def plotDataAsSquareImages(Data, unitIDsToPlot=None, figID=None, nPlots=16, doShowNow=False, seed=0, randstate=np.random.RandomState(0), **kwargs): if seed is not None: randstate = np.random.RandomState(seed) if figID is None: pylab.figure() V = Data.dim assert isPerfectSquare(V) sqrtV = int(np.sqrt(V)) if unitIDsToPlot is not None: nPlots = len(unitIDsToPlot) else: size = np.minimum(Data.nObs, nPlots) unitIDsToPlot = randstate.choice(Data.nObs, size=size, replace=False) nRows = np.floor(np.sqrt(nPlots)) nCols = np.ceil(nPlots / nRows) for plotPos, unitID in enumerate(unitIDsToPlot): squareIm = np.reshape(Data.X[unitID], (sqrtV, sqrtV)) pylab.subplot(nRows, nCols, plotPos + 1) pylab.imshow(squareIm, **imshowArgs) pylab.axis('image') pylab.xticks([]) pylab.yticks([]) pylab.tight_layout() if doShowNow: pylab.show()
def showAllTopicsInSingleImage(topics, compsToHighlight, **imshowArgs): K, V = topics.shape aspectR = V / float(K) pylab.imshow(topics, aspect=aspectR, **imshowArgs) if compsToHighlight is not None: ks = np.asarray(compsToHighlight) if ks.ndim == 0: ks = np.asarray([ks]) pylab.yticks(ks, ['**** %d' % (k) for k in ks])
def plotExampleBarsDocs(Data, docIDsToPlot=None, figID=None, vmax=None, nDocToPlot=16, doShowNow=False, seed=0, randstate=np.random.RandomState(0), xlabels=None, W=1, H=1, **kwargs): kwargs['vmin'] = 0 kwargs['interpolation'] = 'nearest' if vmax is not None: kwargs['vmax'] = vmax if seed is not None: randstate = np.random.RandomState(seed) V = Data.vocab_size sqrtV = int(np.sqrt(V)) assert np.allclose(sqrtV * sqrtV, V) if docIDsToPlot is not None: nDocToPlot = len(docIDsToPlot) else: size = np.minimum(Data.nDoc, nDocToPlot) docIDsToPlot = randstate.choice(Data.nDoc, size=size, replace=False) ncols = 5 nrows = int(np.ceil(nDocToPlot / float(ncols))) if vmax is None: DocWordArr = Data.getDocTypeCountMatrix() vmax = int(np.max(np.percentile(DocWordArr, 98, axis=0))) if figID is None: figH, ha = pylab.subplots(nrows=nrows, ncols=ncols, figsize=(ncols * W, nrows * H)) for plotPos, docID in enumerate(docIDsToPlot): start = Data.doc_range[docID] stop = Data.doc_range[docID + 1] wIDs = Data.word_id[start:stop] wCts = Data.word_count[start:stop] docWordHist = np.zeros(V) docWordHist[wIDs] = wCts squareIm = np.reshape(docWordHist, (sqrtV, sqrtV)) pylab.subplot(nrows, ncols, plotPos + 1) pylab.imshow(squareIm, **kwargs) pylab.axis('image') pylab.xticks([]) pylab.yticks([]) if xlabels is not None: pylab.xlabel(xlabels[plotPos]) # Disable empty plots! for kdel in xrange(plotPos + 2, nrows * ncols + 1): aH = pylab.subplot(nrows, ncols, kdel) aH.axis('off') # Fix margins between subplots pylab.subplots_adjust(wspace=0.04, hspace=0.04, left=0.01, right=0.99, top=0.99, bottom=0.01) if doShowNow: pylab.show()
def plotCompsAsRowsInSingleImage(phi, compsToHighlight, width=6, height=3, **kwargs): figH = pylab.figure(figsize=(width, height)) K, D = phi.shape aspectR = D / float(K) pylab.imshow(phi, aspect=aspectR, **imshowArgs) if compsToHighlight is not None: ks = np.asarray(compsToHighlight) if ks.ndim == 0: ks = np.asarray([ks]) pylab.yticks(ks, ['**** %d' % (k) for k in ks]) return figH
def showTopicsAsSquareImages(topics, activeCompIDs=None, compsToHighlight=None, compListToPlot=None, xlabels=[], Kmax=50, ncols=5, W=1, H=1, figH=None, **kwargs): global imshowArgs local_imshowArgs = dict(**imshowArgs) for key in local_imshowArgs: if key in kwargs: local_imshowArgs[key] = kwargs[key] if len(xlabels) > 0: H = 1.5 * H K, V = topics.shape sqrtV = int(np.sqrt(V)) assert np.allclose(sqrtV, np.sqrt(V)) if compListToPlot is None: compListToPlot = np.arange(0, K) if activeCompIDs is None: activeCompIDs = np.arange(0, K) compsToHighlight = np.asarray(compsToHighlight) if compsToHighlight.ndim == 0: compsToHighlight = np.asarray([compsToHighlight]) # Create Figure Kplot = np.minimum(len(compListToPlot), Kmax) #ncols = 5 # int(np.ceil(Kplot / float(nrows))) nrows = int(np.ceil(Kplot / float(ncols))) if figH is None: # Make a new figure figH, ha = pylab.subplots(nrows=nrows, ncols=ncols, figsize=(ncols * W, nrows * H)) else: # Use existing figure # TODO: Find a way to make this call actually change the figsize figH, ha = pylab.subplots(nrows=nrows, ncols=ncols, figsize=(ncols * W, nrows * H), num=figH.number) for plotID, compID in enumerate(compListToPlot): if plotID >= Kmax: print 'DISPLAY LIMIT EXCEEDED. Showing %d/%d components' \ % (plotID, len(activeCompIDs)) break if compID not in activeCompIDs: aH = pylab.subplot(nrows, ncols, plotID + 1) aH.axis('off') continue kk = np.flatnonzero(compID == activeCompIDs)[0] topicIm = np.reshape(topics[kk, :], (sqrtV, sqrtV)) ax = pylab.subplot(nrows, ncols, plotID + 1) pylab.imshow(topicIm, **local_imshowArgs) pylab.xticks([]) pylab.yticks([]) # Draw colored border around highlighted topics if compID in compsToHighlight: [i.set_color('green') for i in ax.spines.itervalues()] [i.set_linewidth(3) for i in ax.spines.itervalues()] if xlabels is not None: if len(xlabels) > 0: pylab.xlabel(xlabels[plotID], fontsize=11) # Disable empty plots! for kdel in xrange(plotID + 2, nrows * ncols + 1): aH = pylab.subplot(nrows, ncols, kdel) aH.axis('off') # Fix margins between subplots pylab.subplots_adjust( wspace=0.1, hspace=0.1 * nrows, left=0.001, right=0.999, bottom=0.1, top=0.999) return figH
def plotCovMatFromHModel(hmodel, compListToPlot=None, compsToHighlight=None, proba_thr=0.001, ax_handle=None, **kwargs): ''' Plot square image of covariance matrix for each component. Parameters ------- hmodel : bnpy HModel object compListToPlot : array-like of integer IDs of components within hmodel compsToHighlight : int or array-like integer IDs to highlight if None, all components get unique colors if not None, only highlighted components get colors. proba_thr : float Minimum weight assigned to component in order to be plotted. All components with weight below proba_thr are ignored. ''' nRow = 2 nCol = int(np.ceil(hmodel.obsModel.K / 2.0)) if ax_handle is None: ax_handle = pylab.subplots(nrows=nRow, ncols=nCol, figsize=(nCol * 2, nRow * 2)) else: pylab.subplots(nrows=nRow, ncols=nCol, num=ax_handle.number) if compsToHighlight is not None: compsToHighlight = np.asarray(compsToHighlight) if compsToHighlight.ndim == 0: compsToHighlight = np.asarray([compsToHighlight]) else: compsToHighlight = list() if compListToPlot is None: compListToPlot = np.arange(0, hmodel.obsModel.K) if hmodel.allocModel.K == hmodel.obsModel.K: w = hmodel.allocModel.get_active_comp_probs() else: w = np.ones(hmodel.obsModel.K) colorID = 0 for plotID, kk in enumerate(compListToPlot): if w[kk] < proba_thr and kk not in compsToHighlight: Sigma = getEmptyCompSigmaImage(hmodel.obsModel.D) clim = [0, 1] else: Sigma = hmodel.obsModel.get_covar_mat_for_comp(kk) clim = [-.25, 1] pylab.subplot(nRow, nCol, plotID + 1) pylab.imshow(Sigma, interpolation='nearest', cmap='hot', clim=clim) pylab.xticks([]) pylab.yticks([]) pylab.xlabel('%.2f' % (w[kk])) if kk in compsToHighlight: pylab.xlabel('***') for emptyID in xrange(plotID + 1, nRow * nCol): aH = pylab.subplot(nRow, nCol, emptyID + 1) aH.axis('off')