def test_cubic(self): dtype = np.float64 emd = EMD() emd.splineKind = 'cubic' emd.DTYPE = dtype T = np.array([0, 1, 2, 3, 4], dtype=dtype) S = np.array([0, 1, -1, -1, 5], dtype=dtype) t = np.arange(9, dtype=dtype) / 2. # TODO: Something weird with float32. # Seems to be SciPy problem. _t, s = emd.spline_points(t, np.array((T, S))) s_true = np.array([S[0], 1.203125, S[1], 0.046875, \ S[2], -1.515625, S[3], 1.015625, S[4]], dtype=dtype) self.assertTrue(np.allclose(s, s_true), "Comparing cubic") T = T[:-2].copy() S = S[:-2].copy() t = np.arange(5, dtype=dtype) / 2. _t, s3 = emd.spline_points(t, np.array((T, S))) s3_true = np.array([S[0], 0.78125, S[1], 0.28125, S[2]], dtype=dtype) self.assertTrue(np.allclose(s3, s3_true), "Compare cubic 3pts")
def test_akima(self): dtype = np.float32 emd = EMD() emd.splineKind = 'akima' emd.DTYPE = dtype arr = lambda x: np.array(x) # Test error: len(X)!=len(Y) with self.assertRaises(ValueError): akima(arr([0]), arr([1, 2]), arr([0, 1, 2])) # Test error: any(dt) <= 0 with self.assertRaises(ValueError): akima(arr([1, 0, 2]), arr([1, 2]), arr([0, 1, 2])) with self.assertRaises(ValueError): akima(arr([0, 0, 2]), arr([1, 2]), arr([0, 1, 1])) # Test for correct responses T = np.array([0, 1, 2, 3, 4], dtype) S = np.array([0, 1, -1, -1, 5], dtype) t = np.array([i / 2. for i in range(9)], dtype) _t, s = emd.spline_points(t, np.array((T, S))) s_true = np.array([ S[0], 0.9125, S[1], 0.066666, S[2], -1.35416667, S[3], 1.0625, S[4] ], dtype) self.assertTrue(np.allclose(s_true, s), "Comparing akima with true") s_np = akima(np.array(T), np.array(S), np.array(t)) self.assertTrue(np.allclose(s, s_np), "Shouldn't matter if with numpy")
def test_slinear(self): dtype = np.float64 emd = EMD() emd.splineKind = 'slinear' emd.DTYPE = dtype T = np.array([0, 1, 2, 3, 4], dtype=dtype) S = np.array([0, 1, -1, -1, 5], dtype=dtype) t = np.arange(9, dtype=dtype) / 2. _t, s = emd.spline_points(t, np.array((T, S))) s_true = np.array([S[0], 0.5, S[1], 0, \ S[2], -1, S[3], 2, S[4]], dtype=dtype) self.assertTrue(np.allclose(s, s_true), "Comparing SLinear")
def test_bound_extrapolation_simple(self): emd = EMD() emd.extrema_detection = "simple" emd.nbsym = 1 emd.DTYPE = np.int64 S = [0, -3, 1, 4, 3, 2, -2, 0, 1, 2, 1, 0, 1, 2, 5, 4, 0, -2, -1] S = np.array(S) T = np.arange(len(S)) pp = emd.prepare_points # There are 4 cases for both (L)eft and (R)ight ends. In case of left (L) bound: # L1) ,/ -- ext[0] is min, s[0] < ext[1] (1st max) # L2) / -- ext[0] is min, s[0] > ext[1] (1st max) # L3) ^. -- ext[0] is max, s[0] > ext[1] (1st min) # L4) \ -- ext[0] is max, s[0] < ext[1] (1st min) ## CASE 1 # L1, R1 -- no edge MIN & no edge MIN s = S.copy() t = T.copy() maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s) # Should extrapolate left and right bounds maxExtrema, minExtrema = pp(t, s, \ maxPos, maxVal, minPos, minVal) self.assertEqual([-1, 3, 9, 14, 20], maxExtrema[0].tolist()) self.assertEqual([4, 4, 2, 5, 5], maxExtrema[1].tolist()) self.assertEqual([-4, 1, 6, 11, 17, 23], minExtrema[0].tolist()) self.assertEqual([-2, -3, -2, 0, -2, 0], minExtrema[1].tolist()) ## CASE 2 # L2, R2 -- edge MIN, edge MIN s = S[1:-1].copy() t = T[1:-1].copy() maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s) # Should extrapolate left and right bounds maxExtrema, minExtrema = pp(t, s, \ maxPos, maxVal, minPos, minVal) self.assertEqual([-1, 3, 9, 14, 20], maxExtrema[0].tolist()) self.assertEqual([4, 4, 2, 5, 5], maxExtrema[1].tolist()) self.assertEqual([1, 6, 11, 17], minExtrema[0].tolist()) self.assertEqual([-3, -2, 0, -2], minExtrema[1].tolist()) ## CASE 3 # L3, R3 -- no edge MAX & no edge MAX s, t = S[2:-3], T[2:-3] maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s) # Should extrapolate left and right bounds maxExtrema, minExtrema = pp(t, s, \ maxPos, maxVal, minPos, minVal) self.assertEqual([-3, 3, 9, 14, 19], maxExtrema[0].tolist()) self.assertEqual([2, 4, 2, 5, 2], maxExtrema[1].tolist()) self.assertEqual([0, 6, 11, 17], minExtrema[0].tolist()) self.assertEqual([-2, -2, 0, 0], minExtrema[1].tolist()) ## CASE 4 # L4, R4 -- edge MAX & edge MAX s, t = S[3:-4], T[3:-4] maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s) # Should extrapolate left and right bounds maxExtrema, minExtrema = pp(t, s, \ maxPos, maxVal, minPos, minVal) self.assertEqual([3, 9, 14], maxExtrema[0].tolist()) self.assertEqual([4, 2, 5], maxExtrema[1].tolist()) self.assertEqual([0, 6, 11, 17], minExtrema[0].tolist()) self.assertEqual([-2, -2, 0, 0], minExtrema[1].tolist())
def test_bound_extrapolation_parabol(self): emd = EMD() emd.extrema_detection = "parabol" emd.nbsym = 1 emd.DTYPE = np.float64 S = [0, -3, 1, 4, 3, 2, -2, 0, 1, 2, 1, 0, 1, 2, 5, 4, 0, -2, -1] S = np.array(S) T = np.arange(len(S)) pp = emd.prepare_points # There are 4 cases for both (L)eft and (R)ight ends. In case of left (L) bound: # L1) ,/ -- ext[0] is min, s[0] < ext[1] (1st max) # L2) / -- ext[0] is min, s[0] > ext[1] (1st max) # L3) ^. -- ext[0] is max, s[0] > ext[1] (1st min) # L4) \ -- ext[0] is max, s[0] < ext[1] (1st min) ## CASE 1 # L1, R1 -- no edge MIN & no edge MIN s = S.copy() t = T.copy() maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s) # Should extrapolate left and right bounds maxExtrema, minExtrema = pp(t, s, \ maxPos, maxVal, minPos, minVal) maxExtrema = np.round(maxExtrema, decimals=3) minExtrema = np.round(minExtrema, decimals=3) self.assertEqual([-1.393, 3.25, 9, 14.25, 20.083], maxExtrema[0].tolist()) self.assertEqual([4.125, 4.125, 2, 5.125, 5.125], maxExtrema[1].tolist()) self.assertEqual([-4.31, 0.929, 6.167, 11, 17.167, 23.333], minExtrema[0].tolist()) self.assertEqual([-2.083, -3.018, -2.083, 0, -2.042, 0], minExtrema[1].tolist()) ## CASE 2 # L2, R2 -- edge MIN, edge MIN s = S[1:-1].copy() t = T[1:-1].copy() maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s) # Should extrapolate left and right bounds maxExtrema, minExtrema = pp(t, s, \ maxPos, maxVal, minPos, minVal) maxExtrema = np.round(maxExtrema, decimals=3) minExtrema = np.round(minExtrema, decimals=3) self.assertEqual([-1.25, 3.25, 9, 14.25, 19.75], maxExtrema[0].tolist()) self.assertEqual([4.125, 4.125, 2, 5.125, 5.125], maxExtrema[1].tolist()) self.assertEqual([1, 6.167, 11, 17], minExtrema[0].tolist()) self.assertEqual([-3, -2.083, 0, -2], minExtrema[1].tolist()) ## CASE 3 # L3, R3 -- no edge MAX & no edge MAX s = S[2:-3].copy() t = T[2:-3].copy() maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s) # Should extrapolate left and right bounds maxExtrema, minExtrema = pp(t, s, \ maxPos, maxVal, minPos, minVal) maxExtrema = np.round(maxExtrema, decimals=3) minExtrema = np.round(minExtrema, decimals=3) self.assertEqual([-2.5, 3.25, 9, 14.25, 19.5], maxExtrema[0].tolist()) self.assertEqual([2, 4.125, 2, 5.125, 2], maxExtrema[1].tolist()) self.assertEqual([0.333, 6.167, 11, 17.5], minExtrema[0].tolist()) self.assertEqual([-2.083, -2.083, 0, 0], minExtrema[1].tolist()) ## CASE 4 # L4, R4 -- edge MAX & edge MAX s = S[3:-4].copy() t = T[3:-4].copy() maxPos, maxVal, minPos, minVal, nz = emd.find_extrema(t, s) # Should extrapolate left and right bounds maxExtrema, minExtrema = pp(t, s, \ maxPos, maxVal, minPos, minVal) maxExtrema = np.round(maxExtrema, decimals=3) minExtrema = np.round(minExtrema, decimals=3) self.assertEqual([3, 9, 14], maxExtrema[0].tolist()) self.assertEqual([4, 2, 5], maxExtrema[1].tolist()) self.assertEqual([-0.167, 6.167, 11, 17], minExtrema[0].tolist()) self.assertEqual([-2.083, -2.083, 0, 0], minExtrema[1].tolist())