Beispiel #1
0
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    base_dir = RetinalUtil._landscape_base()
    step = Pipeline.Step.REDUCED
    in_dir = Pipeline._cache_dir(base=base_dir, enum=Pipeline.Step.SANITIZED)
    out_dir = Pipeline._cache_dir(base=base_dir, enum=step)
    force = True
    limit = None
    functor = lambda: to_iwt(in_dir)
    data = CheckpointUtilities.multi_load(cache_dir=out_dir,
                                          load_func=functor,
                                          force=force,
                                          limit=limit,
                                          name_func=FEC_Util.fec_name_func)
    ProcessingUtil.plot_data(base_dir, step, data, xlim=[-50, 150])
    plot_subdir = Pipeline._plot_subdir(base_dir, step)
    out_name = plot_subdir + "heatmap.png"
    ProcessingUtil.heatmap_ensemble_plot(data, out_name=out_name)
Beispiel #2
0
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    base_dir = RetinalUtil._landscape_base()
    step = Pipeline.Step.SANITIZED
    in_dir = Pipeline._cache_dir(base=base_dir, enum=Pipeline.Step.MANUAL)
    out_dir = Pipeline._cache_dir(base=base_dir, enum=step)
    force = True
    limit = None
    min_sep = RetinalUtil.min_sep_landscape()
    max_sep = min_sep + 100e-9
    functor = lambda: slice_data(in_dir, min_sep=min_sep, max_sep=max_sep)
    data = CheckpointUtilities.multi_load(cache_dir=out_dir,
                                          load_func=functor,
                                          force=force,
                                          limit=limit,
                                          name_func=FEC_Util.fec_name_func)
    plot_dir = Pipeline._plot_subdir(base=base_dir, enum=step)
    ProcessingUtil.heatmap_ensemble_plot(data,
                                         out_name=plot_dir + "heatmap.png",
                                         xlim=[-20, max_sep * 1e9])
    # plot each individual
    ProcessingUtil.plot_data(base_dir, step, data)
Beispiel #3
0
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    default_base = "../../../Data/170321FEC/"
    base_dir = Pipeline._base_dir_from_cmd(default=default_base)
    step = Pipeline.Step.FILTERED
    in_dir = Pipeline._cache_dir(base=base_dir, enum=Pipeline.Step.READ)
    out_dir = Pipeline._cache_dir(base=base_dir, enum=step)
    force = True
    limit = None
    f_filter_Hz = 5e3
    # filter to X s
    t_filter_s = 1 / f_filter_Hz
    # t_filter -> n_filter_points
    # after filtering, take every N points, where
    # N = f_decimate * n_filter_points
    # in other words, we oversample by 1/f_decimate
    f_decimate = 0.33
    assert f_decimate < 1 and f_decimate > 0
    data = filter_data(in_dir, out_dir, force, t_filter_s, f_decimate)
    ProcessingUtil.plot_data(base_dir, step, data, markevery=1)
Beispiel #4
0
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    base_input_processing = RetinalUtil._processing_base()
    base_dir = RetinalUtil._landscape_base()
    step = Pipeline.Step.MANUAL
    in_dir = Pipeline._cache_dir(base=base_input_processing,
                                 enum=Pipeline.Step.POLISH)
    out_dir = Pipeline._cache_dir(base=base_dir,enum=step)
    data_input = CheckpointUtilities.lazy_multi_load(in_dir)
    force = True
    functor = lambda : ProcessingUtil.\
        _filter_by_bl(data_input,base_input_processing)
    data = CheckpointUtilities.multi_load(cache_dir=out_dir,load_func=functor,
                                          force=force,
                                          name_func=FEC_Util.fec_name_func)
    # plot each individual
    ProcessingUtil.plot_data(base_dir,step,data,xlim=[-50,150])
    plot_subdir = Pipeline._plot_subdir(base_dir, step)
    out_name = plot_subdir + "heatmap.png"
    ProcessingUtil.heatmap_ensemble_plot(data, out_name=out_name)
Beispiel #5
0
def polish_plot(ax1,ax2,d_unpolish,d_polish,xlim,ylim,f_x,plot_components_1,i):
    plt.sca(ax1)
    kw_plot = dict(f_x=f_x,xlim=xlim,ylim=ylim,use_shift=True,i=i)
    ProcessingUtil._aligned_plot(d_unpolish, plot_components=plot_components_1,
                                 **kw_plot)
    PlotUtilities.xlabel("")
    PlotUtilities.no_x_label(ax1)
    plt.sca(ax2)
    ProcessingUtil._aligned_plot(d_polish, plot_components=False,
                                 **kw_plot)
Beispiel #6
0
def _feather_plot(data,plot_subdir,f_x = lambda x: x.Separation,
                  xlim=[-20, 150]):
    _, ylim = ProcessingUtil.nm_and_pN_limits(data, f_x=f_x)
    for i,d in enumerate(data):
        fig = PlotUtilities.figure()
        ProcessingUtil.plot_single_fec(d, f_x, xlim, ylim, markevery=1,
                                       i=i)
        x = f_x(d) * 1e9
        for i in d.info_feather.event_idx:
            plt.axvline(x[i])
        name = FEC_Util.fec_name_func(0,d)
        PlotUtilities.savefig(fig,plot_subdir + name + ".png")
Beispiel #7
0
def feather_single(d,force_no_adhesion=False,**kw):
    """
    :param d: FEC to get FJC+WLC fit of
    :param min_F_N: minimum force, in Newtons, for fitting event. helps avoid
     occasional small force events
    :param kw: keywords to use for fitting...
    :return:
    """
    force_N = d.Force
    where_above_surface = np.where(force_N >= 0)[0]
    assert where_above_surface.size > 0, "Force never above surface "
    # use FEATHER; fit to the first event, don't look for adhesion
    d_pred_only = d._slice(slice(0,None,1))
    # first, try removing surface adhesions
    is_600 = _is_PEG600(d)
    skip_adhesion = force_no_adhesion or is_600
    f_refs_initial = [Detector.delta_mask_function] if skip_adhesion else None
    feather_kw =  dict(d=d_pred_only,**kw)
    pred_info,tau_n = _detect_retract_FEATHER(f_refs=f_refs_initial,
                                              **feather_kw)
    # if we removed more than 20nm or we didnt find any events, then
    # FEATHER got confused by a near-surface BR. Tell it not to look for
    # surface adhesions
    expected_surface_m = d.Separation[pred_info.slice_fit.start]
    expected_gf_m = 20e-9
    if ((len(pred_info.event_idx) == 0) or (expected_surface_m > expected_gf_m)):
        f_refs = [Detector.delta_mask_function]
        pred_info,tau_n = _detect_retract_FEATHER(f_refs=f_refs,
                                                  **feather_kw)
    pred_info.tau_n = tau_n
    assert len(pred_info.event_idx) > 0 , "FEATHER can't find an event..."
    # POST: found at least one event.
    to_ret = ProcessingUtil.AlignedFEC(d,info_fit=None,feather_info=pred_info)
    return to_ret
Beispiel #8
0
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    default_base = "../../../Data/170321FEC/"
    base_dir = Pipeline._base_dir_from_cmd(default=default_base)
    step = Pipeline.Step.CORRECTED
    in_dir = Pipeline._cache_dir(base=base_dir, enum=Pipeline.Step.FILTERED)
    out_dir = Pipeline._cache_dir(base=base_dir, enum=step)
    force = True
    n_filter = 10
    data = filter_data(in_dir, out_dir, force, n_filter)
    ProcessingUtil.plot_data(base_dir, step, data, markevery=1)
Beispiel #9
0
def _plot_fec_list(list_v,
                   xlim,
                   ylim,
                   label=None,
                   color=None,
                   linewidth=0.3,
                   **kw):
    f_x = lambda x_tmp: x_tmp.Separation
    for i, d in enumerate(list_v):
        label_tmp = label if i == 0 else None
        ProcessingUtil.plot_single_fec(d,
                                       f_x,
                                       xlim,
                                       ylim,
                                       label=label_tmp,
                                       style_data=dict(color=color,
                                                       alpha=0.3,
                                                       linewidth=linewidth),
                                       i=i,
                                       **kw)
Beispiel #10
0
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    default_base = "../../../Data/170321FEC/"
    base_dir = Pipeline._base_dir_from_cmd(default=default_base)
    step = Pipeline.Step.READ
    cache_dir = Pipeline._cache_dir(base=base_dir, enum=step)
    force = True
    limit = None
    functor = lambda: read_all_data(base_dir)
    data = CheckpointUtilities.multi_load(cache_dir=cache_dir,
                                          load_func=functor,
                                          force=force,
                                          limit=limit,
                                          name_func=FEC_Util.fec_name_func)
    ProcessingUtil.plot_data(base_dir, step, data, markevery=100)
Beispiel #11
0
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    default_base = "../../../Data/170321FEC/"
    base_dir = Pipeline._base_dir_from_cmd(default=default_base)
    step = Pipeline.Step.ALIGNED
    in_dir = Pipeline._cache_dir(base=base_dir, enum=Pipeline.Step.SANITIZED)
    out_dir = Pipeline._cache_dir(base=base_dir, enum=step)
    force = True
    max_n_pool = multiprocessing.cpu_count() - 1
    n_pool = 6
    N_fit_pts = 20
    min_F_N = 175e-12 if "+Retinal" in base_dir else 90e-12
    data = RetinalUtil.align_data(in_dir,
                                  out_dir,
                                  force=force,
                                  n_pool=n_pool,
                                  min_F_N=min_F_N,
                                  N_fit_pts=N_fit_pts)
    plot_subdir = Pipeline._plot_subdir(base_dir, step)
    xlim_heatmap_nm = [-40, 100]
    ProcessingUtil.heatmap_ensemble_plot(data,
                                         xlim=xlim_heatmap_nm,
                                         out_name=plot_subdir + "heatmap.png")
    # get the post-blacklist heapmap, too..
    data_filtered = ProcessingUtil._filter_by_bl(data, in_dir)
    # align the data...
    data_aligned = [RetinalUtil._polish_helper(d) for d in data_filtered]
    out_name = plot_subdir + "heatmap_bl.png"
    ProcessingUtil.heatmap_ensemble_plot(data_aligned,
                                         xlim=xlim_heatmap_nm,
                                         out_name=out_name)
    # make individual plots
    ProcessingUtil.make_aligned_plot(base_dir,
                                     step,
                                     data,
                                     xlim=[-30, 150],
                                     use_shift=True)
Beispiel #12
0
def align_single(d,min_F_N,**kw):
    """
    :param d: FEC to get FJC+WLC fit of
    :param min_F_N: minimum force, in Newtons, for fitting event. helps avoid
     occasional small force events
    :param kw: keywords to use for fitting...
    :return:
    """
    force_N = d.Force
    pred_info = d.info_feather
    max_fit_idx = GF2_event_idx(d,min_F_N)
    # determine the minimum fit index by the maximum of...
    # (1) the surface
    where_above_surface = np.where(force_N >= 0)[0]
    assert where_above_surface.size > 0 , "Never above surface"
    first_time_above_surface = where_above_surface[0]
    assert first_time_above_surface < max_fit_idx , \
        "Couldn't find fitting region"
    # (2) the last event *before* the current, if it exists
    event_idx = pred_info.event_idx
    idx_last_event_before = np.where(event_idx < max_fit_idx)[0]
    start_idx = first_time_above_surface
    if idx_last_event_before.size > 0:
        # then we have an event *before* the final GC helix one.
        # make that the start idx, if it is later (it should be!)
        new_start = event_idx[idx_last_event_before[-1]]
        assert new_start > start_idx , "First event is less than surface?!"
        start_idx = new_start
    # start the fit after any potential adhesions
    fit_start = max(start_idx,pred_info.slice_fit.start)
    fit_slice = slice(fit_start,max_fit_idx,1)
    # slice the object to just the region we want
    obj_slice = d._slice(fit_slice)
    # fit wlc to the f vs x of that slice
    info_fit = WLCHao.hao_fit(obj_slice.Separation,obj_slice.Force,**kw)
    info_fit.fit_slice = fit_slice
    to_ret = ProcessingUtil.AlignedFEC(d,info_fit,feather_info=pred_info)
    return to_ret
Beispiel #13
0
def _multi_align(out_dir,kw,all_data,n_pool):
    input_v = [ [d,out_dir,kw] for d in all_data]
    to_ret = ProcessingUtil._multiproc(func_align, input_v, n_pool)
    to_ret = [r for r in to_ret if r is not None]
    return to_ret
Beispiel #14
0
def make_plot(dir_in, out_name):
    dir_aligned = dir_in + "cache_8_aligned/"
    dir_polished = dir_in + "cache_10_polish/"
    data_unaligned = CheckpointUtilities.lazy_multi_load(dir_aligned)
    data_polished = CheckpointUtilities.lazy_multi_load(dir_polished)
    data_unaligned = ProcessingUtil._filter_by_bl(data_unaligned, dir_in)
    data_polished = ProcessingUtil._filter_by_bl(data_polished, dir_in)
    # scootch the data over slightly
    for d in data_polished:
        d.Separation -= 20e-9
    to_x = lambda _x: _x * 1e9
    to_y = lambda _y: _y * 1e12
    xlim = [-10, 100]
    ylim = [-20, 350]
    plt.close()
    fig = PlotUtilities.figure(figsize=(3.5, 4.5))
    kw_plot = dict(linewidth=0.75)
    ax1 = plt.subplot(2, 2, 1)
    for d in data_unaligned:
        plt.plot(to_x(d.Separation), to_y(d.Force), **kw_plot)
    ax2 = plt.subplot(2, 2, 2)
    for d in data_polished:
        plt.plot(to_x(d.Separation), to_y(d.Force), **kw_plot)
    for a in [ax1, ax2]:
        a.set_ylim(ylim)
        a.set_xlim(xlim)
        PlotUtilities.lazyLabel("Extension (nm)", "$F$ (pN)", "", ax=a)
    PlotUtilities.ylabel("", ax=ax2)
    height_pN = 100
    min_y, max_y, delta_y = Scalebar.offsets_zero_tick(
        limits=ylim, range_scalebar=height_pN)
    kw_scale = dict(offset_x=0.7,
                    offset_y=max_y,
                    x_kwargs=dict(width=20, unit="nm"),
                    y_kwargs=dict(height=height_pN, unit="pN"))
    for a in [ax1, ax2]:
        Scalebar.crossed_x_and_y_relative(ax=a, **kw_scale)
        PlotUtilities.no_y_label(ax=a)
        PlotUtilities.no_x_label(ax=a)
        PlotUtilities.x_label_on_top(ax=a)
    num = 200
    bins_x = np.linspace(xlim[0], xlim[-1], endpoint=True, num=num)
    bins_y = np.linspace(ylim[0], ylim[-1], endpoint=True, num=num)
    kw = dict(color='w', use_colorbar=False, bins=(bins_x, bins_y), title="")
    kw_scale_heat = dict(**kw_scale)
    line_kw_def = dict(color='w', linewidth=2)
    font_x, font_y = Scalebar.font_kwargs_modified(x_kwargs=dict(color='w'),
                                                   y_kwargs=dict(color='w'))
    kw_scale_heat['x_kwargs']['line_kwargs'] = line_kw_def
    kw_scale_heat['x_kwargs']['font_kwargs'] = font_x
    kw_scale_heat['y_kwargs']['line_kwargs'] = line_kw_def
    kw_scale_heat['y_kwargs']['font_kwargs'] = font_y
    ax3 = plt.subplot(2, 2, 3)
    Plotting.formatted_heatmap(data=data_unaligned, **kw)
    Scalebar.crossed_x_and_y_relative(ax=ax3, **kw_scale_heat)
    ax4 = plt.subplot(2, 2, 4)
    Plotting.formatted_heatmap(data=data_polished, **kw)
    Scalebar.crossed_x_and_y_relative(ax=ax4, **kw_scale_heat)
    for a in [ax3, ax4]:
        PlotUtilities.no_y_label(ax=a)
        PlotUtilities.no_x_label(ax=a)
        a.set_xlim(xlim)
        a.set_ylim(ylim)
        PlotUtilities.xlabel("", ax=a)
    PlotUtilities.ylabel("", ax=ax4)
    PlotUtilities.ylabel("$F$ (pN)", ax=ax3)
    PlotUtilities.savefig(fig, out_name)
    pass
Beispiel #15
0
def align_data(base_dir,out_dir,n_pool,**kw):
    all_data = CheckpointUtilities.lazy_multi_load(base_dir)
    input_v = [ [d,out_dir,kw] for d in all_data]
    to_ret = ProcessingUtil._multiproc(func, input_v, n_pool)
    to_ret = [r for r in to_ret if r is not None]
    return to_ret
Beispiel #16
0
def filter_data(base_dir, out_dir, force, t_filter, f_decimate):
    all_data = CheckpointUtilities.lazy_multi_load(base_dir)
    input_v = [[d, out_dir, force, t_filter, f_decimate] for d in all_data]
    to_ret = ProcessingUtil._multiproc(func, input_v, n_pool=3)
    return to_ret
Beispiel #17
0
def func(args):
    d, out_dir, force, t_filter, f_decimate = args
    to_ret = ProcessingUtil._cache_individual(d, out_dir, _filter_single,
                                              force, d, t_filter, f_decimate)
    return to_ret
Beispiel #18
0
def func(args):
    d, out_dir, force, n_filter = args
    to_ret = ProcessingUtil._cache_individual(d, out_dir, _filter_single,
                                              force, d, n_filter)
    return to_ret
Beispiel #19
0
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    default_base = "../../../Data/170321FEC/"
    base_dir = Pipeline._base_dir_from_cmd(default=default_base)
    step = Pipeline.Step.POLISH
    in_dir = Pipeline._cache_dir(base=base_dir, enum=Pipeline.Step.ALIGNED)
    out_dir = Pipeline._cache_dir(base=base_dir,enum=step)
    plot_dir = Pipeline._plot_subdir(base=base_dir, enum=step)
    force = True
    limit = None
    functor = lambda : polish_data(in_dir)
    data =CheckpointUtilities.multi_load(cache_dir=out_dir,load_func=functor,
                                         force=force,
                                         limit=limit,
                                         name_func=FEC_Util.fec_name_func)
    sizes = [d.Force.size for d in data]
    min_s = min(sizes)
    sliced_data = [d._slice(slice(0,min_s,1)) for d in data]
    for d in sliced_data:
        d.Offset = d.ZSnsr[0]
        d.Extension = d.Separation
        d.kT = 4.1e-21
    data_wham = UtilWHAM.to_wham_input(objs=sliced_data, n_ext_bins=75)
    data_wham.z = np.array([d.ZSnsr for d in sliced_data])
    obj_wham = WeightedHistogram.wham(data_wham)
    data_unpolished = CheckpointUtilities.lazy_multi_load(in_dir)
    f_x_zsnsr = lambda x: x.ZSnsr
    xlim = [-40,150]
    ProcessingUtil.heatmap_ensemble_plot(data,out_name=plot_dir + "heatmap.png",
                                         xlim=xlim)
    ProcessingUtil.heatmap_ensemble_plot(data,f_x=f_x_zsnsr,
                                         out_name=plot_dir + "heatmap_Z.png",
                                         kw_map=dict(x_func=f_x_zsnsr),
                                         xlim=xlim)
    # plot each individual
    f_x = lambda x_tmp : x_tmp.Separation
    plot_subdir = Pipeline._plot_subdir(base_dir, step)
    name_func = FEC_Util.fec_name_func
    _, ylim = ProcessingUtil.nm_and_pN_limits(data,f_x)
    for i,(d_unpolish,d_polish) in enumerate(zip(data_unpolished,data)):
        kw_plot = dict(d_unpolish=d_unpolish,
                       d_polish=d_polish,
                       xlim=xlim,ylim=ylim,i=i)
        fig = PlotUtilities.figure((6,6))
        # make the Separation column
        ax1,ax2 = plt.subplot(2,2,1), plt.subplot(2,2,3)
        polish_plot(ax1, ax2, f_x = lambda x: x.Separation,
                    plot_components_1=True,**kw_plot)
        # make the ZSnsr column
        ax3,ax4 = plt.subplot(2,2,2), plt.subplot(2,2,4)
        polish_plot(ax3, ax4, f_x = lambda x: x.ZSnsr,plot_components_1=False,
                    **kw_plot)
        PlotUtilities.xlabel("Stage Position (nm)", ax=ax4)
        for a in [ax3,ax4]:
            PlotUtilities.no_y_label(ax=a)
            PlotUtilities.ylabel("",ax=a)
        name = plot_subdir + name_func(0, d_polish) + ".png"
        PlotUtilities.savefig(fig,name)
Beispiel #20
0
def _align_and_cache(d,out_dir,force=False,**kw):
    return ProcessingUtil._cache_individual(d, out_dir,
                                            RetinalUtil.feather_single,
                                            force,d, **kw)