Beispiel #1
0
def _read_jpg():

    dumm = glob.glob('/Users/HANEL/Desktop/' + '*.png')
    print(len(dumm))
    filename_queue = tf.train.string_input_producer(dumm)
    # filename_queue = tf.train.string_input_producer(['/Users/HANEL/Desktop/tf.png', '/Users/HANEL/Desktop/ft.png'])

    reader = tf.WholeFileReader()
    key, value = reader.read(filename_queue)

    my_img = tf.image.decode_png(value)
    # my_img_flip = tf.image.flip_up_down(my_img)

    init_op = tf.initialize_all_variables()
    with tf.Session() as sess:
        sess.run(init_op)

        # Start populating the filename queue.
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)

        for i in range(1):
            gunel = my_img.eval()

            print(gunel.shape)

        Image._showxv(Image.fromarray(np.asarray(gunel)))
        coord.request_stop()
        coord.join(threads)
Beispiel #2
0
def _read_jpg():


  dumm = glob.glob('/Users/HANEL/Desktop/' + '*.png')
  print(len(dumm))
  filename_queue = tf.train.string_input_producer(dumm)
  # filename_queue = tf.train.string_input_producer(['/Users/HANEL/Desktop/tf.png', '/Users/HANEL/Desktop/ft.png'])

  reader = tf.WholeFileReader()
  key, value = reader.read(filename_queue)

  my_img = tf.image.decode_png(value)
  # my_img_flip = tf.image.flip_up_down(my_img)

  init_op = tf.initialize_all_variables()
  with tf.Session() as sess:
    sess.run(init_op)

    # Start populating the filename queue.
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)

    for i in range(1):
      gunel = my_img.eval()

      print(gunel.shape)

    Image._showxv(Image.fromarray(np.asarray(gunel)))
    coord.request_stop()
    coord.join(threads)
Beispiel #3
0
    def test_showxv_deprecation(self):
        class TestViewer(ImageShow.Viewer):
            def show_image(self, image, **options):
                return True

        viewer = TestViewer()
        ImageShow.register(viewer, -1)

        im = Image.new("RGB", (50, 50), "white")

        with pytest.warns(DeprecationWarning):
            Image._showxv(im)

        # Restore original state
        ImageShow._viewers.pop(0)
        r1 = (i - center1) * 2 + (j - center2) * 2
        # euclidean distancefrom origin
        r = math.sqrt(r1)
        # using cut_off radius to eliminate high freq
        #  if r > d_0:
        # for ideal low pass
        # H[i, j] = 0.0

        # for butterworth low pass
        # H[i, j] = 1 / (1 + (r / d_0) ** t1)
        # for Gaussian low pass
        # H[i, j] = math.exp(-r * 2 / t1 * 2)
        if 0 < r < d_0:
            # for ideal high pass
            # H[i, j] = 1.0
            # for butterworth high pass filter
            H[i, j] = 1 / (1 + (d_0 / r)**t1)
            # for gaussian high pass
            # H[i, j] = 1 - math.exp(-r * 2 / t1 * 2)
            # # converting H to image
            H = Image.fromarray(H)
# performing convolution
con = d * H

# computing mag of inverse FFT
e = abs(fftim.ifft2(con))

# from array to image
f = Image.fromarray(e)
Image._showxv(f, " lowpass filter")
Beispiel #5
0
def showImg(save_path):
    Image._showxv(Image.open(save_path), 'Generated QrCode')
Beispiel #6
0
from img_preprocess import grayscale_avg
from sobel_filter import sobel_filter_horizontal
from sobel_filter import  sobel_filter_vertical
from sobel_filter import sobel_filter
from gaussian_filter import gaussian_filter
from laplacian_of_gaussian_filter import log_filter
from PIL import Image
import numpy as np

# read the RGB images
img = Image.open('data/checkerbox.jpg') # converts the input image to np.array of 3 dimensions (height, width, 3) where 3 stands for RGB channels
Image._showxv(img,title="original")
img_gray = grayscale_avg(np.asarray(img)) # converts the input image to gayscale using average method
# Image._show(Image.fromarray(img_gray),title="grayscaled")
# Image._show(Image.fromarray(gaussian_filter(img_gray)),title="gaussian filter")
# Image._show(Image.fromarray(sobel_filter_vertical(img_gray)),title="sobel vertical filter")
# Image._show(Image.fromarray(sobel_filter_horizontal(img_gray)),title="sobel horizontal filter")
Image._show(Image.fromarray(sobel_filter(img_gray)),title="sobel filter")
Image._show(Image.fromarray(log_filter(img_gray)),title="log filter")