class OWCalibrationPlot(widget.OWWidget):
    name = "Calibration Plot"
    description = "Calibration plot based on evaluation of classifiers."
    icon = "icons/CalibrationPlot.svg"
    priority = 1030
    keywords = []

    class Inputs:
        evaluation_results = Input("Evaluation Results", Results)

    class Outputs:
        calibrated_model = Output("Calibrated Model", Model)

    class Error(widget.OWWidget.Error):
        non_discrete_target = Msg("Calibration plot requires a categorical "
                                  "target variable.")
        empty_input = widget.Msg("Empty result on input. Nothing to display.")
        nan_classes = \
            widget.Msg("Remove test data instances with unknown classes.")
        all_target_class = widget.Msg(
            "All data instances belong to target class.")
        no_target_class = widget.Msg(
            "No data instances belong to target class.")

    class Warning(widget.OWWidget.Warning):
        omitted_folds = widget.Msg(
            "Test folds where all data belongs to (non)-target are not shown.")
        omitted_nan_prob_points = widget.Msg(
            "Instance for which the model couldn't compute probabilities are"
            "skipped.")
        no_valid_data = widget.Msg("No valid data for model(s) {}")

    class Information(widget.OWWidget.Information):
        no_output = Msg("Can't output a model: {}")

    settingsHandler = EvaluationResultsContextHandler()
    target_index = settings.ContextSetting(0)
    selected_classifiers = settings.ContextSetting([])
    score = settings.Setting(0)
    output_calibration = settings.Setting(0)
    fold_curves = settings.Setting(False)
    display_rug = settings.Setting(True)
    threshold = settings.Setting(0.5)
    visual_settings = settings.Setting({}, schema_only=True)
    auto_commit = settings.Setting(True)

    graph_name = "plot"

    def __init__(self):
        super().__init__()

        self.results = None
        self.scores = None
        self.classifier_names = []
        self.colors = []
        self.line = None

        self._last_score_value = -1

        box = gui.vBox(self.controlArea, box="Settings")
        self.target_cb = gui.comboBox(
            box, self, "target_index", label="Target:",
            orientation=Qt.Horizontal, callback=self.target_index_changed,
            contentsLength=8, searchable=True)
        gui.checkBox(
            box, self, "display_rug", "Show rug",
            callback=self._on_display_rug_changed)
        gui.checkBox(
            box, self, "fold_curves", "Curves for individual folds",
            callback=self._replot)

        self.classifiers_list_box = gui.listBox(
            self.controlArea, self, "selected_classifiers", "classifier_names",
            box="Classifier", selectionMode=QListWidget.ExtendedSelection,
            sizePolicy=(QSizePolicy.Preferred, QSizePolicy.Preferred),
            sizeHint=QSize(150, 40),
            callback=self._on_selection_changed)

        box = gui.vBox(self.controlArea, "Metrics")
        combo = gui.comboBox(
            box, self, "score", items=(metric.name for metric in Metrics),
            callback=self.score_changed)

        self.explanation = gui.widgetLabel(
            box, wordWrap=True, fixedWidth=combo.sizeHint().width())
        self.explanation.setContentsMargins(8, 8, 0, 0)
        font = self.explanation.font()
        font.setPointSizeF(0.85 * font.pointSizeF())
        self.explanation.setFont(font)

        gui.radioButtons(
            box, self, value="output_calibration",
            btnLabels=("Sigmoid calibration", "Isotonic calibration"),
            label="Output model calibration", callback=self.commit.deferred)

        self.info_box = gui.widgetBox(self.controlArea, "Info")
        self.info_label = gui.widgetLabel(self.info_box)

        gui.auto_apply(self.buttonsArea, self, "auto_commit")

        self.plotview = GraphicsView()
        self.plot = PlotItem(enableMenu=False)
        self.plot.parameter_setter = ParameterSetter(self.plot)
        self.plot.setMouseEnabled(False, False)
        self.plot.hideButtons()
        for axis_name in ("bottom", "left"):
            axis = self.plot.getAxis(axis_name)
            # Remove the condition (that is, allow setting this for bottom
            # axis) when pyqtgraph is fixed
            # Issue: https://github.com/pyqtgraph/pyqtgraph/issues/930
            # Pull request: https://github.com/pyqtgraph/pyqtgraph/pull/932
            if axis_name != "bottom":  # remove if when pyqtgraph is fixed
                axis.setStyle(stopAxisAtTick=(True, True))

        self.plot.setRange(xRange=(0.0, 1.0), yRange=(0.0, 1.0), padding=0.05)
        self.plotview.setCentralItem(self.plot)

        self.mainArea.layout().addWidget(self.plotview)
        self._set_explanation()

        VisualSettingsDialog(self, self.plot.parameter_setter.initial_settings)

    @Inputs.evaluation_results
    def set_results(self, results):
        self.closeContext()
        self.clear()
        self.Error.clear()
        self.Information.clear()

        self.results = None
        if results is not None:
            if not results.domain.has_discrete_class:
                self.Error.non_discrete_target()
            elif not results.actual.size:
                self.Error.empty_input()
            elif np.any(np.isnan(results.actual)):
                self.Error.nan_classes()
            else:
                self.results = results
                self._initialize(results)
                class_var = self.results.domain.class_var
                self.target_index = int(len(class_var.values) == 2)
                self.openContext(class_var, self.classifier_names)
                self._replot()

        self.commit.now()

    def clear(self):
        self.plot.clear()
        self.results = None
        self.classifier_names = []
        self.selected_classifiers = []
        self.target_cb.clear()
        self.colors = []

    def target_index_changed(self):
        if len(self.results.domain.class_var.values) == 2:
            self.threshold = 1 - self.threshold
        self._set_explanation()
        self._replot()
        self.commit.deferred()

    def score_changed(self):
        self._set_explanation()
        self._replot()
        if self._last_score_value != self.score:
            self.commit.deferred()
            self._last_score_value = self.score

    def _set_explanation(self):
        explanation = Metrics[self.score].explanation
        if explanation:
            self.explanation.setText(explanation)
            self.explanation.show()
        else:
            self.explanation.hide()

        if self.score == 0:
            self.controls.output_calibration.show()
            self.info_box.hide()
        else:
            self.controls.output_calibration.hide()
            self.info_box.show()

        axis = self.plot.getAxis("bottom")
        axis.setLabel("Predicted probability" if self.score == 0
                      else "Threshold probability to classify as positive")

        axis = self.plot.getAxis("left")
        axis.setLabel(Metrics[self.score].name)

    def _initialize(self, results):
        n = len(results.predicted)
        names = getattr(results, "learner_names", None)
        if names is None:
            names = ["#{}".format(i + 1) for i in range(n)]

        self.classifier_names = names
        self.colors = colorpalettes.get_default_curve_colors(n)

        for i in range(n):
            item = self.classifiers_list_box.item(i)
            item.setIcon(colorpalettes.ColorIcon(self.colors[i]))

        self.selected_classifiers = list(range(n))
        self.target_cb.addItems(results.domain.class_var.values)
        self.target_index = 0

    def _rug(self, data, pen_args):
        color = pen_args["pen"].color()
        rh = 0.025
        rug_x = np.c_[data.probs[:-1], data.probs[:-1]]
        rug_x_true = rug_x[data.ytrue].ravel()
        rug_x_false = rug_x[~data.ytrue].ravel()

        rug_y_true = np.ones_like(rug_x_true)
        rug_y_true[1::2] = 1 - rh
        rug_y_false = np.zeros_like(rug_x_false)
        rug_y_false[1::2] = rh

        self.plot.plot(
            rug_x_false, rug_y_false,
            pen=color, connect="pairs", antialias=True)
        self.plot.plot(
            rug_x_true, rug_y_true,
            pen=color, connect="pairs", antialias=True)

    def plot_metrics(self, data, metrics, pen_args):
        if metrics is None:
            return self._prob_curve(data.ytrue, data.probs[:-1], pen_args)
        ys = [metric(data) for metric in metrics]
        for y in ys:
            self.plot.plot(data.probs, y, **pen_args)
        return data.probs, ys

    def _prob_curve(self, ytrue, probs, pen_args):
        xmin, xmax = probs.min(), probs.max()
        x = np.linspace(xmin, xmax, 100)
        if xmax != xmin:
            f = gaussian_smoother(probs, ytrue, sigma=0.15 * (xmax - xmin))
            y = f(x)
        else:
            y = np.full(100, xmax)

        self.plot.plot(x, y, symbol="+", symbolSize=4, **pen_args)
        return x, (y, )

    def _setup_plot(self):
        target = self.target_index
        results = self.results
        metrics = Metrics[self.score].functions
        plot_folds = self.fold_curves and results.folds is not None
        self.scores = []

        if not self._check_class_presence(results.actual == target):
            return

        self.Warning.omitted_folds.clear()
        self.Warning.omitted_nan_prob_points.clear()
        no_valid_models = []
        shadow_width = 4 + 4 * plot_folds
        for clsf in self.selected_classifiers:
            data = Curves.from_results(results, target, clsf)
            if data.tot == 0:  # all probabilities are nan
                no_valid_models.append(clsf)
                continue
            if data.tot != results.probabilities.shape[1]:  # some are nan
                self.Warning.omitted_nan_prob_points()

            color = self.colors[clsf]
            pen_args = dict(
                pen=pg.mkPen(color, width=1), antiAlias=True,
                shadowPen=pg.mkPen(color.lighter(160), width=shadow_width))
            self.scores.append(
                (self.classifier_names[clsf],
                 self.plot_metrics(data, metrics, pen_args)))

            if self.display_rug:
                self._rug(data, pen_args)

            if plot_folds:
                pen_args = dict(
                    pen=pg.mkPen(color, width=1, style=Qt.DashLine),
                    antiAlias=True)
                for fold in range(len(results.folds)):
                    fold_results = results.get_fold(fold)
                    fold_curve = Curves.from_results(fold_results, target, clsf)
                    # Can't check this before: p and n can be 0 because of
                    # nan probabilities
                    if fold_curve.p * fold_curve.n == 0:
                        self.Warning.omitted_folds()
                    self.plot_metrics(fold_curve, metrics, pen_args)

        if no_valid_models:
            self.Warning.no_valid_data(
                ", ".join(self.classifier_names[i] for i in no_valid_models))

        if self.score == 0:
            self.plot.plot([0, 1], [0, 1], antialias=True)
        else:
            self.line = pg.InfiniteLine(
                pos=self.threshold, movable=True,
                pen=pg.mkPen(color="k", style=Qt.DashLine, width=2),
                hoverPen=pg.mkPen(color="k", style=Qt.DashLine, width=3),
                bounds=(0, 1),
            )
            self.line.sigPositionChanged.connect(self.threshold_change)
            self.line.sigPositionChangeFinished.connect(
                self.threshold_change_done)
            self.plot.addItem(self.line)

    def _check_class_presence(self, ytrue):
        self.Error.all_target_class.clear()
        self.Error.no_target_class.clear()
        if np.max(ytrue) == 0:
            self.Error.no_target_class()
            return False
        if np.min(ytrue) == 1:
            self.Error.all_target_class()
            return False
        return True

    def _replot(self):
        self.plot.clear()
        if self.results is not None:
            self._setup_plot()
        self._update_info()

    def _on_display_rug_changed(self):
        self._replot()

    def _on_selection_changed(self):
        self._replot()
        self.commit.deferred()

    def threshold_change(self):
        self.threshold = round(self.line.pos().x(), 2)
        self.line.setPos(self.threshold)
        self._update_info()

    def get_info_text(self, short):
        if short:
            def elided(s):
                return s[:17] + "..." if len(s) > 20 else s

            text = f"""<table>
                            <tr>
                                <th align='right'>Threshold: p=</th>
                                <td colspan='4'>{self.threshold:.2f}<br/></td>
                            </tr>"""

        else:
            def elided(s):
                return s

            text = f"""<table>
                            <tr>
                                <th align='right'>Threshold:</th>
                                <td colspan='4'>p = {self.threshold:.2f}<br/>
                                </td>
                                <tr/>
                            </tr>"""

        if self.scores is not None:
            short_names = Metrics[self.score].short_names
            if short_names:
                text += f"""<tr>
                                <th></th>
                                {"<td></td>".join(f"<td align='right'>{n}</td>"
                                                  for n in short_names)}
                            </tr>"""
            for name, (probs, curves) in self.scores:
                ind = min(np.searchsorted(probs, self.threshold),
                          len(probs) - 1)
                text += f"<tr><th align='right'>{elided(name)}:</th>"
                text += "<td>/</td>".join(f'<td>{curve[ind]:.3f}</td>'
                                          for curve in curves)
                text += "</tr>"
            text += "<table>"
            return text
        return None

    def _update_info(self):
        self.info_label.setText(self.get_info_text(short=True))

    def threshold_change_done(self):
        self.commit.deferred()

    @gui.deferred
    def commit(self):
        self.Information.no_output.clear()
        wrapped = None
        results = self.results
        if results is not None:
            problems = [
                msg for condition, msg in (
                    (results.folds is not None and len(results.folds) > 1,
                     "each training data sample produces a different model"),
                    (results.models is None,
                     "test results do not contain stored models - try testing "
                     "on separate data or on training data"),
                    (len(self.selected_classifiers) != 1,
                     "select a single model - the widget can output only one"),
                    (self.score != 0 and len(results.domain.class_var.values) != 2,
                     "cannot calibrate non-binary classes"))
                if condition]
            if len(problems) == 1:
                self.Information.no_output(problems[0])
            elif problems:
                self.Information.no_output(
                    "".join(f"\n - {problem}" for problem in problems))
            else:
                clsf_idx = self.selected_classifiers[0]
                model = results.models[0, clsf_idx]
                if self.score == 0:
                    cal_learner = CalibratedLearner(
                        None, self.output_calibration)
                    wrapped = cal_learner.get_model(
                        model, results.actual, results.probabilities[clsf_idx])
                else:
                    threshold = [1 - self.threshold,
                                 self.threshold][self.target_index]
                    wrapped = ThresholdClassifier(model, threshold)

        self.Outputs.calibrated_model.send(wrapped)

    def send_report(self):
        if self.results is None:
            return
        self.report_items((
            ("Target class", self.target_cb.currentText()),
            ("Output model calibration",
             self.score == 0
             and ("Sigmoid calibration",
                  "Isotonic calibration")[self.output_calibration])
        ))
        caption = report.list_legend(self.classifiers_list_box,
                                     self.selected_classifiers)
        self.report_plot()
        self.report_caption(caption)
        self.report_caption(self.controls.score.currentText())

        if self.score != 0:
            self.report_raw(self.get_info_text(short=False))

    def set_visual_settings(self, key, value):
        self.plot.parameter_setter.set_parameter(key, value)
        self.visual_settings[key] = value
Beispiel #2
0
class OWLiftCurve(widget.OWWidget):
    name = "Lift Curve"
    description = "Construct and display a lift curve " \
                  "from the evaluation of classifiers."
    icon = "icons/LiftCurve.svg"
    priority = 1020
    keywords = []

    class Inputs:
        evaluation_results = Input("Evaluation Results",
                                   Orange.evaluation.Results)

    settingsHandler = EvaluationResultsContextHandler()
    target_index = settings.ContextSetting(0)
    selected_classifiers = settings.ContextSetting([])

    display_convex_hull = settings.Setting(False)
    display_cost_func = settings.Setting(True)

    fp_cost = settings.Setting(500)
    fn_cost = settings.Setting(500)
    target_prior = settings.Setting(50.0)

    graph_name = "plot"

    def __init__(self):
        super().__init__()

        self.results = None
        self.classifier_names = []
        self.colors = []
        self._curve_data = {}

        box = gui.vBox(self.controlArea, "Plot")
        tbox = gui.vBox(box, "Target Class")
        tbox.setFlat(True)

        self.target_cb = gui.comboBox(tbox,
                                      self,
                                      "target_index",
                                      callback=self._on_target_changed,
                                      contentsLength=8)

        cbox = gui.vBox(box, "Classifiers")
        cbox.setFlat(True)
        self.classifiers_list_box = gui.listBox(
            cbox,
            self,
            "selected_classifiers",
            "classifier_names",
            selectionMode=QListView.MultiSelection,
            callback=self._on_classifiers_changed)

        gui.checkBox(box,
                     self,
                     "display_convex_hull",
                     "Show lift convex hull",
                     callback=self._replot)

        self.plotview = pg.GraphicsView(background="w")
        self.plotview.setFrameStyle(QFrame.StyledPanel)

        self.plot = pg.PlotItem(enableMenu=False)
        self.plot.setMouseEnabled(False, False)
        self.plot.hideButtons()

        pen = QPen(self.palette().color(QPalette.Text))

        tickfont = QFont(self.font())
        tickfont.setPixelSize(max(int(tickfont.pixelSize() * 2 // 3), 11))

        axis = self.plot.getAxis("bottom")
        axis.setTickFont(tickfont)
        axis.setPen(pen)
        axis.setLabel("P Rate")

        axis = self.plot.getAxis("left")
        axis.setTickFont(tickfont)
        axis.setPen(pen)
        axis.setLabel("TP Rate")

        self.plot.showGrid(True, True, alpha=0.1)
        self.plot.setRange(xRange=(0.0, 1.0), yRange=(0.0, 1.0), padding=0.05)

        self.plotview.setCentralItem(self.plot)
        self.mainArea.layout().addWidget(self.plotview)

    @Inputs.evaluation_results
    def set_results(self, results):
        """Set the input evaluation results."""
        self.closeContext()
        self.clear()
        self.results = check_results_adequacy(results, self.Error)
        if self.results is not None:
            self._initialize(results)
            self.openContext(self.results.domain.class_var,
                             self.classifier_names)
            self._setup_plot()

    def clear(self):
        """Clear the widget state."""
        self.plot.clear()
        self.results = None
        self.target_cb.clear()
        self.target_index = 0
        self.classifier_names = []
        self.colors = []
        self._curve_data = {}

    def _initialize(self, results):
        N = len(results.predicted)

        names = getattr(results, "learner_names", None)
        if names is None:
            names = ["#{}".format(i + 1) for i in range(N)]

        scheme = colorbrewer.colorSchemes["qualitative"]["Dark2"]
        if N > len(scheme):
            scheme = colorpalette.DefaultRGBColors
        self.colors = colorpalette.ColorPaletteGenerator(N, scheme)

        self.classifier_names = names
        self.selected_classifiers = list(range(N))
        for i in range(N):
            item = self.classifiers_list_box.item(i)
            item.setIcon(colorpalette.ColorPixmap(self.colors[i]))

        self.target_cb.addItems(results.data.domain.class_var.values)

    def plot_curves(self, target, clf_idx):
        if (target, clf_idx) not in self._curve_data:
            curve = liftCurve_from_results(self.results, clf_idx, target)
            color = self.colors[clf_idx]
            pen = QPen(color, 1)
            pen.setCosmetic(True)
            shadow_pen = QPen(pen.color().lighter(160), 2.5)
            shadow_pen.setCosmetic(True)
            item = pg.PlotDataItem(curve.points[0],
                                   curve.points[1],
                                   pen=pen,
                                   shadowPen=shadow_pen,
                                   symbol="+",
                                   symbolSize=3,
                                   symbolPen=shadow_pen,
                                   antialias=True)
            hull_item = pg.PlotDataItem(curve.hull[0],
                                        curve.hull[1],
                                        pen=pen,
                                        antialias=True)
            self._curve_data[target, clf_idx] = \
                PlotCurve(curve, item, hull_item)

        return self._curve_data[target, clf_idx]

    def _setup_plot(self):
        target = self.target_index
        selected = self.selected_classifiers
        curves = [self.plot_curves(target, clf_idx) for clf_idx in selected]

        for curve in curves:
            self.plot.addItem(curve.curve_item)

        if self.display_convex_hull:
            hull = convex_hull([c.curve.hull for c in curves])
            self.plot.plot(hull[0], hull[1], pen="y", antialias=True)

        pen = QPen(QColor(100, 100, 100, 100), 1, Qt.DashLine)
        pen.setCosmetic(True)
        self.plot.plot([0, 1], [0, 1], pen=pen, antialias=True)

        warning = ""
        if not all(c.curve.is_valid for c in curves):
            if any(c.curve.is_valid for c in curves):
                warning = "Some lift curves are undefined"
            else:
                warning = "All lift curves are undefined"

        self.warning(warning)

    def _replot(self):
        self.plot.clear()
        if self.results is not None:
            self._setup_plot()

    def _on_target_changed(self):
        self._replot()

    def _on_classifiers_changed(self):
        self._replot()

    def send_report(self):
        if self.results is None:
            return
        caption = report.list_legend(self.classifiers_list_box,
                                     self.selected_classifiers)
        self.report_items((("Target class", self.target_cb.currentText()), ))
        self.report_plot()
        self.report_caption(caption)
Beispiel #3
0
class OWROCAnalysis(widget.OWWidget):
    name = "ROC Analysis"
    description = "Display the Receiver Operating Characteristics curve " \
                  "based on the evaluation of classifiers."
    icon = "icons/ROCAnalysis.svg"
    priority = 1010
    keywords = []

    class Inputs:
        evaluation_results = Input("Evaluation Results",
                                   Orange.evaluation.Results)

    settingsHandler = EvaluationResultsContextHandler()
    target_index = settings.ContextSetting(0)
    selected_classifiers = settings.ContextSetting([])

    display_perf_line = settings.Setting(True)
    display_def_threshold = settings.Setting(True)

    fp_cost = settings.Setting(500)
    fn_cost = settings.Setting(500)
    target_prior = settings.Setting(50.0, schema_only=True)

    #: ROC Averaging Types
    Merge, Vertical, Threshold, NoAveraging = 0, 1, 2, 3
    roc_averaging = settings.Setting(Merge)

    display_convex_hull = settings.Setting(False)
    display_convex_curve = settings.Setting(False)

    graph_name = "plot"

    def __init__(self):
        super().__init__()

        self.results = None
        self.classifier_names = []
        self.perf_line = None
        self.colors = []
        self._curve_data = {}
        self._plot_curves = {}
        self._rocch = None
        self._perf_line = None
        self._tooltip_cache = None

        box = gui.vBox(self.controlArea, "Plot")
        self.target_cb = gui.comboBox(box,
                                      self,
                                      "target_index",
                                      label="Target",
                                      orientation=Qt.Horizontal,
                                      callback=self._on_target_changed,
                                      contentsLength=8,
                                      searchable=True)

        gui.widgetLabel(box, "Classifiers")
        line_height = 4 * QFontMetrics(self.font()).lineSpacing()
        self.classifiers_list_box = gui.listBox(
            box,
            self,
            "selected_classifiers",
            "classifier_names",
            selectionMode=QListView.MultiSelection,
            callback=self._on_classifiers_changed,
            sizeHint=QSize(0, line_height))

        abox = gui.vBox(self.controlArea, "Curves")
        gui.comboBox(abox,
                     self,
                     "roc_averaging",
                     items=[
                         "Merge Predictions from Folds", "Mean TP Rate",
                         "Mean TP and FP at Threshold",
                         "Show Individual Curves"
                     ],
                     callback=self._replot)

        gui.checkBox(abox,
                     self,
                     "display_convex_curve",
                     "Show convex ROC curves",
                     callback=self._replot)
        gui.checkBox(abox,
                     self,
                     "display_convex_hull",
                     "Show ROC convex hull",
                     callback=self._replot)

        box = gui.vBox(self.controlArea, "Analysis")

        gui.checkBox(box,
                     self,
                     "display_def_threshold",
                     "Default threshold (0.5) point",
                     callback=self._on_display_def_threshold_changed)

        gui.checkBox(box,
                     self,
                     "display_perf_line",
                     "Show performance line",
                     callback=self._on_display_perf_line_changed)
        grid = QGridLayout()
        gui.indentedBox(box, orientation=grid)

        sp = gui.spin(box,
                      self,
                      "fp_cost",
                      1,
                      1000,
                      10,
                      alignment=Qt.AlignRight,
                      callback=self._on_display_perf_line_changed)
        grid.addWidget(QLabel("FP Cost:"), 0, 0)
        grid.addWidget(sp, 0, 1)

        sp = gui.spin(box,
                      self,
                      "fn_cost",
                      1,
                      1000,
                      10,
                      alignment=Qt.AlignRight,
                      callback=self._on_display_perf_line_changed)
        grid.addWidget(QLabel("FN Cost:"))
        grid.addWidget(sp, 1, 1)
        self.target_prior_sp = gui.spin(box,
                                        self,
                                        "target_prior",
                                        1,
                                        99,
                                        alignment=Qt.AlignRight,
                                        callback=self._on_target_prior_changed)
        self.target_prior_sp.setSuffix(" %")
        self.target_prior_sp.addAction(QAction("Auto", sp))
        grid.addWidget(QLabel("Prior probability:"))
        grid.addWidget(self.target_prior_sp, 2, 1)

        self.plotview = pg.GraphicsView(background="w")
        self.plotview.setFrameStyle(QFrame.StyledPanel)
        self.plotview.scene().sigMouseMoved.connect(self._on_mouse_moved)

        self.plot = pg.PlotItem(enableMenu=False)
        self.plot.setMouseEnabled(False, False)
        self.plot.hideButtons()

        pen = QPen(self.palette().color(QPalette.Text))

        tickfont = QFont(self.font())
        tickfont.setPixelSize(max(int(tickfont.pixelSize() * 2 // 3), 11))

        axis = self.plot.getAxis("bottom")
        axis.setTickFont(tickfont)
        axis.setPen(pen)
        axis.setLabel("FP Rate (1-Specificity)")

        axis = self.plot.getAxis("left")
        axis.setTickFont(tickfont)
        axis.setPen(pen)
        axis.setLabel("TP Rate (Sensitivity)")

        self.plot.showGrid(True, True, alpha=0.1)
        self.plot.setRange(xRange=(0.0, 1.0), yRange=(0.0, 1.0), padding=0.05)

        self.plotview.setCentralItem(self.plot)
        self.mainArea.layout().addWidget(self.plotview)

    @Inputs.evaluation_results
    def set_results(self, results):
        """Set the input evaluation results."""
        self.closeContext()
        self.clear()
        self.results = check_results_adequacy(results, self.Error)
        if self.results is not None:
            self._initialize(self.results)
            self.openContext(self.results.domain.class_var,
                             self.classifier_names)
            self._setup_plot()
        else:
            self.warning()

    def clear(self):
        """Clear the widget state."""
        self.results = None
        self.plot.clear()
        self.classifier_names = []
        self.selected_classifiers = []
        self.target_cb.clear()
        self.colors = []
        self._curve_data = {}
        self._plot_curves = {}
        self._rocch = None
        self._perf_line = None
        self._tooltip_cache = None

    def _initialize(self, results):
        names = getattr(results, "learner_names", None)

        if names is None:
            names = [
                "#{}".format(i + 1) for i in range(len(results.predicted))
            ]

        self.colors = colorpalettes.get_default_curve_colors(len(names))

        self.classifier_names = names
        self.selected_classifiers = list(range(len(names)))
        for i in range(len(names)):
            listitem = self.classifiers_list_box.item(i)
            listitem.setIcon(colorpalettes.ColorIcon(self.colors[i]))

        class_var = results.data.domain.class_var
        self.target_cb.addItems(class_var.values)
        self.target_index = 0
        self._set_target_prior()

    def _set_target_prior(self):
        """
        This function sets the initial target class probability prior value
        based on the input data.
        """
        if self.results.data:
            # here we can use target_index directly since values in the
            # dropdown are sorted in same order than values in the table
            target_values_cnt = np.count_nonzero(
                self.results.data.Y == self.target_index)
            count_all = np.count_nonzero(~np.isnan(self.results.data.Y))
            self.target_prior = np.round(target_values_cnt / count_all * 100)

            # set the spin text to gray color when set automatically
            self.target_prior_sp.setStyleSheet("color: gray;")

    def curve_data(self, target, clf_idx):
        """Return `ROCData' for the given target and classifier."""
        if (target, clf_idx) not in self._curve_data:
            # pylint: disable=no-member
            data = ROCData.from_results(self.results, clf_idx, target)
            self._curve_data[target, clf_idx] = data

        return self._curve_data[target, clf_idx]

    def plot_curves(self, target, clf_idx):
        """Return a set of functions `plot_curves` generating plot curves."""
        def generate_pens(basecolor):
            pen = QPen(basecolor, 1)
            pen.setCosmetic(True)

            shadow_pen = QPen(pen.color().lighter(160), 2.5)
            shadow_pen.setCosmetic(True)
            return pen, shadow_pen

        data = self.curve_data(target, clf_idx)

        if (target, clf_idx) not in self._plot_curves:
            pen, shadow_pen = generate_pens(self.colors[clf_idx])
            name = self.classifier_names[clf_idx]

            @once
            def merged():
                return plot_curve(data.merged,
                                  pen=pen,
                                  shadow_pen=shadow_pen,
                                  name=name)

            @once
            def folds():
                return [
                    plot_curve(fold, pen=pen, shadow_pen=shadow_pen)
                    for fold in data.folds
                ]

            @once
            def avg_vert():
                return plot_avg_curve(data.avg_vertical,
                                      pen=pen,
                                      shadow_pen=shadow_pen,
                                      name=name)

            @once
            def avg_thres():
                return plot_avg_curve(data.avg_threshold,
                                      pen=pen,
                                      shadow_pen=shadow_pen,
                                      name=name)

            self._plot_curves[target,
                              clf_idx] = PlotCurves(merge=merged,
                                                    folds=folds,
                                                    avg_vertical=avg_vert,
                                                    avg_threshold=avg_thres)

        return self._plot_curves[target, clf_idx]

    def _setup_plot(self):
        def merge_averaging():
            for curve in curves:
                graphics = curve.merge()
                curve = graphics.curve
                self.plot.addItem(graphics.curve_item)

                if self.display_convex_curve:
                    self.plot.addItem(graphics.hull_item)

                if self.display_def_threshold and curve.is_valid:
                    points = curve.points
                    ind = np.argmin(np.abs(points.thresholds - 0.5))
                    item = pg.TextItem(text="{:.3f}".format(
                        points.thresholds[ind]), )
                    item.setPos(points.fpr[ind], points.tpr[ind])
                    self.plot.addItem(item)

            hull_curves = [curve.merged.hull for curve in selected]
            if hull_curves:
                self._rocch = convex_hull(hull_curves)
                iso_pen = QPen(QColor(Qt.black), 1)
                iso_pen.setCosmetic(True)
                self._perf_line = InfiniteLine(pen=iso_pen, antialias=True)
                self.plot.addItem(self._perf_line)
            return hull_curves

        def vertical_averaging():
            for curve in curves:
                graphics = curve.avg_vertical()

                self.plot.addItem(graphics.curve_item)
                self.plot.addItem(graphics.confint_item)
            return [curve.avg_vertical.hull for curve in selected]

        def threshold_averaging():
            for curve in curves:
                graphics = curve.avg_threshold()
                self.plot.addItem(graphics.curve_item)
                self.plot.addItem(graphics.confint_item)
            return [curve.avg_threshold.hull for curve in selected]

        def no_averaging():
            for curve in curves:
                graphics = curve.folds()
                for fold in graphics:
                    self.plot.addItem(fold.curve_item)
                    if self.display_convex_curve:
                        self.plot.addItem(fold.hull_item)
            return [fold.hull for curve in selected for fold in curve.folds]

        averagings = {
            OWROCAnalysis.Merge: merge_averaging,
            OWROCAnalysis.Vertical: vertical_averaging,
            OWROCAnalysis.Threshold: threshold_averaging,
            OWROCAnalysis.NoAveraging: no_averaging
        }

        target = self.target_index
        selected = self.selected_classifiers

        curves = [self.plot_curves(target, i) for i in selected]
        selected = [self.curve_data(target, i) for i in selected]
        hull_curves = averagings[self.roc_averaging]()

        if self.display_convex_hull and hull_curves:
            hull = convex_hull(hull_curves)
            hull_pen = QPen(QColor(200, 200, 200, 100), 2)
            hull_pen.setCosmetic(True)
            item = self.plot.plot(hull.fpr,
                                  hull.tpr,
                                  pen=hull_pen,
                                  brush=QBrush(QColor(200, 200, 200, 50)),
                                  fillLevel=0)
            item.setZValue(-10000)

        pen = QPen(QColor(100, 100, 100, 100), 1, Qt.DashLine)
        pen.setCosmetic(True)
        self.plot.plot([0, 1], [0, 1], pen=pen, antialias=True)

        if self.roc_averaging == OWROCAnalysis.Merge:
            self._update_perf_line()

        warning = ""
        if not all(c.is_valid for c in hull_curves):
            if any(c.is_valid for c in hull_curves):
                warning = "Some ROC curves are undefined"
            else:
                warning = "All ROC curves are undefined"
        self.warning(warning)

    def _on_mouse_moved(self, pos):
        target = self.target_index
        selected = self.selected_classifiers
        curves = [(clf_idx, self.plot_curves(target, clf_idx))
                  for clf_idx in selected
                  ]  # type: List[Tuple[int, PlotCurves]]
        valid_thresh, valid_clf = [], []
        pt, ave_mode = None, self.roc_averaging

        for clf_idx, crv in curves:
            if self.roc_averaging == OWROCAnalysis.Merge:
                curve = crv.merge()
            elif self.roc_averaging == OWROCAnalysis.Vertical:
                curve = crv.avg_vertical()
            elif self.roc_averaging == OWROCAnalysis.Threshold:
                curve = crv.avg_threshold()
            else:
                # currently not implemented for 'Show Individual Curves'
                return

            sp = curve.curve_item.childItems()[0]  # type: pg.ScatterPlotItem
            act_pos = sp.mapFromScene(pos)
            pts = sp.pointsAt(act_pos)

            if pts:
                mouse_pt = pts[0].pos()
                if self._tooltip_cache:
                    cache_pt, cache_thresh, cache_clf, cache_ave = self._tooltip_cache
                    curr_thresh, curr_clf = [], []
                    if np.linalg.norm(mouse_pt - cache_pt) < 10e-6 \
                            and cache_ave == self.roc_averaging:
                        mask = np.equal(cache_clf, clf_idx)
                        curr_thresh = np.compress(mask, cache_thresh).tolist()
                        curr_clf = np.compress(mask, cache_clf).tolist()
                    else:
                        QToolTip.showText(QCursor.pos(), "")
                        self._tooltip_cache = None

                    if curr_thresh:
                        valid_thresh.append(*curr_thresh)
                        valid_clf.append(*curr_clf)
                        pt = cache_pt
                        continue

                curve_pts = curve.curve.points
                roc_points = np.column_stack((curve_pts.fpr, curve_pts.tpr))
                diff = np.subtract(roc_points, mouse_pt)
                # Find closest point on curve and save the corresponding threshold
                idx_closest = np.argmin(np.linalg.norm(diff, axis=1))

                thresh = curve_pts.thresholds[idx_closest]
                if not np.isnan(thresh):
                    valid_thresh.append(thresh)
                    valid_clf.append(clf_idx)
                    pt = [
                        curve_pts.fpr[idx_closest], curve_pts.tpr[idx_closest]
                    ]

        if valid_thresh:
            clf_names = self.classifier_names
            msg = "Thresholds:\n" + "\n".join([
                "({:s}) {:.3f}".format(clf_names[i], thresh)
                for i, thresh in zip(valid_clf, valid_thresh)
            ])
            QToolTip.showText(QCursor.pos(), msg)
            self._tooltip_cache = (pt, valid_thresh, valid_clf, ave_mode)

    def _on_target_changed(self):
        self.plot.clear()
        self._set_target_prior()
        self._setup_plot()

    def _on_classifiers_changed(self):
        self.plot.clear()
        if self.results is not None:
            self._setup_plot()

    def _on_target_prior_changed(self):
        self.target_prior_sp.setStyleSheet("color: black;")
        self._on_display_perf_line_changed()

    def _on_display_perf_line_changed(self):
        if self.roc_averaging == OWROCAnalysis.Merge:
            self._update_perf_line()

        if self.perf_line is not None:
            self.perf_line.setVisible(self.display_perf_line)

    def _on_display_def_threshold_changed(self):
        self._replot()

    def _replot(self):
        self.plot.clear()
        if self.results is not None:
            self._setup_plot()

    def _update_perf_line(self):
        if self._perf_line is None:
            return

        self._perf_line.setVisible(self.display_perf_line)
        if self.display_perf_line:
            m = roc_iso_performance_slope(self.fp_cost, self.fn_cost,
                                          self.target_prior / 100.0)

            hull = self._rocch
            if hull.is_valid:
                ind = roc_iso_performance_line(m, hull)
                angle = np.arctan2(m, 1)  # in radians
                self._perf_line.setAngle(angle * 180 / np.pi)
                self._perf_line.setPos((hull.fpr[ind[0]], hull.tpr[ind[0]]))
            else:
                self._perf_line.setVisible(False)

    def onDeleteWidget(self):
        self.clear()

    def send_report(self):
        if self.results is None:
            return
        items = OrderedDict()
        items["Target class"] = self.target_cb.currentText()
        if self.display_perf_line:
            items["Costs"] = \
                "FP = {}, FN = {}".format(self.fp_cost, self.fn_cost)
            items["Target probability"] = "{} %".format(self.target_prior)
        caption = report.list_legend(self.classifiers_list_box,
                                     self.selected_classifiers)
        self.report_items(items)
        self.report_plot()
        self.report_caption(caption)
Beispiel #4
0
class OWLiftCurve(widget.OWWidget):
    name = "Lift Curve"
    description = "Construct and display a lift curve " \
                  "from the evaluation of classifiers."
    icon = "icons/LiftCurve.svg"
    priority = 1020
    keywords = ["lift", "cumulative gain"]

    class Inputs:
        evaluation_results = Input(
            "Evaluation Results", Orange.evaluation.Results)

    class Warning(widget.OWWidget.Warning):
        undefined_curves = Msg(
            "Some curves are undefined; check models and data")

    class Error(widget.OWWidget.Error):
        undefined_curves = Msg(
            "No defined curves; check models and data")

    settingsHandler = EvaluationResultsContextHandler()
    target_index = settings.ContextSetting(0)
    selected_classifiers = settings.ContextSetting([])

    display_convex_hull = settings.Setting(True)
    curve_type = settings.Setting(CurveTypes.LiftCurve)

    graph_name = "plot"

    YLabels = ("Lift", "TP Rate")

    def __init__(self):
        super().__init__()

        self.results = None
        self.classifier_names = []
        self.colors = []
        self._points_hull: Dict[Tuple[int, int], PointsAndHull] = {}

        box = gui.vBox(self.controlArea, box="Curve")
        self.target_cb = gui.comboBox(
            box, self, "target_index",
            label="Target: ", orientation=Qt.Horizontal,
            callback=self._on_target_changed,
            contentsLength=8, searchable=True
        )
        gui.radioButtons(
            box, self, "curve_type", ("Lift Curve", "Cumulative Gains"),
            callback=self._on_curve_type_changed
        )

        self.classifiers_list_box = gui.listBox(
            self.controlArea, self, "selected_classifiers", "classifier_names",
            box="Models",
            selectionMode=QListView.MultiSelection,
            callback=self._on_classifiers_changed
        )
        self.classifiers_list_box.setMaximumHeight(100)

        gui.checkBox(self.controlArea, self, "display_convex_hull",
                     "Show convex hull", box="Settings", callback=self._replot)

        gui.rubber(self.controlArea)

        self.plotview = pg.GraphicsView(background="w")
        self.plotview.setFrameStyle(QFrame.StyledPanel)

        self.plot = pg.PlotItem(enableMenu=False)
        self.plot.setMouseEnabled(False, False)
        self.plot.hideButtons()

        pen = QPen(self.palette().color(QPalette.Text))

        tickfont = QFont(self.font())
        tickfont.setPixelSize(max(int(tickfont.pixelSize() * 2 // 3), 11))

        for pos, label in (("bottom", "P Rate"), ("left", "")):
            axis = self.plot.getAxis(pos)
            axis.setTickFont(tickfont)
            axis.setPen(pen)
            axis.setLabel(label)
        self._set_left_label()

        self.plot.showGrid(True, True, alpha=0.1)

        self.plotview.setCentralItem(self.plot)
        self.mainArea.layout().addWidget(self.plotview)

    @Inputs.evaluation_results
    def set_results(self, results):
        self.closeContext()
        self.clear()
        self.results = check_results_adequacy(results, self.Error)
        if self.results is not None:
            self._initialize(results)
            self.openContext(self.results.domain.class_var,
                             self.classifier_names)
            self._setup_plot()

    def clear(self):
        self.plot.clear()
        self.Warning.clear()
        self.Error.clear()
        self.results = None
        self.target_cb.clear()
        self.classifier_names = []
        self.colors = []
        self._points_hull = {}

    def _initialize(self, results):
        n_models = len(results.predicted)

        self.classifier_names = getattr(results, "learner_names", None) \
                                or [f"#{i}" for i in range(n_models)]
        self.selected_classifiers = list(range(n_models))

        self.colors = colorpalettes.get_default_curve_colors(n_models)
        for i, color in enumerate(self.colors):
            item = self.classifiers_list_box.item(i)
            item.setIcon(colorpalettes.ColorIcon(color))

        class_values = results.data.domain.class_var.values
        self.target_cb.addItems(class_values)
        if class_values:
            self.target_index = 0

    def _replot(self):
        self.plot.clear()
        if self.results is not None:
            self._setup_plot()

    _on_target_changed = _replot
    _on_classifiers_changed = _replot

    def _on_curve_type_changed(self):
        self._set_left_label()
        self._replot()

    def _set_left_label(self):
        self.plot.getAxis("left").setLabel(self.YLabels[self.curve_type])

    def _setup_plot(self):
        self._plot_default_line()
        is_valid = [
            self._plot_curve(self.target_index, clf_idx)
            for clf_idx in self.selected_classifiers
        ]
        self.plot.autoRange()
        self._set_undefined_curves_err_warn(is_valid)

    def _plot_curve(self, target, clf_idx):
        key = (target, clf_idx)
        if key not in self._points_hull:
            self._points_hull[key] = \
                points_from_results(self.results, target, clf_idx)
        points, hull = self._points_hull[key]

        if not points.is_valid:
            return False

        color = self.colors[clf_idx]
        pen = QPen(color, 1)
        pen.setCosmetic(True)
        wide_pen = QPen(color, 3)
        wide_pen.setCosmetic(True)

        def _plot(points, pen):
            contacted, respondents, _ = points
            if self.curve_type == CurveTypes.LiftCurve:
                respondents = respondents / contacted
            self.plot.plot(contacted, respondents, pen=pen, antialias=True)

        _plot(points, wide_pen if not self.display_convex_hull else pen)
        if self.display_convex_hull:
            _plot(hull, wide_pen)
        return True

    def _plot_default_line(self):
        pen = QPen(QColor(20, 20, 20), 1, Qt.DashLine)
        pen.setCosmetic(True)
        y0 = 1 if self.curve_type == CurveTypes.LiftCurve else 0
        self.plot.plot([0, 1], [y0, 1], pen=pen, antialias=True)

    def _set_undefined_curves_err_warn(self, is_valid):
        self.Error.undefined_curves.clear()
        self.Warning.undefined_curves.clear()
        if not all(is_valid):
            if any(is_valid):
                self.Warning.undefined_curves()
            else:
                self.Error.undefined_curves()

    def send_report(self):
        if self.results is None:
            return
        caption = report.list_legend(self.classifiers_list_box,
                                     self.selected_classifiers)
        self.report_items((("Target class", self.target_cb.currentText()),))
        self.report_plot()
        self.report_caption(caption)