Beispiel #1
0
# SAVING
print(save_folder_name)
if save == True:
    if os.path.isdir(save_folder_name) != True:
        os.mkdir(save_folder_name)

from PlottingFunctions import plot_2D_prediction
from PlottingFunctions import plot_distributions_CCNC
from PlottingFunctions import plot_resolution_CCNC
from PlottingFunctions import plot_single_resolution
from PlottingFunctions import plot_compare_resolution
from PlottingFunctions import plot_systematic_slices
from PlottingFunctions import plot_energy_slices

plot_2D_prediction(Y_test_energy['file_0'], Y_test_predicted_energy['file_0'],\
                    save=save,savefolder=save_folder_name)
plot_distributions_CCNC(Y_test['file_0'],Y_test_energy['file_0'], Y_test_predicted_energy['file_0'],\
                        save=save,savefolder=save_folder_name)
plot_resolution_CCNC(Y_test['file_0'],Y_test_energy['file_0'], Y_test_predicted_energy['file_0'],\
                        save=save,savefolder=save_folder_name)
plot_single_resolution(Y_test_energy['file_0'], Y_test_predicted_energy['file_0'],\
                        save=save,savefolder=save_folder_name)
plot_single_resolution(Y_test_energy['file_0'], Y_test_predicted_energy['file_0'],\
                        use_old_reco=True, old_reco=Y_test_energy_reco['file_0'],\
                        save=save,savefolder=save_folder_name)
plot_compare_resolution(Y_test_energy, Y_test_predicted_energy,namelist=namelist,num_namelist=num_namelist,\
                        save=save,savefolder=save_folder_name)
plot_systematic_slices(Y_test_energy, Y_test_predicted_energy,num_namelist,\
                        save=save,savefolder=save_folder_name)
plot_energy_slices(Y_test_energy['file_0'], Y_test_predicted_energy['file_0'],\
                    use_old_reco=True, old_reco=Y_test_energy_reco['file_0'],\
        true_index = first_var_index
        name_index = first_var_index
    plot_name = plots_names[name_index]
    plot_units = plots_units[name_index]
    maxabs_factor = maxabs_factors[name_index]
    maxval = maxvals[name_index]
    minval = minvals[name_index]
    use_frac = use_fractions[name_index]
    bins = bins_array[name_index]
    print(
        "Plotting %s at position %i in true test output and %i in NN test output"
        % (plot_name, true_index, NN_index))

    plot_2D_prediction(Y_test_use[:,true_index]*maxabs_factor,\
                        Y_test_predicted[:,NN_index]*maxabs_factor,\
                        save,save_folder_name,bins=bins,\
                        minval=minval,maxval=maxval,cut_truth=True,axis_square=True,\
                        variable=plot_name,units=plot_units)
    plot_2D_prediction(Y_test_use[:,true_index]*maxabs_factor, Y_test_predicted[:,NN_index]*maxabs_factor,\
                        save,save_folder_name,bins=bins,\
                        minval=None,maxval=None,\
                        variable=plot_name,units=plot_units)
    plot_single_resolution(Y_test_use[:,true_index]*maxabs_factor,\
                   Y_test_predicted[:,NN_index]*maxabs_factor,\
                   minaxis=-maxval,maxaxis=maxval,bins=bins,
                   save=save,savefolder=save_folder_name,\
                   variable=plot_name,units=plot_units)
    plot_bin_slices(Y_test_use[:,true_index]*maxabs_factor, Y_test_predicted[:,NN_index]*maxabs_factor,\
                    use_fraction = False,\
                    bins=10,min_val=minval,max_val=maxval,\
                    save=True,savefolder=save_folder_name,\
            if input_file2 is not None:
                plot_distributions(true2_value_fullAnalysis,
                            old_reco=reco2_value_fullAnalysis,
                            weights=weights2_value_fullAnalysis,
                            save=save, savefolder=save_folder_name,
                            reco_name = name2, variable=plot_name, 
                            units= plot_units,
                            minval=minval,maxval=maxval,
                            bins=bins,true_name=energy_type)

        if make_2d_hist:
            switch = False
            plot_2D_prediction(true1_value, reco1_value,
                            weights=weights1_value,\
                            save=save, savefolder=save_folder_name,
                            bins=bins, switch_axis=switch,
                            variable=plot_name, units=plot_units, reco_name=name1,
                            flavor=flavor,sample=sample,variable_type=energy_type)


            plot_2D_prediction(true1_value, reco1_value,
                            weights=weights1_value,\
                            save=save, savefolder=save_folder_name,
                            bins=bins,switch_axis=switch,\
                            minval=minval, maxval=maxval, axis_square=True,\
                            variable=plot_name, units=plot_units, reco_name=name1,
                            flavor=flavor,sample=sample,variable_type=energy_type)

            if input_file2 is not None:
                plot_2D_prediction(true2_value, reco2_value,
                            weights=weights2_value,
                         reco_name = reco_name, variable=plot_name, units= plot_units,
                         minval=min(true_val), maxval=max(true_val))
 if plot_others:
     plot_distributions(true_r[cuts], reco_r[cuts],\
                         save=save, savefolder=save_folder_name, weights=true_weights,\
                         cnn_name = reco_name,
                         variable="Radial Vertex", units= "(m)",log=True)
     plot_distributions(true_z[cuts], reco_z[cuts],\
                         save=save, savefolder=save_folder_name,
                         weights=true_weights,cnn_name = reco_name,
                         variable="Z Vertex", units= "(m)",log=True)
 if plot_main:
     switch = False
     plot_2D_prediction(true_val, cnn_val,weights=true_weights,\
                         save=save, savefolder=save_folder_name,
                         bins=bins, switch_axis=switch,
                         variable=plot_name, units=plot_units,
                         reco_name="CNN",flavor=nu_type,sample=sample_name)
     plot_2D_prediction(true_val, cnn_val,weights=true_weights,\
                         save=save, savefolder=save_folder_name,
                         bins=bins,switch_axis=switch,\
                         minval=minval, maxval=maxval,
                         cut_truth=True, axis_square=True,\
                         variable=plot_name, units=plot_units,\
                         reco_name="CNN",flavor=nu_type,sample=sample_name)
     if retro_val is not None:
         plot_2D_prediction(retro_true_val, retro_val, weights=retro_weights,
                         save=save, savefolder=save_folder_name,
                         bins=bins,switch_axis=switch,\
                         variable=plot_name, units=plot_units,
                         reco_name=reco_name,flavor=nu_type,sample=sample_name)
                             save=save, savefolder=save_folder_name, weights=weights_plot,\
                             reco_name = "Retro", variable=plot_name, units= plot_units,
                             minval=minval,maxval=maxval,bins=bins)
 plot_distributions(truth, cnn, old_reco=old_reco,\
                             save=save, savefolder=save_folder_name, weights=weights_plot,\
                             reco_name = "Retro", variable=plot_name, units= plot_units)
 if reco is not None:
     plot_distributions(true_r[cuts], reco_r[cuts],\
                                 save=save, savefolder=save_folder_name, weights=weights_plot,\
                                 cnn_name = "Retro", variable="Radial Vertex", units= "(m)",log=True)
     plot_distributions(true_z[cuts], reco_z[cuts],\
                             save=save, savefolder=save_folder_name, weights=weights_plot,\
                             cnn_name = "Retro", variable="Z Vertex", units= "(m)",log=True)
 
 plot_2D_prediction(truth, cnn,weights=weights_plot,\
                         save=save, savefolder=save_folder_name,bins=bins,
                         variable=plot_name, units=plot_units, reco_name="CNN")
 plot_2D_prediction(truth, cnn,weights=weights_plot,\
                         save=save, savefolder=save_folder_name,bins=bins,
                         minval=minval, maxval=maxval, cut_truth=True, axis_square=True,\
                         variable=plot_name, units=plot_units, reco_name="CNN")
 if reco is not None:
     plot_2D_prediction(truth, retro_energy[cuts], weights=weights_plot,
                             save=save, savefolder=save_folder_name,bins=bins,\
                             variable=plot_name, units=plot_units, reco_name="Retro")
     plot_2D_prediction(truth, retro_energy[cuts], weights=weights_plot,
                             save=save, savefolder=save_folder_name,bins=bins,\
                             minval=minval, maxval=maxval, cut_truth=True, axis_square=True,\
                             variable=plot_name, units=plot_units, reco_name="Retro")
 
 plot_single_resolution(truth, cnn, weights=weights_plot,\
true_weights = weights[cuts]


print(true_energy[cuts][:10], cnn_energy[cuts][:10])

plot_distributions(true_energy[cuts],cnn_energy[cuts]
                    weights=true_weights
                    save=save, savefolder=save_folder_name,
                    cnn_name = "CNN", variable=plot_name,
                    units= plot_units,
                    minval=minval,maxval=maxval,
                    bins=bins)

plot_2D_prediction(true_energy[cuts], cnn_energy[cuts],
                    weights=true_weights,bins=bins,
                    save=save, savefolder=save_folder_name,
                    variable=plot_name, units=plot_units, 
                    reco_name="CNN")

plot_single_resolution(true_energy[cuts], cnn_energy[cuts],
                        weights=true_weights,
                        use_old_reco = False,
                        minaxis=-2, maxaxis=2, 
                        bins=bins, use_fraction=True,\
                        save=save, savefolder=save_folder_name,\
                        variable=plot_name, units=plot_units,
                        reco_name="CNN")

plot_bin_slices(true_energy[cuts], cnn_energy[cuts],
                weights=true_weights,
                use_fraction = True, bins=syst_bin,
        true_index = first_var_index
        name_index = first_var_index
    plot_name = plots_names[name_index]
    plot_units = plots_units[name_index]
    maxabs_factor = maxabs_factors[name_index]
    maxval = maxvals[name_index]
    minval = minvals[name_index]
    use_frac = use_fractions[name_index]
    bins = bins_array[name_index]
    print(
        "Plotting %s at position %i in true test output and %i in NN test output"
        % (plot_name, true_index, NN_index))

    plot_2D_prediction(Y_test_use[:,true_index]*maxabs_factor,\
                        Y_test_predicted[:,NN_index]*maxabs_factor,\
                        save,save_folder_name,bins=bins,\
                        minval=minval,maxval=maxval,\
                        variable=plot_name,units=plot_units, epochs=epoch)
    plot_2D_prediction(Y_test_use[:,true_index]*maxabs_factor, Y_test_predicted[:,NN_index]*maxabs_factor,\
                        save,save_folder_name,bins=bins,\
                        minval=None,maxval=None,\
                        variable=plot_name,units=plot_units, epochs = epoch)
    plot_single_resolution(Y_test_use[:,true_index]*maxabs_factor,\
                    Y_test_predicted[:,NN_index]*maxabs_factor,\
                   minaxis=-2*maxval,maxaxis=maxval*2,
                   save=save,savefolder=save_folder_name,\
                   variable=plot_name,units=plot_units, epochs = epoch)
    plot_bin_slices(Y_test_use[:,true_index]*maxabs_factor, Y_test_predicted[:,NN_index]*maxabs_factor,\
                    use_fraction = False,\
                    bins=10,min_val=minval,max_val=maxval,\
                    save=True,savefolder=save_folder_name,\