Beispiel #1
0
def compare(filename):
    imfile = File(filename)
    for root, dir, file in os.walk('faceimg/'):
        for f in file:
            #if('.png' in f):
            cmpres = api.compare(image_file1=imfile,
                                 image_file2=File(root + f))  #比较
            name = None
            try:
                if (cmpres['confidence'] > 80):
                    name = f.split('.')[0]
                    return (name)  #返回文件名
            except:
                pass
        return None
 def addFace(self):
     user_name = self.main.name.toPlainText()
     print(user_name)
     if user_name:
         try:
             res = self.api.detect(image_file=File(self.img_file))
             faceList = res.faces
             if len(faceList) > 0:
                 try:
                     self.api.faceset.addface(
                         outer_id=self.faceset,
                         face_tokens=faceList[0].face_token)
                     try:
                         self.api.face.setuserid(
                             face_token=faceList[0].face_token,
                             user_id=user_name)
                         self.face_ids.append(user_name)
                         self.face_tokens.append(faceList[0].face_token)
                         self.popupMsg.popupmsg('加了: ' + user_name, '增加人脸')
                     except:
                         self.popupMsg.popupmsg('设置人脸名字失败', '增加人脸')
                 except:
                     self.popupMsg.popupmsg('增加人脸失败', '增加人脸')
             else:
                 self.popupMsg.popupmsg('检测不到人脸', '增加人脸')
         except:
             self.popupMsg.popupmsg('检测人脸失败', '增加人脸')
     else:
         self.popupMsg.popupmsg('请输入名字', '增加人脸')
     self.main.name.setPlainText("")
 def addNewFace(self):
     global faceSet_img
     faceSet_img = QtWidgets.QFileDialog.getOpenFileName(
         self, 'open the dialog', "C:\\Users\Administrator\Desktop",
         'JEPG files(*.jpg);;PNG files(*.PNG)')
     faceStr = []
     #存储face_token
     #创建一个faceset
     api.faceset.create(outer_id='test2')
     #探测图片中的face
     res = api.detect(image_file=File(faceSet_img[0]),
                      return_attributes='emotion')
     print_result("detect resule", res)
     #将返回值中的数据复制给faceList
     faceList = res["faces"]
     #创建一个str数组存储所有face的facetoken
     for i in range(len(faceList)):
         faceStr.append(faceList[i]["face_token"])
     #在创建时就获得face_token并将其写入文件
     self.data_manager.face_token_set = faceStr
     self.data_manager.write_face_token_to_csv(
         self.data_manager.face_token_set)
     self.loading.show()
     self.add_thread.faceList = faceList
     self.add_thread.start()
    def searchFace(self, face_search_img):

        #不显示图片是因为多线程的问题,单一线程会导致图片和搜索同时,搜索完了图片还没加载
        print(face_search_img)
        QtWidgets.QMessageBox.information(
            self, '请稍等', '将在几秒钟内完成签到',
            QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No,
            QtWidgets.QMessageBox.Yes)
        #首先显示要搜索的图片
        serach_res = api.search(image_file=File(face_search_img),
                                outer_id='test2')
        detec_res = api.detect(image_file=File(face_search_img),
                               return_attributes='emotion')

        print_result("搜索结果", serach_res)
        print_result("探测结果", detec_res)
        #serach_list用于将serach_res中的faces部分信息转换为列表
        #输出特定的face_token
        serach_result = serach_res['results']
        #输出对应的置信值
        serach_confidence = serach_result[0]['confidence']
        face_token = serach_result[0]['face_token']
        threshold_up = serach_res['thresholds']['1e-5']
        detec_res = detec_res['faces']
        down_emotion_detect = (
            detec_res[0]['attributes']['emotion']['disgust'] +
            detec_res[0]['attributes']['emotion']['anger'] +
            detec_res[0]['attributes']['emotion']['fear'] +
            detec_res[0]['attributes']['emotion']['sadness']) / 4
        up_emotion_detect = (
            detec_res[0]['attributes']['emotion']['happiness'] +
            detec_res[0]['attributes']['emotion']['neutral']) / 2
        if (serach_confidence >= threshold_up):
            print(face_token + '到位了')
            self.data_manager.add_arrive_data(
                face_token,
                QtCore.QDateTime.currentDateTime().toString(
                    'yyyy-MM-dd hh:mm:ss'))
            self.data_manager.add_emotion_data(
                face_token, (up_emotion_detect / down_emotion_detect))
            self.data_manager.write_data_to_csv()
            self.data_manager.write_emotion_to_csv()
        QtWidgets.QMessageBox.information(
            self, '成功', face_token + "您已经签到成功",
            QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No,
            QtWidgets.QMessageBox.Yes)
Beispiel #5
0
def register():
    # 获取图片文件 name = register
    img = request.files.get('register')
    path = basedir + "\static\\"
    img_name = 'register.jpg'
    file_path = path + img_name
    img.save(file_path)

    # 人脸检测:https://console.faceplusplus.com.cn/documents/4888373
    detect_result = api.detect(image_file=File(img_register),
                               return_attributes="")
    # print_result (print_function_title ("人脸检测"), detect_result)

    # 获取face_token
    detect_result = json.dumps(eval(str(detect_result)))
    detect_result = json.loads(detect_result)

    # 如果成功,返回值里有faces字段
    if 'faces' in detect_result:
        faces = json.dumps(eval(str(detect_result['faces'])))
        faces = faces[1:-1]
        faces = json.loads(faces)

        face_token = faces['face_token']
        print('新上传的face_token' + face_token)

        # 根据face_token设置user_id
        user_id = request.form['user_id']
        # Face set_user_id
        set_id_result = api.face.setuserid(face_token=str(face_token),
                                           user_id=str(user_id))
        print('set_user_id的结果:', set_id_result)

        # 将新建的用户加入FaceSet
        add_face_result = api.faceset.addface(face_tokens=face_token,
                                              outer_id='check on work')
        add_face_result = json.dumps(eval(str(add_face_result)))
        add_face_result = json.loads(add_face_result)
        print('新增数目:', add_face_result['face_added'])

        return '新学生 ' + user_id + ' 注册成功'

    # 请求错误(有错误码)
    elif 'error_message' in detect_result:

        error = detect_result['error_message']
        print(error)

        return '识别失败,请重试!'

    # 其他错误(网络等原因)
    else:
        return '未知错误'
Beispiel #6
0
def savelandmarks_facepp(filename):
    api = API()
    video = loadvideo(filename)
    landmarks = []
    print('Number of Frames: %d' % (len(video)))
    cnt = 0
    for image in video:
        cv2.imwrite('temp.jpg', image)
        landmarks.append(get_landmarks_facepp(File('./temp.jpg'), api))
        cnt = cnt + 1
        print('%f%%' % (cnt / len(video) * 100))
    # Dump landmarks to file
    with open(filename.split('.')[0] + '.facepp', 'wb') as f:
        pickle.dump(landmarks, f)
 def identify(self):
     try:
         search_result = self.api.search(image_file=File(self.img_file),
                                         outer_id=self.faceset)
         face_confidence = search_result.results[0].confidence
         user_name = search_result.results[0].user_id
         if face_confidence > 50:
             self.main.name.setPlainText(user_name)
             self.speaker.speakMsg(user_name + ',你好,欢迎回来')
             self.arduino.open_door()
         else:
             self.speaker.speakMsg("对不起,没有你的记录")
     except:
         self.popupMsg.popupmsg('人脸检测API调用失败', '人脸检测')
Beispiel #8
0
def detect(filename, frame, name=None, savepath=None):
    b1 = File(filename)
    res = api.detect(
        image_file=b1
    )  #, return_attributes="gender,age,smiling,headpose,facequality,"
    #                                                       "blur,eyestatus,emotion,ethnicity,beauty,"
    #                                                     "mouthstatus,skinstatus")
    #print_result(printFuctionTitle("人脸检测"), res)
    for face in res['faces']:
        rect = face['face_rectangle']  #人脸所在的矩形框
        w, h, l, t = rect['width'], rect['height'], rect['left'], rect['top']
        #cv2.rectangle(frame,(rect['left'],rect['top']),(rect['left']+rect['width'],rect['top']+rect['height']),(0,255,0), 5)
        #cv2.imwrite(filename,frame)
        if name:
            cv2.imwrite(savepath + name + '.png', frame[t:t + h,
                                                        l:l + w])  #保存人脸图像
        return w, h, l, t
Beispiel #9
0
def train(path2):
    api.faceset.delete(outer_id='STFace', check_empty=0)
    # 1.创建一个faceSet
    ret = api.faceset.create(outer_id='STFace')

    # path2="/home/marigolci/Downloads/face_recognition-master/examples/FacialSet"

    for name in os.listdir(path2):
        faceResStr = ""
        res = api.detect(image_file=File(os.path.join(path2, str(name))))
        faceList = res["faces"]
        for index in range(len(faceList)):
            # if(index==0):
            faceResStr = faceResStr + faceList[index]["face_token"]
            # else:
            #     faceResStr = faceResStr + ","+faceList[index]["face_token"]

        api.faceset.addface(outer_id='STFace', face_tokens=faceResStr)
        connection[name] = faceResStr
        name = os.path.splitext(name)[0]
def build_gallery_probe(gallery_imgs, probe_imgs):
    # gallery info
    # Key: Face Token
    # Value: Person id
    gallery = {}
    # probe info
    # Key: Face Token
    # Value: Person id
    probe = {}
    # init api
    api = API()

    # delete useless face_set
    api.faceset.delete(outer_id='face_recognition', check_empty=0)
    # # 1.create faceSet
    ret = api.faceset.create(outer_id='face_recognition')
    #
    # # 2.add pics to faceSet(face_token)

    img_path = gb.glob(gallery_imgs)
    for img in img_path:
        faceResStr = ""
        res = api.detect(image_file=File(img))
        # get person's name
        person_name = img[-12:][0:5]
        print(person_name)
        print(res)
        faceList = res["faces"]
        for index in range(len(faceList)):
            gallery[faceList[index]["face_token"]] = person_name
            if index == 0:
                faceResStr = faceResStr + faceList[index]["face_token"]
            else:
                faceResStr = faceResStr + "," + faceList[index]["face_token"]
        api.faceset.addface(outer_id='face_recognition',
                            face_tokens=faceResStr)

    print(gallery)

    # build probe set
    img_path = gb.glob(probe_imgs)
    for img in img_path:
        faceResStr = ""
        res = api.detect(image_file=File(img))
        # get person's name
        person_name = img[-12:][0:5]
        print(person_name)
        print(res)
        faceList = res["faces"]
        probe[faceList[0]["face_token"]] = person_name

    print("probe")
    print(probe)

    json.dump(gallery, open('gallery.json', 'w'))
    json.dump(probe, open('probe.json', 'w'))
    '''   '''
    with open("./gallery.json", 'r') as g:
        gallery = json.load(g)

    with open("./probe.json", 'r') as p:
        probe = json.load(p)

    genuine_scores = []
    imposter_scores = []

    for gallery_key, gallery_value in gallery.items():
        for probe_key, probe_value in probe.items():
            result = api.compare(face_token1=gallery_key,
                                 face_token2=probe_key)
            res = {}
            res['gallery'] = gallery_value
            res['probe'] = probe_value
            res['confidence'] = result['confidence']
            if gallery_value == probe_value:
                genuine_scores.append(res)
            else:
                imposter_scores.append(res)

    json.dump(genuine_scores, open('genuine_scores.json', 'w'))
    json.dump(imposter_scores, open('imposter_scores.json', 'w'))
Beispiel #11
0
def transmit():
    # 获取图片文件 name = transmit
    img = request.files.get('transmit')

    # 定义一个图片存放的位置 存放在static下面
    path = basedir + "\static\\"

    # 图片名称
    img_name = 'transmit.jpg'

    # 图片path和名称组成图片的保存路径
    file_path = path + img_name

    # 保存图片
    img.save(file_path)

    # 开始搜索相似脸人脸信息
    search_result = api.search(image_file=File(img_transmit),
                               outer_id='check on work')
    print_result('search', search_result)

    # 整个json转化为字符串
    search_result = json.dumps(eval(str(search_result)))
    # 整个json转化为字典
    search_result = json.loads(search_result)
    print(search_result)

    # 如果成功(返回值中有results字段),返回user_id
    if 'results' in search_result:
        # results转化为字符串
        results = json.dumps(eval(str(search_result['results'])))
        # results去除首位的方括号
        results = results[1:-1]
        # result转化为元组
        results = json.loads(results)

        user_id = results["user_id"]

        # 判断结果可信度
        if results['confidence'] > 80:

            # todo 签到记录写入数据库
            # SQL 插入语句
            # mysql 初始化
            db = pymysql.connect(host="localhost",
                                 user="******",
                                 password="******",
                                 db="check_on_work")
            # 加入数据库作为历史纪录
            try:
                with db.cursor() as cursor:
                    sql = "INSERT INTO `register` (`student_id`) VALUES ('%s')" % (
                        user_id)
                    cursor.execute(sql)
                    db.commit()
            finally:
                db.close()
                pass

            # 返回user_id
            return '签到成功:' + user_id
        else:
            return '验证失败'

    # 失败返回错误信息
    elif 'error_message' in search_result:
        error = search_result['error_message']
        return error
    elif not search_result['faces']:
        return '未识别到人脸'
    else:
        return '未知错误'
luke_bowsher = './KnightbookScraping/Grade-12/Male/Luke Bowsher_male_Grade-12.png'
matt_phua = './KnightbookScraping/Grade-12/Male/Matthew Phua_male_Grade-12.png'
abby_doll = './KnightbookScraping/Grade-12/Female/Abigail Doll_female_Grade-12.png'
neha_tarkad = './KnightbookScraping/Grade-12/Female/Neha Tarakad Juneja_female_Grade-12.png'
max_dostart = './KnightbookScraping/Grade-12/Male/Max Dostart-Meers Dostart Meers_male_Grade-12.png'
paras_arora = './KnightbookScraping/Grade-12/Male/Paras Arora_male_Grade-12.png'
joseph_ma = './KnightbookScraping/Grade-12/Male/Joseph Ma Chou_male_Grade-12.png'


#此方法专用来打印api返回的信息
def print_result(hit, result):
    print(hit)
    print('\n'.join("  " + i for i in pformat(result, width=75).split('\n')))


def printFuctionTitle(title):
    return "\n" + "-" * 60 + title + "-" * 60


# 初始化对象,进行api的调用工作
api = API()

#人脸融合:https://console.faceplusplus.com.cn/documents/20813963
#template_rectangle参数中的数据要通过人脸检测api来获取
mergeFace_res = api.mergeface(template_file=File(matt_phua),
                              merge_file=File(santa))
print_result("mergeFace", mergeFace_res)

# Start Fusion
PythonSDK.ImagePro.ImageProCls.getMergeImg(mergeFace_res["result"])
Beispiel #13
0
# 2,向faceSet中添加人脸信息(face_token)
# 3,开始搜索

# 初始化对象,进行api的调用工作
api = API()

# 删除无用的人脸库,这里删除了,如果在项目中请注意是否要删除
api.faceset.delete(outer_id='testset', check_empty=0)
# 1.创建一个faceSet
ret = api.faceset.create(outer_id='testset',
                         display_name='测试用set',
                         tags='useless')

# 2.向faceSet中添加人脸信息(face_token)
faceResStr = ""
res = api.detect(image_file=File(faceSet_img))

faceList = res["faces"]

for index in range(len(faceList)):
    if index == 0:
        faceResStr = faceResStr + faceList[index]["face_token"]
    else:
        faceResStr = faceResStr + "," + faceList[index]["face_token"]

api.faceset.addface(outer_id='testset', face_tokens=faceResStr, user_id='bbb')

# 3.开始搜索相似脸人脸信息
search_result = api.search(image_file=File(face_search_img),
                           outer_id='testset')
print_result('search', search_result)
#res = api.detect(image_url=detech_img_url, return_attributes="gender,age,smiling,headpose,facequality,"
#"blur,eyestatus,emotion,ethnicity,beauty,"
#"mouthstatus,skinstatus")
#print_result(printFuctionTitle("人脸检测"), res)
img = cv2.imread('./imgResource/img.jpg')
cv2.namedWindow('raw pic')
cv2.imshow('raw pic', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

faceStr = []
face_string = ''
face_string_2 = ''
api.faceset.delete(outer_id='test2', check_empty=0)
ret = api.faceset.create(outer_id='test2')
res = api.detect(image_file=File(faceSet_img), return_attributes='emotion')
print_result("detect resule", res)

faceList = res["faces"]

print(len(faceList))
for i in range(len(faceList)):
    api.faceset.addface(outer_id='test2',
                        face_tokens=faceList[i]["face_token"])
    print(faceList[i]["face_token"])

for i in range(len(faceList)):
    faceStr.append(faceList[i]["face_token"])

r = api.faceset.getdetail(outer_id='test2')
print_result('faceset结果', r)
Beispiel #15
0
# # 开始抠像
# PythonSDK.ImagePro.ImageProCls.getSegmentImg("./imgResource/demo-segment.b64")

# -----------------------------------------------------------证件识别部分-------------------------------------------
# 身份证识别:https://console.faceplusplus.com.cn/documents/5671702
# ocrIDCard_res = api.ocridcard(image_url="https://gss0.bdstatic.com/94o3dSag_xI4khGkpoWK1HF6hhy/baike/"
#                                         "c0%3Dbaike80%2C5%2C5%2C80%2C26/sign=7a16a1be19178a82da3177f2976a18e8"
#                                         "/902397dda144ad34a1b2dcf5d7a20cf431ad85b7.jpg")
# print_result('ocrIDCard', ocrIDCard_res)

# 银行卡识别:https://console.faceplusplus.com.cn/documents/10069553
# ocrBankCard_res = api.ocrbankcard(image_url="http://pic.5tu.cn/uploads/allimg/1107/191634534200.jpg")
# print_result('ocrBankCard', ocrBankCard_res)

# -----------------------------------------------------------图像识别部分-------------------------------------------
# 人脸融合:https://console.faceplusplus.com.cn/documents/20813963
# template_rectangle参数中的数据要通过人脸检测api来获取
# mergeFace_res = api.mergeface(template_file=File(segment_img), merge_file=File(merge_img),
#                               template_rectangle="130,180,172,172")
# print_result("mergeFace", mergeFace_res)
#
# # 开始融合
# PythonSDK.ImagePro.ImageProCls.getMergeImg(mergeFace_res["result"])

# 人脸关键点检测: https://api-cn.faceplusplus.com/facepp/v1/face/thousandlandmark

landmarks = api.thousandlandmark(image_file=File(face_search_img),
                                 return_landmark="all")

print_result(printFuctionTitle("人脸关键点检测"), landmarks)