Beispiel #1
0
def image_diff(im1, im2):
    """Return the diff of two images"""
    from PIL from PIL import Image, ImageMath
    r1, g1, b1, a1 = im1.convert('RGBA').split()
    r2, g2, b2, a2 = im2.convert('RGBA').split()
    diff_image = ImageMath.eval(
        """convert(
            max(
                max(
                    max(abs(r1 - r2), abs(g1 - g2)),
                    abs(b1 - b2)
                ),
                abs(a1 - a2)
            ), 'L')""",
        r1=r1,
        r2=r2,
        g1=g1,
        g2=g2,
        b1=b1,
        b2=b2,
        a1=a1,
        a2=a2)
    if ImageMath.eval('not(image)', image=diff_image):
        return
    return diff_image
Beispiel #2
0
def main(args):
	coverImg = open_image(args.cover_image, "rb")	# read only in binary
	secretImg = open_image(args.secret_image, "rb") 
	
	# check the size, for now just make secret image size equals cover image
	secretImg = secretImg.resize(coverImg.size)


	red, green, blue = coverImg.split()
	sred, sgreen, sblue = secretImg.split()




	red2 = ImageMath.eval("convert(a&0xFE|b&0x1,'L')", a=red, b=sred)
	green2 = ImageMath.eval("convert(a&0xFE|b&0x1,'L')", a=green, b=sgreen)
	blue2 = ImageMath.eval("convert(a&0xFE|b&0x1,'L')", a=blue, b=sblue)


	out = Image.merge("RGB", (red2, green2, blue2))
	out.save("merged.bmp")





	exit(0)
Beispiel #3
0
 def paint(self, image):   
     
     if self.bpp != 0:
         width = self.lcd_size[0]
         height = self.lcd_size[1]
              
         if self.bpp == 1:
             # Paint to 565 image provided into an ARGB image surface for PIL's benefit. PIL doesn't support 565?
             argb_surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, width, height)
             argb_context = cairo.Context(argb_surface)
             argb_context.set_source_surface(image)
             argb_context.paint()
             
             # Now convert the ARGB to a PIL image so it can be converted to a 1 bit monochrome image, with all
             # colours dithered. It would be nice if Cairo could do this :( Any suggestions? 
             pil_img = Image.frombuffer("RGBA", self.lcd_size, argb_surface.get_data(), "raw", "RGBA", 0, 1)
             pil_img = ImageMath.eval("convert(pil_img,'1')",pil_img=pil_img)
             pil_img = ImageMath.eval("convert(pil_img,'P')",pil_img=pil_img)
             pil_img = pil_img.point(lambda i: i >= 250,'1')
             
             invert_control = self.get_control("invert_lcd")
             if invert_control and invert_control.value == 1:            
                 pil_img = pil_img.point(lambda i: 1^i)
                 
             # Create drawable message
             pil_img = pil_img.convert("RGB")
             self.image = pil_img           
         else:
             # Take a copy of the image to prevent flickering
             argb_surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, width, height)
             argb_context = cairo.Context(argb_surface)
             argb_context.set_source_surface(image)
             argb_context.paint()
             self.image = argb_surface
         gobject.timeout_add(0, self.redraw)
Beispiel #4
0
def put_highlight(image, highlight, resample_highlight, opacity, cache=None):
    if cache is None:
        cache = {}
    resample_highlight = getattr(Image, resample_highlight)
    id = 'highlight_%s_w%d_h%d_o%d'\
        % (highlight, image.size[0], image.size[1], opacity)
    try:
        highlight = cache[id]
    except KeyError:
        highlight = open_image(highlight)\
            .convert('RGBA').resize(image.size, resample_highlight)
        if opacity < 100:
            #apply opacity
            highlight_alpha = imtools.get_alpha(highlight)
            opacity = (255 * opacity) / 100
            highlight.putalpha(ImageMath.eval("convert((a * o) / 255, 'L')",
                a=highlight_alpha, o=opacity))
        #store in cache
        cache[id] = highlight
    if not has_transparency(image):
        image = image.convert('RGBA')
    else:
        if has_transparency(image):
            image = image.convert('RGBA')
        alpha = imtools.get_alpha(image)
        highlight = highlight.copy()
        highlight_alpha = imtools.get_alpha(highlight)
        highlight.putalpha(ImageMath.eval("convert(min(a, b), 'L')",
            a=alpha, b=highlight_alpha))

    overlay = highlight.convert('RGB')
    paste(image, overlay, mask=highlight)
    return image
Beispiel #5
0
 def test_convert(self):
     self.assertEqual(pixel(
         ImageMath.eval("convert(A+B, 'L')", images)), "L 3")
     self.assertEqual(pixel(
         ImageMath.eval("convert(A+B, '1')", images)), "1 0")
     self.assertEqual(pixel(
         ImageMath.eval("convert(A+B, 'RGB')", images)), "RGB (3, 3, 3)")
Beispiel #6
0
def _lsb_pixel_decode(image):
    r, g, b, *_ = image.split()
    r = ImageMath.eval("convert(c&0x1, 'L')", c=r)
    g = ImageMath.eval("convert(c&0x1, 'L')", c=g)
    b = ImageMath.eval("convert(c&0x1, 'L')", c=b)
    data = roundrobin(iter_pixels(r), iter_pixels(g), iter_pixels(b))
    return bytes([reduce(lambda byte, bit: byte << 1 | bit, eight_bits)
                  for eight_bits in grouper(data, 8, fillvalue=0)])
Beispiel #7
0
def color_to_alpha(image, color=None):
    image = image.convert('RGBA')
    width, height = image.size

    color = map(float, color)
    img_bands = [band.convert("F") for band in image.split()]

    # Find the maximum difference rate between source and color. I had to use two
    # difference functions because ImageMath.eval only evaluates the expression
    # once.
    alpha = ImageMath.eval(
        """float(
            max(
                max(
                    max(
                        difference1(red_band, cred_band),
                        difference1(green_band, cgreen_band)
                    ),
                    difference1(blue_band, cblue_band)
                ),
                max(
                    max(
                        difference2(red_band, cred_band),
                        difference2(green_band, cgreen_band)
                    ),
                    difference2(blue_band, cblue_band)
                )
            )
        )""",
        difference1=difference1,
        difference2=difference2,
        red_band = img_bands[0],
        green_band = img_bands[1],
        blue_band = img_bands[2],
        cred_band = color[0],
        cgreen_band = color[1],
        cblue_band = color[2]
    )

    # Calculate the new image colors after the removal of the selected color
    new_bands = [
        ImageMath.eval(
            "convert((image - color) / alpha + color, 'L')",
            image = img_bands[i],
            color = color[i],
            alpha = alpha
        )
        for i in xrange(3)
    ]

    # Add the new alpha band
    new_bands.append(ImageMath.eval(
        "convert(alpha_band * alpha, 'L')",
        alpha = alpha,
        alpha_band = img_bands[3]
    ))

    return Image.merge('RGBA', new_bands)
Beispiel #8
0
def getColorfulness(im): #OK
    """return (cf, sigma_rgyb, mu_rgyb)"""
    r, g, b = im.split()
    im_rg = ImageMath.eval("a - b", a=r, b=g)
    im_yb = ImageMath.eval("(a + b)/2 - c", a=r, b=g, c=b)
    rg = list(im_rg.getdata())
    yb = list(im_yb.getdata())
    sigma = math.sqrt(numpy.std(rg) ** 2 + numpy.std(yb) ** 2)
    mu = math.sqrt(numpy.average(rg) ** 2 + numpy.average(yb) ** 2)
    return sigma + 0.3 * mu
Beispiel #9
0
def normalizeImage(im):
	# split RGB images into 3 channels
	rr, gg, bb = im.split()

	rTmp = ImageMath.eval("int(a*((float(255/max(a,b)))))", a=rr, b=rr).convert('L')
	gTmp = ImageMath.eval("int(a*((float(255/max(a,b)))))", a=gg, b=gg).convert('L')
	bTmp = ImageMath.eval("int(a*((float(255/max(a,b)))))", a=bb, b=bb).convert('L')
		
	# merge channels into RGB image
	imgOut = Image.merge("RGB", (rTmp, gTmp, bTmp))
	return imgOut
Beispiel #10
0
def applyOutline(a, o):
    w, h = a.size
    c = a.crop((o, o, w - o, h - o))
    t = Image.new("L", a.size)
    for n in ((o, 0), (0, o), (o + o, o), (o, o + o)):
        t.paste(c, n)
        a = ImageMath.eval("convert(max(a,b),'L')", a=a, b=t)
    for n in ((0, 0), (o + o, 0), (0, o + o), (o + o, o + o)):
        t.paste(c, n)
        a = ImageMath.eval("convert(max(a,b/1.414),'L')", a=a, b=t)
    return a
Beispiel #11
0
def substractImage(imgA,imgB):
	rA, gA, bA = imgA.split()
	rB, gB, bB = imgB.split()

	rTmp = ImageMath.eval("a-b", a=rA, b=rB).convert('L')
	gTmp = ImageMath.eval("a-b", a=gA, b=gB).convert('L')
	bTmp = ImageMath.eval("a-b", a=bA, b=bB).convert('L')
	
	# merge channels into RGB image
	imgOut = Image.merge("RGB", (rTmp, gTmp, bTmp))
	return imgOut
Beispiel #12
0
def divideImage(imgA,imgB):
	# split RGB images into 3 channels
	rA, gA, bA = imgA.split()
	rB, gB, bB = imgB.split()

	# divide each channel (image1/image2)
	rTmp = ImageMath.eval("int(a/((float(b))/256))", a=rA, b=rB).convert('L')
	gTmp = ImageMath.eval("int(a/((float(b))/256))", a=gA, b=gB).convert('L')
	bTmp = ImageMath.eval("int(a/((float(b))/256))", a=bA, b=bB).convert('L')

	# merge channels into RGB image
	imgOut = Image.merge("RGB", (rTmp, gTmp, bTmp))
	return imgOut
Beispiel #13
0
 def optim_obj_xor(x):
     draw(x)
     image = get_image()
     xor = imath.eval("a^b", a=image, b=image_obj)
     res = sum(xor.getdata())
     print x, res
     return res
def encode_data(cover_rgb, secret_rgb, bits):
    encoded_rgb = []

    for k in range(3):
        encoded_rgb.append(ImageMath.eval("convert((cover_rgb & (256 - 2**bits)) + ((secret_rgb & (256 - 2**(8 - bits)) - 1) >> 8 - bits), 'L')", cover_rgb = cover_rgb[k], secret_rgb = secret_rgb[k], bits = bits))

    return tuple(encoded_rgb)
Beispiel #15
0
def segment(image_filepath, **kwargs):
    input_img = Image.open(image_filepath)

    # make a '1' bit image with the same size as the input_img
    mask_img = Image.new('1', input_img.size)

    # instantiate an ImageDraw object using the mask_img object
    mask_drawer = ImageDraw.Draw(mask_img)

    try:
        json_poly_data = json.loads(kwargs['JSON'])
    except ValueError:
        # There's a problem in the JSON - it may be malformed, or empty
        json_poly_data = []

    for polygon in json_poly_data:
        flattened_poly = [j for i in polygon for j in i]
        mask_drawer.polygon(flattened_poly, outline=1, fill=1)

    output_img = ImageMath.eval('b - a', a=input_img, b=mask_img)
    output_img = ImageOps.invert(output_img.convert('RGB'))

    encoded = json.dumps(json_poly_data)

    return {
        'tiff': output_img,
        'json': encoded
    }
Beispiel #16
0
    def run(self):
        while True:
            try:
                camera = WebCamera.objects.get(pk = self._camera.id)
                if camera.motion_control:
                    now = datetime.now()
                    request = get_pool().request("GET", "%s?action=snapshot" % camera.internal_url)
                    try:
                        source = Image.open(BytesIO(request.data))
                        img = ImageOps.equalize(ImageOps.grayscale(source))
                        if self._previous is not None:
                            out = ImageMath.eval("convert(a - b, 'L')", a = img, b = self._previous)
                            out = out.filter(MedianFilter())
                            total = 0
                            for idx, val in enumerate(out.histogram()):
                                total += val * idx
                            if total > 3000000:
                                camera.last_motion = now
                                camera.save()

                                filename = os.path.join(camera.motion_folder, "{:%Y%m%d-%H%M%S}.jpg".format(now))
                                source.save(filename)
                                filesize = os.path.getsize(filename)
                                if filesize < 6700:
                                    os.remove(filename) 

                        self._previous = img
                    finally:
                        request.close()
                else:
                    self._previous = None
            except:
                print("Ignore Exception")
            sleep(1)
def decode_data(rgb, bits):
    decoded_rgb = []

    for k in range(3):
        decoded_rgb.append(ImageMath.eval("convert((rgb & 2**bits - 1) << 8 - bits, 'L')", rgb = rgb[k], bits = bits))

    return tuple(decoded_rgb)
def warmup(image, midtone, brighten, amount=100):
    """Apply a toning filter. Move the midtones to the desired
    color while preserving blacks and whites with optional mixing
    with original image - amount: 0-100%"""

    mode = image.mode
    info = image.info

    if image.mode != "L":
        im = imtools.convert(image, "L")
    else:
        im = image

    if image.mode != "RGBA" and imtools.has_transparency(image):
        image = imtools.convert(image, "RGBA")

    luma = imtools.convert(imtools.split(im)[0], "F")
    o = []
    m = ImageColor.getrgb(midtone)
    b = brighten / 600.0
    # Calculate channels separately
    for l in range(3):
        o.append(ImageMath.eval("m*(255-i)*i+i", i=luma, m=4 * ((m[l] / 255.0) - 0.5 + b) / 255.0).convert("L"))

    colorized = Image.merge("RGB", tuple(o))

    if imtools.has_alpha(image):
        imtools.put_alpha(colorized, imtools.get_alpha(image))

    if amount < 100:
        colorized = imtools.blend(image, colorized, amount / 100.0)

    return colorized
def strip_processing(path, blur_radius=7, iter_steps=1, binarize_threshold=10):

    """Strip precessing function.

    Inputs:
    string: path of the image
    blur_radius: radius of gaussian blur
    iter_steps: execution times of denoise
    binarize_threshold: used as function lut's input

    Outputs:
    Image: the processed image."""

    gray=ImageOps.invert(ImageOps.grayscale(Image.open("stripes.jpg")))
    gray_blur=gray.filter(ImageFilter.GaussianBlur(blur_radius))
    high_freq=ImageMath.eval("25*(a-b)",a=gray,b=gray_blur).convert("L")

    binarized=ImageOps.invert(high_freq.point(lut(binarize_threshold))).convert("1")
    binarized_data=binarized.load()
    #binarized.show()

    height=binarized.height
    width=binarized.width

    pix=np.array([[np.uint8(binarized_data[j,i]) for j in range(width)] for i in range(height)])

    for i in range(iter_steps):
        pix=denoise(pix)

    answer=Image.fromarray(pix)
    #answer.show()
    #answer.save("test.bmp")
    return answer
Beispiel #20
0
def makeColorTransparent(image, color, thresh2=0):
    from PIL import ImageMath
    image = image.convert("RGBA")
    red, green, blue, alpha = image.split()
    image.putalpha(ImageMath.eval("""convert(((((t - d(c, (r, g, b))) >> 31) + 1) ^ 1) * a, 'L')""",
        t=thresh2, d=distance2, c=color, r=red, g=green, b=blue, a=alpha))
    return image
def generate_animated_images_old(front_image, back_image, scale_factor):
    animated_images = []
    for x in xrange (0, front_image.size[0], scale_factor):
        temp_image = Image.new('1', front_image.size, "white")
        temp_image.paste(front_image.crop((front_image.size[0] - x, 0, front_image.size[0], front_image.size[1])), (0,0))
        animated_image = ImageMath.eval("convert((a & b), 'L')", a=temp_image, b=back_image)
        #animated_image.save(file_name + "_" + str(x) + file_ext)
        animated_images.append(animated_image)

    for x in xrange (0, front_image.size[0] + 1, scale_factor):
        temp_image = Image.new('1', front_image.size, "white")
        temp_image.paste(front_image.crop((0, 0, front_image.size[0] - x, front_image.size[1])), (x, 0))
        animated_image = ImageMath.eval("convert((a & b), 'L')", a=temp_image, b=back_image)
        #animated_image.save(file_name + "_" + str(x+front_image.size[0]) + file_ext)
        animated_images.append(animated_image)
    return animated_images
Beispiel #22
0
    def assert_image_similar(self, a, b, epsilon, msg=None):
        epsilon = float(epsilon)
        self.assertEqual(
            a.mode, b.mode,
            msg or "got mode %r, expected %r" % (a.mode, b.mode))
        self.assertEqual(
            a.size, b.size,
            msg or "got size %r, expected %r" % (a.size, b.size))

        a, b = convert_to_comparable(a, b)

        diff = 0
        for ach, bch in zip(a.split(), b.split()):
            chdiff = ImageMath.eval("abs(a - b)", a=ach, b=bch).convert('L')
            diff += sum(i * num for i, num in enumerate(chdiff.histogram()))

        ave_diff = float(diff)/(a.size[0]*a.size[1])
        try:
            self.assertGreaterEqual(
                epsilon, ave_diff,
                (msg or '') +
                " average pixel value difference %.4f > epsilon %.4f" % (
                    ave_diff, epsilon))
        except Exception as e:
            if HAS_UPLOADER:
                try:
                    url = test_image_results.upload(a, b)
                    logger.error("Url for test images: %s" % url)
                except:
                    pass
            raise e
Beispiel #23
0
  def process(self, image):
    """
    @param image -- The image to process.

    Returns a single image, or a list containing one or more images.
    """
    BaseFilter.process(self, image)

    base, alpha = image.split()

    if self.scaleTowardCenter:
      scale = float(self.factor)
      assert base.mode == "L"
      maxValue = 255 # TODO: Determine how to get maximum value __allowed__.
      offset = ((1.0 - self.factor) / 2.0) * maxValue
      newImage = ImageMath.eval(
          "convert(convert(gray, 'F') * scale + offset, mode)",
          gray=base,
          scale=scale,
          offset=offset,
          mode=base.mode,
        )
    else:
      contrastEnhancer = ImageEnhance.Contrast(image.split()[0])
      newImage = contrastEnhancer.enhance(self.factor)

    newImage.putalpha(alpha)

    return newImage
Beispiel #24
0
def getContrast(im): #OK
    """return contrast"""
    im = im.convert('L')
    stat = ImageStat.Stat(im)
    mean = stat.mean[0]
    im_diff = ImageMath.eval("abs(a - b)", a=im, b=mean)
    diff = list(im_diff.getdata())
    return math.sqrt(1.0 / (len(diff) - 1) * sum(pix ** 2 for pix in diff))
Beispiel #25
0
def xor_closure(target, path):
    '''
    target shall be a single-band Image instance
    '''
    target = imath.eval("x>>7", x=target)
    def _get_xor(image):
        xor_img = imath.eval("(a>>7)^b", a=image, b=target)
        return sum(xor_img.getdata())
    return _get_xor
Beispiel #26
0
 def paint(self, img):
     if not self.is_connected():
         return
     
     # Just return if the device has no LCD
     if self.device.bpp == 0:
         return None
          
     self.lock.acquire()        
     try :           
         size = self.get_size()
         
         # Paint to 565 image provided into an ARGB image surface for PIL's benefit. PIL doesn't support 565?
         argb_surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, size[0], size[1])
         argb_context = cairo.Context(argb_surface)
         argb_context.set_source_surface(img)
         argb_context.paint()
         
         # Now convert the ARGB to a PIL image so it can be converted to a 1 bit monochrome image, with all
         # colours dithered. It would be nice if Cairo could do this :( Any suggestions? 
         pil_img = Image.frombuffer("RGBA", size, argb_surface.get_data(), "raw", "RGBA", 0, 1)
         pil_img = ImageMath.eval("convert(pil_img,'1')",pil_img=pil_img)
         pil_img = ImageMath.eval("convert(pil_img,'P')",pil_img=pil_img)
         pil_img = pil_img.point(lambda i: i >= 250,'1')
         
         invert_control = self.get_control("invert_lcd")
         if invert_control.value == 0:            
             pil_img = pil_img.point(lambda i: 1^i)
 
         # Covert image buffer to string
         buf = ""
         for x in list(pil_img.getdata()): 
             buf += chr(x)
             
         if len(buf) != self.device.lcd_size[0] * self.device.lcd_size[1]:
             logger.warning("Invalid buffer size")
         else:
             try : 
                 self.send(buf)
             except IOError as e:
                 logger.error("Failed to send buffer.", exc_info = e)
                 self.disconnect()
     finally:
         self.lock.release()
Beispiel #27
0
 def _on_snapshot_clicked(self):
     img = self.optimizer.rendis.acquire().acquire_snapshot()
     filename = QFileDialog.getSaveFileName(self,
                                 "save the binary shadow snapshot",
                                 "../img/",
                                 "image file (*.png)")
     if filename != '':
         img = ImageMath.eval("a/127 * 255", a=img)
         img.save(str(filename), format='png')
     pass
def generate_animated_images(front_image, back_image, scale_factor):
    animated_images = []
    for x in xrange (-scale_factor, front_image.size[0], scale_factor):
        left_image = Image.new('1', (front_image.size[0] * 2, front_image.size[1]), "white")
        left_image.paste(front_image, (x, 0))
        right_image = Image.new('1', (front_image.size[0] * 2, front_image.size[1]), "white")
        right_image.paste(back_image, (front_image.size[0] - x, 0))
        animated_image = ImageMath.eval("convert((a & b), 'L')", a=left_image, b=right_image)
        #animated_image.save(str(x) + ".png")
        animated_images.append(animated_image)
    return animated_images
Beispiel #29
0
def sketch(image, details_degree=1):
    im1 = image.convert('L')
    im2 = im1.copy()

    im2 = ImageOps.invert(im2)
    for i in xrange(details_degree):
        im2 = im2.filter(ImageFilter.BLUR)
    im1 = ImageMath.eval('convert(min(a * 255/ (256 - b), 255), "L")',
            a=im1,
            b=im2)
    return im1
Beispiel #30
0
def gen_captcha(text, fontname, fontsize, file_name):
	"""Generate a captcha image"""
	# white text on a black background
	bgcolor = 0x0
	fgcolor = 0xffffff
	# create a font object
	font = ImageFont.truetype(fontname,fontsize)
	# determine dimensions of the text
	dim = font.getsize(text)
	# create a new image significantly larger that the text
	edge = max(dim[0], dim[1]) + 2*min(dim[0], dim[1])
	im = Image.new('RGB', (edge, edge), bgcolor)
	d = ImageDraw.Draw(im)
	x, y = im.size
	# add the text to the image
	d.text((x/2-dim[0]/2, y/2-dim[1]/2), text, font=font, fill=fgcolor)
	k = 2
	wob = 0.09*dim[1]
	rot = 45
	# Apply lots of small stirring operations, rather than a few large ones
	# in order to get some uniformity of treatment, whilst
	# maintaining randomness
	for i in range(k):
		im = wobbly_copy(im, wob, bgcolor, i*2+3, rot+0)
		im = wobbly_copy(im, wob, bgcolor, i*2+1, rot+45)
		im = wobbly_copy(im, wob, bgcolor, i*2+2, rot+90)
		rot += 30

	# now get the bounding box of the nonzero parts of the image
	bbox = im.getbbox()
	bord = min(dim[0], dim[1])/4 # a bit of a border
	im = im.crop((bbox[0]-bord, bbox[1]-bord, bbox[2]+bord, bbox[3]+bord))

	# Create noise
	nblock = 4
	nsize = (im.size[0] / nblock, im.size[1] / nblock)
	noise = Image.new('L', nsize, bgcolor)
	data = noise.load()
	for x in range(nsize[0]):
		for y in range(nsize[1]):
			r = random.randint(0, 65)
			gradient = 70 * x / nsize[0]
			data[x, y] = r + gradient
	# Turn speckles into blobs
	noise = noise.resize(im.size, Image.BILINEAR)
	# Add to the image
	im = ImageMath.eval('convert(convert(a, "L") / 3 + b, "RGB")', a=im, b=noise)

	# and turn into black on white
	im = ImageOps.invert(im)

	# save the image, in format determined from filename
	im.save(file_name)
Beispiel #31
0
 def test_logical(self):
     self.assertEqual(pixel(ImageMath.eval("not A", images)), 0)
     self.assertEqual(pixel(ImageMath.eval("A and B", images)), "L 2")
     self.assertEqual(pixel(ImageMath.eval("A or B", images)), "L 1")
Beispiel #32
0
 def test_logical_ge(self):
     self.assertEqual(pixel(ImageMath.eval("A>=A", A=A)), "I 1")
     self.assertEqual(pixel(ImageMath.eval("B>=B", B=B)), "I 1")
     self.assertEqual(pixel(ImageMath.eval("A>=B", A=A, B=B)), "I 0")
     self.assertEqual(pixel(ImageMath.eval("B>=A", A=A, B=B)), "I 1")
Beispiel #33
0
    def test_ops(self):

        self.assertEqual(pixel(ImageMath.eval("-A", images)), "I -1")
        self.assertEqual(pixel(ImageMath.eval("+B", images)), "L 2")

        self.assertEqual(pixel(ImageMath.eval("A+B", images)), "I 3")
        self.assertEqual(pixel(ImageMath.eval("A-B", images)), "I -1")
        self.assertEqual(pixel(ImageMath.eval("A*B", images)), "I 2")
        self.assertEqual(pixel(ImageMath.eval("A/B", images)), "I 0")
        self.assertEqual(pixel(ImageMath.eval("B**2", images)), "I 4")
        self.assertEqual(pixel(ImageMath.eval("B**33", images)),
                         "I 2147483647")

        self.assertEqual(pixel(ImageMath.eval("float(A)+B", images)), "F 3.0")
        self.assertEqual(pixel(ImageMath.eval("float(A)-B", images)), "F -1.0")
        self.assertEqual(pixel(ImageMath.eval("float(A)*B", images)), "F 2.0")
        self.assertEqual(pixel(ImageMath.eval("float(A)/B", images)), "F 0.5")
        self.assertEqual(pixel(ImageMath.eval("float(B)**2", images)), "F 4.0")
        self.assertEqual(pixel(ImageMath.eval("float(B)**33", images)),
                         "F 8589934592.0")
plt.ylabel('# of cells')
plt.axes().yaxis.grid()
plt.savefig(directory + '/neighbourhist' + info + '.png')

# Overlay image
if options.overlay:
    if len(overlay) == 1:
        image = Image.open(overlay[0])
    else:
        image0 = Image.open(overlay[0])
        image1 = Image.open(overlay[1])

        r0, g0, b0 = image0.split()[0], image0.split()[1], image0.split()[2]
        r1, g1, b1 = image1.split()[0], image1.split()[1], image1.split()[2]

        r, g, b = ImageMath.eval('convert(max(a, b), "L")', a=r0, b=r1), \
                  ImageMath.eval('convert(max(a, b), "L")', a=g0, b=g1), \
                  ImageMath.eval('convert(max(a, b), "L")', a=b0, b=b1)

        image = Image.merge('RGB', (r, g, b))
        image.save(directory + '/merged_image' + info + '.png')
    graph = Image.open(directory + '/cellgraph' + info + '.gv.png')
    ratio = float(image.size[0]) / image.size[1]

    image = image.resize((int(round(graph.size[1] * ratio)), graph.size[1]))

    bands = list(graph.split())
    if len(bands) == 3:
        mask = Image.new('L', graph.size, color=128)
        graph.putalpha(mask)
        bands = list(graph.split())
Beispiel #35
0
 def test_logical_lt(self):
     self.assertEqual(pixel(ImageMath.eval("A<A", A=A)), "I 0")
     self.assertEqual(pixel(ImageMath.eval("B<B", B=B)), "I 0")
     self.assertEqual(pixel(ImageMath.eval("A<B", A=A, B=B)), "I 1")
     self.assertEqual(pixel(ImageMath.eval("B<A", A=A, B=B)), "I 0")
Beispiel #36
0
 def test_one_image_larger(self):
     self.assertEqual(pixel(ImageMath.eval("A+B", A=A2, B=B)), "I 3")
     self.assertEqual(pixel(ImageMath.eval("A+B", A=A, B=B2)), "I 3")
Beispiel #37
0
def test_compare():
    assert_equal(pixel(ImageMath.eval("min(A, B)", images)), "I 1")
    assert_equal(pixel(ImageMath.eval("max(A, B)", images)), "I 2")
    assert_equal(pixel(ImageMath.eval("A == 1", images)), "I 1")
    assert_equal(pixel(ImageMath.eval("A == 2", images)), "I 0")
def watercolorize(mask,
                  edge_texture,
                  display_texture,
                  texture_offsets,
                  buffer_size,
                  edge_multiplier=.2,
                  edge_gauss=6,
                  edge_threshold=90,
                  outline_gauss=15,
                  outline_multiplier=.7,
                  aa_mult=2):
    ##    print "using the right watercolorize:", buffer_size, edge_multiplier, edge_gauss, edge_threshold, outline_gauss, outline_multiplier, aa_mult
    ##    edge_texture = edge_texture.point(lambda k:int(k * edge_multiplier))

    ## tile the edger and texture as necessary to fit the mask
    edger_layer = Image.new("L", mask.size)
    for i in range(-1,
                   (edger_layer.size[1] - buffer_size) / edge_texture.size[1] +
                   1):
        for j in range(
                -1,
            (edger_layer.size[0] - buffer_size) / edge_texture.size[1] + 1):
            edger_layer.paste(
                edge_texture,
                (edge_texture.size[0] * j - texture_offsets[0] - buffer_size,
                 edge_texture.size[1] * i - texture_offsets[1] - buffer_size))

    tex_layer = Image.new("RGBA", mask.size)
    for i in range(
            -1,
        (tex_layer.size[1] - buffer_size) / display_texture.size[1] + 1):
        for j in range(
                -1,
            (tex_layer.size[0] - buffer_size) / display_texture.size[1] + 1):
            tex_layer.paste(display_texture,
                            (display_texture.size[0] * j - texture_offsets[0] -
                             buffer_size, display_texture.size[1] * i -
                             texture_offsets[1] - buffer_size))

    artwork = mask.convert("L")
    dat = img2arr(artwork)
    edg = img2arr(edger_layer)
    gaussian(dat, edge_gauss)

    dat = add(dat * (1 - edge_multiplier), edg * edge_multiplier)
    dat = (dat > edge_threshold).astype(uint8) * 255

    #blur, then unsharp mask to smooth pixelated edges
    gaussian(dat, 3)
    dat = usm(dat, 4, 15, 0)
    new_outline = arr2img(255 - dat)

    if outline_multiplier > 0:

        outlined = get_outlines_even(ImageOps.invert(new_outline),
                                     outline_gauss, outline_multiplier)

        old_bands = tex_layer.split()
        new_bands = []
        for i in range(3):
            band1 = ImageOps.invert(old_bands[i])
            band2 = outlined
            temp = ImageMath.eval("int(a/((float(b)+1)/256))",
                                  a=band1,
                                  b=band2).convert("L")
            new_bands.append(ImageOps.invert(temp))

        outlined = Image.merge("RGB", new_bands)

    else:
        outlined = tex_layer

    alpha_test = outlined.convert("RGBA")
    alpha_test.putalpha(new_outline)
    return alpha_test
Beispiel #39
0
from PIL import Image, ImageFilter, ImageMath

# Load an image from the hard drive
original = Image.open("original.jpg")
secret = Image.open("secret.jpg").resize(original.size)
# Convert to black and white
secret = secret.convert('1')
# Split channels
r, g, b = original.split()
# Encode the secret in the last bit of the red channel
out = ImageMath.eval("convert(a&254|b&1,'L')", a=r, b=secret)
stegano = Image.merge("RGB", (out, g, b))

stegano.show()
stegano.save("stegano.png")


Beispiel #40
0
#!/usr/bin/python

from PIL import Image, ImageMath

# beide Bilder laden
Bild1 = Image.open("beuth-original.png")
Bild2 = Image.open("beuth-verarbeitet.png")

# Bild in einen Layer pro Farbkanal zerlegen
(r1,g1,b1) = Bild1.split()
(r2,g2,b2) = Bild2.split()

# Bilder voneinander abziehen
secret = ImageMath.eval("(b-a)*255", a=r1, b=r2).convert("P")

secret.show()
Beispiel #41
0
def test_convert():
    assert_equal(pixel(ImageMath.eval("convert(A+B, 'L')", images)), "L 3")
    assert_equal(pixel(ImageMath.eval("convert(A+B, '1')", images)), "1 0")
    assert_equal(pixel(ImageMath.eval("convert(A+B, 'RGB')", images)), "RGB (3, 3, 3)")
Beispiel #42
0
 def test_bitwise_and(self):
     self.assertEqual(pixel(ImageMath.eval("Z&Z", A=A, Z=Z)), "I 0")
     self.assertEqual(pixel(ImageMath.eval("Z&A", A=A, Z=Z)), "I 0")
     self.assertEqual(pixel(ImageMath.eval("A&Z", A=A, Z=Z)), "I 0")
     self.assertEqual(pixel(ImageMath.eval("A&A", A=A, Z=Z)), "I 1")
Beispiel #43
0
 def test_bitwise_invert(self):
     self.assertEqual(pixel(ImageMath.eval("~Z", Z=Z)), "I -1")
     self.assertEqual(pixel(ImageMath.eval("~A", A=A)), "I -2")
     self.assertEqual(pixel(ImageMath.eval("~B", B=B)), "I -3")
Beispiel #44
0
 def test_abs(self):
     self.assertEqual(pixel(ImageMath.eval("abs(A)", A=A)), "I 1")
     self.assertEqual(pixel(ImageMath.eval("abs(B)", B=B)), "I 2")
Beispiel #45
0
 def test_compare(self):
     self.assertEqual(pixel(ImageMath.eval("min(A, B)", images)), "I 1")
     self.assertEqual(pixel(ImageMath.eval("max(A, B)", images)), "I 2")
     self.assertEqual(pixel(ImageMath.eval("A == 1", images)), "I 1")
     self.assertEqual(pixel(ImageMath.eval("A == 2", images)), "I 0")
Beispiel #46
0
def diferenca_view(index):
    """Home."""
    index = int(index)
    pontos = json.loads(DB.get("pontos_perspectiva"))

    b = Image.open(IMAGE_DIR + os.listdir(IMAGE_DIR)[index]).convert("L")
    b = perspectiva(b, pontos, (594, 420))
    # b.show()
    a = Image.open(IMAGE_DIR + os.listdir(IMAGE_DIR)[index - 1]).convert("L")
    a = perspectiva(a, pontos, (594, 420))
    # a.show()
    c = ImageMath.eval("a - b", a=a, b=b)
    e = Image.new("RGB", c.size, 0)
    f = e.load()
    d = c.load()
    for x in xrange(c.width):
        for y in xrange(c.height):
            cor = d[x, y]
            f[x, y] = (0, 0, 0) if cor < 0 else (cor, cor, cor)
    # e.show()

    arquivo = StringIO()
    e = ImageOps.invert(e)
    e = e.filter(ImageFilter.BLUR)
    enhancer = ImageEnhance.Brightness(e)
    e = enhancer.enhance(2)
    enhancer = ImageEnhance.Contrast(e)
    e = enhancer.enhance(8)
    e.save(arquivo, "png")
    e.save("/Users/nano/Desktop/teste.png")
    arquivo.seek(0)

    im = cv2.imread("/Users/nano/Desktop/teste.png")
    gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
    edges = cv2.Canny(gray, 50, 150, apertureSize=3)
    lines = cv2.HoughLines(edges, 1, numpy.pi/180, 150)
    # lines = cv2.HoughLinesP(edges, 1, numpy.pi/180, 150)
    if lines is not None:
        for rho, theta in lines[0]:
            a = numpy.cos(theta)
            b = numpy.sin(theta)
            x0 = a*rho
            y0 = b*rho
            x1 = int(x0 + 1000*(-b))
            y1 = int(y0 + 1000*(a))
            x2 = int(x0 - 1000*(-b))
            y2 = int(y0 - 1000*(a))
            cv2.line(im, (x1, y1), (x2, y2), (0, 0, 255), 2)
    # if lines is not None:
    #     for x1, y1, x2, y2 in lines[0]:
    #         cv2.line(im, (x1, y1), (x2, y2), (0, 0, 255), 2)

    # frame_string = im.tostring()
    # e = Image.frombytes('RGB', (im.shape[1], im.shape[0]), frame_string)

    # # Create a detector with the parameters
    params = cv2.SimpleBlobDetector_Params()

    # # Change thresholds
    # params.minThreshold = 10
    # params.maxThreshold = 200

    # # Filter by Area.
    params.filterByArea = True
    params.maxArea = 400

    # # Filter by Circularity
    params.filterByCircularity = True
    params.minCircularity = 0.1

    # # Filter by Convexity
    params.filterByConvexity = True
    params.minConvexity = 0.1

    # # Filter by Inertia
    params.filterByInertia = True
    params.minInertiaRatio = 0.01

    # # Set up the detector with default parameters.
    # detector = cv2.SimpleBlobDetector()
    detector = cv2.SimpleBlobDetector(params)

    # # Detect blobs.
    keypoints = detector.detect(im)
    # print keypoints

    # # Draw detected blobs as red circles.
    # cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures the size of the circle corresponds to the size of blob
    im = cv2.drawKeypoints(im, keypoints, numpy.array([]), (0,255,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

    # frame_string = im_with_keypoints.tostring()
    # e = Image.frombytes('RGB', (im_with_keypoints.shape[1], im_with_keypoints.shape[0]), frame_string)


    ret, thresh = cv2.threshold(gray, 127, 255, 0)
    contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    # cv2.drawContours(im, contours, -1, (0,255,0), 3)

    cores = [(255, 0, 0),  # vermelho
             (0, 255, 0),  # verde
             (0, 0, 255),
             (127, 0, 0),
             (0, 127, 0),
             (0, 0, 127),
             (255, 255, 0),
             (0, 255, 255),
             (255, 0, 255)]

    for i in range(len(contours))[1:]:
        cnt = contours[i]
        cv2.drawContours(im, [cnt], 0, (255, 255, 255), cv2.cv.CV_FILLED)

    frame_string = im.tostring()
    e = Image.frombytes('RGB', (im.shape[1], im.shape[0]), frame_string)

    arquivo = StringIO()
    e.save(arquivo, "png")
    arquivo.seek(0)


    response = send_file(arquivo, as_attachment=False, attachment_filename="diferenca.png")
    return response
Beispiel #47
0
def im_not(im1):
    return ImageMath.eval("~B", B=im1)
Beispiel #48
0
    def __init__(self,
                 testImage,
                 refImage,
                 allowDifferentImageMode=False,
                 enhance=10):

        self.testImage = Image.open(testImage)
        self.refImage = Image.open(refImage)

        self.maskImage = None
        self.diffImage = None
        self.difference = 100
        self.numberOfDifferentPixels = None
        self.maxDifference = None

        if self.testImage.size != self.refImage.size:
            return

        if self.testImage.mode != self.refImage.mode:
            if not allowDifferentImageMode:
                return
            self.refImage = self.refImage.convert(self.testImage.mode)

        # ImageChops.difference does not work for signed integers
        if self.testImage.mode == 'I':
            self.testImage = self.testImage.convert('L')
            self.refImage = self.refImage.convert('L')

        numPixels = self.testImage.size[0] * self.testImage.size[1]

        self.diffImage = ImageChops.difference(self.testImage, self.refImage)

        channels = len(self.testImage.getbands())
        if channels == 1:
            normImage = self.diffImage
        elif channels == 2:
            (a, b) = self.diffImage.split()
            normImage = ImageMath.eval("convert((a+b), 'L')", a=a, b=b)
        elif channels == 3:
            (a, b, c) = self.diffImage.split()
            normImage = ImageMath.eval("convert((a+b+c), 'L')", a=a, b=b, c=c)
        elif channels == 4:
            (a, b, c, d) = self.diffImage.split()
            normImage = ImageMath.eval("convert((a+b+c+d), 'L')",
                                       a=a,
                                       b=b,
                                       c=c,
                                       d=d)

        self.maskImage = normImage.point(lambda p: 0 if p > 0 else 255, 'L')

        stats = ImageStat.Stat(normImage)
        self.maxDifference = stats.extrema[0][1] / (channels * 255)
        self.difference = (sum(stats.sum) /
                           (255 * channels)) * 100.0 / numPixels

        if enhance != 1:
            self.diffImage = self.diffImage.point(lambda i: i * (enhance))
        self.diffImage = ImageChops.invert(self.diffImage)

        self.numberOfDifferentPixels = int(
            numPixels - ImageStat.Stat(self.maskImage).sum[0] / 255)
Beispiel #49
0
    draw.rectangle((0, 0, width / 2, height / 2), fill=0)
    draw.rectangle((width / 2, 0, width, height / 2), fill=127)
    draw.rectangle((0, height / 2, width / 2, height), fill=128)
    draw.rectangle((width / 2, height / 2, width, height), fill=255)

    del draw
    return second_image


try:
    # načtení originálního obrázku Leny
    original_image = Image.open(filename)
    original_image.load()

    # převod na úrovně šedi
    grayscale_image = ImageMath.eval("convert(src, 'L')", src=original_image)

    # vytvoření druhého obrázku s maskou
    second_image = create_second_image(512, 512)

    # aplikace operace
    result_image = ImageMath.eval("first & second",
                                  first=grayscale_image,
                                  second=second_image)

    # další převod výsledku na stupně šedi
    result_image = ImageMath.eval("convert(src, 'L')", src=result_image)

    # zobrazení výsledného obrázku uživateli
    result_image.show()
Beispiel #50
0
def chromeKeyBluescreen(r, g, b):
    # return an alpha image with mode 'F'
    # the r,g,b and white should be 'F' mode
    # we use 'F' mode in case of negative value
    global white
    return ImageMath.eval('r+g-b+d', r=r, g=g, b=b, d=white)
Beispiel #51
0
def im_and(im1, im2):
    return ImageMath.eval("A & B", A=im1, B=im2)
Beispiel #52
0
 def test_bitwise_or(self):
     self.assertEqual(pixel(ImageMath.eval("Z|Z", A=A, Z=Z)), "I 0")
     self.assertEqual(pixel(ImageMath.eval("Z|A", A=A, Z=Z)), "I 1")
     self.assertEqual(pixel(ImageMath.eval("A|Z", A=A, Z=Z)), "I 1")
     self.assertEqual(pixel(ImageMath.eval("A|A", A=A, Z=Z)), "I 1")
Beispiel #53
0
def im_xor(im1, im2):
    return ImageMath.eval("A ^ B", A=im1, B=im2)
Beispiel #54
0
 def test_bitwise_xor(self):
     self.assertEqual(pixel(ImageMath.eval("Z^Z", A=A, Z=Z)), "I 0")
     self.assertEqual(pixel(ImageMath.eval("Z^A", A=A, Z=Z)), "I 1")
     self.assertEqual(pixel(ImageMath.eval("A^Z", A=A, Z=Z)), "I 1")
     self.assertEqual(pixel(ImageMath.eval("A^A", A=A, Z=Z)), "I 0")
Beispiel #55
0
 def test_bitwise_leftshift(self):
     self.assertEqual(pixel(ImageMath.eval("Z<<0", Z=Z)), "I 0")
     self.assertEqual(pixel(ImageMath.eval("Z<<1", Z=Z)), "I 0")
     self.assertEqual(pixel(ImageMath.eval("A<<0", A=A)), "I 1")
     self.assertEqual(pixel(ImageMath.eval("A<<1", A=A)), "I 2")
Beispiel #56
0
 def test_bitwise_rightshift(self):
     self.assertEqual(pixel(ImageMath.eval("Z>>0", Z=Z)), "I 0")
     self.assertEqual(pixel(ImageMath.eval("Z>>1", Z=Z)), "I 0")
     self.assertEqual(pixel(ImageMath.eval("A>>0", A=A)), "I 1")
     self.assertEqual(pixel(ImageMath.eval("A>>1", A=A)), "I 0")
Beispiel #57
0
def _color_to_alpha(image: Image, color=None) -> Image:
    """
	Implements GIMP's color to alpha algorithm.
	See https://stackoverflow.com/a/1617909
	GPLv3: http://bazaar.launchpad.net/~stani/phatch/trunk/annotate/head:/phatch/actions/color_to_alpha.py#L50

	INPUTS
	image: A PIL image to work on
	color: A 4-tuple (R, G, B, A) value as the color to change to alpha

	OUTPUTS
	A string of XML representing the new SVG
	"""

    image = image.convert("RGBA")

    color = list(map(float, color))
    img_bands = [band.convert("F") for band in image.split()]

    # Find the maximum difference rate between source and color. I had to use two
    # difference functions because ImageMath.eval only evaluates the expression
    # once.
    alpha = ImageMath.eval("""float(
		    max(
			max(
			    max(
				difference1(red_band, cred_band),
				difference1(green_band, cgreen_band)
			    ),
			    difference1(blue_band, cblue_band)
			),
			max(
			    max(
				difference2(red_band, cred_band),
				difference2(green_band, cgreen_band)
			    ),
			    difference2(blue_band, cblue_band)
			)
		    )
		)""",
                           difference1=lambda source, color: (source - color) /
                           (255.0 - color),
                           difference2=lambda source, color:
                           (color - source) / color,
                           red_band=img_bands[0],
                           green_band=img_bands[1],
                           blue_band=img_bands[2],
                           cred_band=color[0],
                           cgreen_band=color[1],
                           cblue_band=color[2])

    # Calculate the new image colors after the removal of the selected color
    new_bands = [
        ImageMath.eval("convert((image - color) / alpha + color, 'L')",
                       image=img_bands[i],
                       color=color[i],
                       alpha=alpha) for i in range(3)
    ]

    # Add the new alpha band
    new_bands.append(
        ImageMath.eval("convert(alpha_band * alpha, 'L')",
                       alpha=alpha,
                       alpha_band=img_bands[3]))

    new_image = Image.merge("RGBA", new_bands)

    background = Image.new("RGB", new_image.size, (0, 0, 0, 0))
    background.paste(new_image.convert("RGB"), mask=new_image)

    # SE addition: Lastly, convert transparent pixels to rgba(0, 0, 0, 0) so that Pillow's
    # crop function can detect them.
    # See https://stackoverflow.com/a/14211878
    pixdata = new_image.load()

    width, height = new_image.size
    for image_y in range(height):
        for image_x in range(width):
            if pixdata[image_x, image_y] == (255, 255, 255, 0):
                pixdata[image_x, image_y] = (0, 0, 0, 0)

    return new_image
Beispiel #58
0
def get_mask(image):
    r, g, b, _ = image.split()
    r_mask = r.point(lambda i: i > 0 and 255)
    g_mask = g.point(lambda i: i > 0 and 255)
    b_mask = b.point(lambda i: i > 0 and 255)
    return ImageMath.eval("convert(a | b | c, 'L')", a=r_mask, b=g_mask, c=b_mask)
Beispiel #59
0
#!/usr/bin/env python3
# vim: set fileencoding=utf-8

from PIL import Image
from PIL import ImageMath

filename = "Lenna.png"

try:
    test_image = Image.open(filename)
    test_image.load()
    modified_image = ImageMath.eval("convert(src, 'L')", src=test_image)

    modified_image.save("Lenna_grayscale.png")

except Exception as e:
    print(e)
Beispiel #60
0
def test_logical():
    assert_equal(pixel(ImageMath.eval("not A", images)), 0)
    assert_equal(pixel(ImageMath.eval("A and B", images)), "L 2")
    assert_equal(pixel(ImageMath.eval("A or B", images)), "L 1")