct a row-distance model
     """
     mean = util.nanmean(column)
     var = util.nanvar(column)
     if self.normalize:
         if var == 0:
             return None
         dist_missing2_cont = 1
     else:
         dist_missing2_cont = 2 * var
         if np.isnan(dist_missing2_cont):
             dist_missing2_cont = 0
     return mean, var, dist_missing2_cont
Beispiel #7
0
    def __compute_statistics(self):
        # Since data matrices can of mixed sparsity, we need to compute
        # attributes separately for each of them.
        matrices = [self.__attributes, self.__class_vars, self.__metas]
        # Filter out any matrices with size 0
        matrices = list(filter(lambda tup: tup[1].size, matrices))

        self._variable_types = np.array([type(var) for var in self.variables])
        self._variable_names = np.array(
            [var.name.lower() for var in self.variables])
        self._min = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.nanmin(x, axis=0),
            continuous_f=lambda x: ut.nanmin(x, axis=0),
            time_f=lambda x: ut.nanmin(x, axis=0),
        )
        self._dispersion = self.__compute_stat(
            matrices,
            discrete_f=_categorical_entropy,
            continuous_f=lambda x: np.sqrt(ut.nanvar(x, axis=0)) / ut.nanmean(
                x, axis=0),
        )
        self._missing = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.countnans(x, axis=0),
            continuous_f=lambda x: ut.countnans(x, axis=0),
            string_f=lambda x: (x == StringVariable.Unknown).sum(axis=0),
            time_f=lambda x: ut.countnans(x, axis=0),
        )
        self._max = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.nanmax(x, axis=0),
            continuous_f=lambda x: ut.nanmax(x, axis=0),
            time_f=lambda x: ut.nanmax(x, axis=0),
        )
        self._center = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ss.mode(x)[0],
            continuous_f=lambda x: ut.nanmean(x, axis=0),
            time_f=lambda x: ut.nanmean(x, axis=0),
        )
    def __compute_statistics(self):
        # Since data matrices can of mixed sparsity, we need to compute
        # attributes separately for each of them.
        matrices = [self.__attributes, self.__class_vars, self.__metas]
        # Filter out any matrices with size 0
        matrices = list(filter(lambda tup: tup[1].size, matrices))

        self._variable_types = np.array([type(var) for var in self.variables])
        self._variable_names = np.array([var.name.lower() for var in self.variables])
        self._min = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.nanmin(x, axis=0),
            continuous_f=lambda x: ut.nanmin(x, axis=0),
            time_f=lambda x: ut.nanmin(x, axis=0),
        )
        self._dispersion = self.__compute_stat(
            matrices,
            discrete_f=_categorical_entropy,
            continuous_f=lambda x: np.sqrt(ut.nanvar(x, axis=0)) / ut.nanmean(x, axis=0),
        )
        self._missing = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.countnans(x, axis=0),
            continuous_f=lambda x: ut.countnans(x, axis=0),
            string_f=lambda x: (x == StringVariable.Unknown).sum(axis=0),
            time_f=lambda x: ut.countnans(x, axis=0),
        )
        self._max = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ut.nanmax(x, axis=0),
            continuous_f=lambda x: ut.nanmax(x, axis=0),
            time_f=lambda x: ut.nanmax(x, axis=0),
        )
        self._center = self.__compute_stat(
            matrices,
            discrete_f=lambda x: ss.mode(x)[0],
            continuous_f=lambda x: ut.nanmean(x, axis=0),
            time_f=lambda x: ut.nanmean(x, axis=0),
        )
Beispiel #9
0
 def test_nanvar(self, array):
     for X in self.data:
         X_sparse = array(X)
         np.testing.assert_array_equal(nanvar(X_sparse), np.nanvar(X))
Beispiel #10
0
def coefficient_of_variation(x: np.ndarray) -> np.ndarray:
    mu = ut.nanmean(x, axis=0)
    mask = ~np.isclose(mu, 0, atol=1e-12)
    result = np.full_like(mu, fill_value=np.inf)
    result[mask] = np.sqrt(ut.nanvar(x, axis=0)[mask]) / mu[mask]
    return result
Beispiel #11
0
 def test_nanvar(self, array):
     for X in self.data:
         X_sparse = array(X)
         np.testing.assert_array_equal(
             nanvar(X_sparse),
             np.nanvar(X))
    def __compute_statistics(self):
        # We will compute statistics over all data at once
        matrices = [self._data.X, self._data._Y, self._data.metas]

        # Since data matrices can of mixed sparsity, we need to compute
        # attributes separately for each of them.
        matrices = zip([
            self._domain.attributes, self._domain.class_vars, self._domain.metas
        ], matrices)
        # Filter out any matrices with size 0, filter the zipped matrices to 
        # eliminate variables in a single swoop
        matrices = list(filter(lambda tup: tup[1].size, matrices))

        def _apply_to_types(attrs_x_pair, discrete_f=None, continuous_f=None,
                            time_f=None, string_f=None, default_val=np.nan):
            """Apply functions to variable types e.g. discrete_f to discrete 
            variables. Default value is returned if there is no function 
            defined for specific variable types."""
            attrs, x = attrs_x_pair
            result = np.full(len(attrs), default_val)
            disc_var_idx, cont_var_idx, time_var_idx, str_var_idx = self._attr_indices(attrs)
            if discrete_f and x[:, disc_var_idx].size:
                result[disc_var_idx] = discrete_f(x[:, disc_var_idx].astype(np.float64))
            if continuous_f and x[:, cont_var_idx].size:
                result[cont_var_idx] = continuous_f(x[:, cont_var_idx].astype(np.float64))
            if time_f and x[:, time_var_idx].size:
                result[time_var_idx] = time_f(x[:, time_var_idx].astype(np.float64))
            if string_f and x[:, str_var_idx].size:
                result[str_var_idx] = string_f(x[:, str_var_idx].astype(np.object))
            return result

        self._variable_types = [type(var) for var in self._attributes]
        self._variable_names = [var.name.lower() for var in self._attributes]

        # Compute the center
        _center = partial(
            _apply_to_types,
            discrete_f=lambda x: ss.mode(x)[0],
            continuous_f=lambda x: ut.nanmean(x, axis=0),
        )
        self._center = np.hstack(map(_center, matrices))

        # Compute the dispersion
        def _entropy(x):
            p = [ut.bincount(row)[0] for row in x.T]
            p = [pk / np.sum(pk) for pk in p]
            return np.fromiter((ss.entropy(pk) for pk in p), dtype=np.float64)
        _dispersion = partial(
            _apply_to_types,
            discrete_f=lambda x: _entropy(x),
            continuous_f=lambda x: ut.nanvar(x, axis=0),
        )
        self._dispersion = np.hstack(map(_dispersion, matrices))

        # Compute minimum values
        _max = partial(
            _apply_to_types,
            discrete_f=lambda x: ut.nanmax(x, axis=0),
            continuous_f=lambda x: ut.nanmax(x, axis=0),
        )
        self._max = np.hstack(map(_max, matrices))

        # Compute maximum values
        _min = partial(
            _apply_to_types,
            discrete_f=lambda x: ut.nanmin(x, axis=0),
            continuous_f=lambda x: ut.nanmin(x, axis=0),
        )
        self._min = np.hstack(map(_min, matrices))

        # Compute # of missing values
        _missing = partial(
            _apply_to_types,
            discrete_f=lambda x: ut.countnans(x, axis=0),
            continuous_f=lambda x: ut.countnans(x, axis=0),
            string_f=lambda x: (x == StringVariable.Unknown).sum(axis=0),
            time_f=lambda x: ut.countnans(x, axis=0),
        )
        self._missing = np.hstack(map(_missing, matrices))
Beispiel #13
0
 def test_nanvar(self, array):
     for X in self.data:
         X_sparse = array(X)
         np.testing.assert_almost_equal(
             nanvar(X_sparse), np.nanvar(X),
             decimal=14)  # np.nanvar and bn.nanvar differ slightly