Beispiel #1
0
def print_monthly_ks(fund_ts, years, ostream):
    """
    @summary prints monthly returns for given fund and years to the given stream
    @param fund_ts: pandas fund time series
    @param years: list of years to print out
    @param ostream: stream to print to
    """
    ostream.write("    ")
    month_names = du.getMonthNames()
    for name in month_names:
        ostream.write("    " + str(name))
    ostream.write("\n")

    # mrets = tsu.monthly(fund_ts)
    m_str = []

    for i, year in enumerate(years):
        months = du.getMonths(fund_ts, year)
        for j, month in enumerate(months):
            if i == 0 and j < 3:
                m_str.append('    ')
            else:
                # dt_st = max(fund_ts.index[0], dt.datetime(year, month, 1)-relativedelta(months=6))
                dt_st = fund_ts.index[0]
                dt_today = dt.datetime(year, month, 1) - relativedelta(months=2)
                dt_end = min(dt.datetime(year, month, 1) + relativedelta(months=1) + dt.timedelta(hours=-5), fund_ts.index[-1])
                fund_ts_past = fund_ts.ix[dt_st: dt_today]
                fund_ts_month = fund_ts.ix[dt_today: dt_end]
                ks, p = ks_statistic_calc(fund_ts_past, fund_ts_month)
                if not(ks == -1 or p == -1):
                    if ks < p:
                        m_str.append('PASS')
                    else:
                        m_str.append('FAIL')
                else:
                    m_str.append('    ')

    i = 0
    for year in years:
        ostream.write(str(year))
        months = du.getMonths(fund_ts, year)
        for k in range(1, months[0]):
            ostream.write("       ")
        for month in months:
            ostream.write("%7s" % (m_str[i]))
            i = i + 1
        ostream.write("\n")
Beispiel #2
0
def monthly(funds):
    """
    @summary Computes monthly returns centered around 0
    @param funds: A time series containing daily fund values
    @return an array of monthly returns
    """
    funds2 = []
    last_last_month = -1
    years = qsdateutil.getYears(funds)
    for year in years:
        months = qsdateutil.getMonths(funds, year)
        for month in months:
            last_this_month = qsdateutil.getLastDay(funds, year, month)
            if last_last_month == -1 :
                last_last_month=qsdateutil.getFirstDay(funds, year, month)
            if type(funds).__name__=='TimeSeries':
                funds2.append(funds[last_this_month]/funds[last_last_month]-1)
            else:
                funds2.append(funds.xs(last_this_month)/funds.xs(last_last_month)-1)
            last_last_month = last_this_month
    return(funds2)
Beispiel #3
0
def average_monthly(funds):
    """
    @summary Computes average monthly returns centered around 0
    @param funds: A time series containing daily fund values
    @return an array of average monthly returns
    """
    rets = daily(funds)
    ret_i = 0
    years = qsdateutil.getYears(funds)
    averages = []
    for year in years:
        months = qsdateutil.getMonths(funds, year)
        for month in months:
            avg = 0
            count = 0
            days = qsdateutil.getDays(funds, year, month)
            for day in days:
                avg += rets[ret_i]
                ret_i += 1
                count += 1
            averages.append(float(avg) / count)
    return (averages)
def average_monthly(funds):
    """
    @summary Computes average monthly returns centered around 0
    @param funds: A time series containing daily fund values
    @return an array of average monthly returns
    """
    rets = daily(funds)
    ret_i = 0
    years = qsdateutil.getYears(funds)
    averages = []
    for year in years:
        months = qsdateutil.getMonths(funds, year)
        for month in months:
            avg = 0
            count = 0
            days = qsdateutil.getDays(funds, year, month)
            for day in days:
                avg += rets[ret_i]
                ret_i += 1
                count += 1
            averages.append(float(avg) / count)
    return(averages)    
Beispiel #5
0
def print_monthly_returns(fund_ts, years, ostream):
    """
    @summary prints monthly returns for given fund and years to the given stream
    @param fund_ts: pandas fund time series
    @param years: list of years to print out
    @param ostream: stream to print to
    """
    ostream.write("    ")
    month_names = du.getMonthNames()
    for name in month_names:
        ostream.write("    " + str(name))
    ostream.write("\n")
    i = 0
    mrets = tsu.monthly(fund_ts)
    for year in years:
        ostream.write(str(year))
        months = du.getMonths(fund_ts, year)
        for k in range(1, months[0]):
            ostream.write("       ")
        for month in months:
            ostream.write(" % + 6.2f" % (mrets[i]*100))
            i += 1
        ostream.write("\n")
Beispiel #6
0
def reportFunctionality(funds, symbols,filename=sys.stdout):
	if(len(symbols)!=0):
		funds2=runOther(funds,symbols)
		arg2=1
	else:
		arg2=0

	if(filename==sys.stdout):
		html_file=sys.stdout
	else:
		html_file = open(filename,"w")
	
	#top
	html_file.write("<HTML>\n")
	html_file.write("<HEAD>\n")	
	html_file.write("<TITLE>QSTK Generated Report from "+readableDate(funds.index[0])+" to "+readableDate(funds.index[-1])+"</TITLE>\n")
	html_file.write("</HEAD>\n\n")
	html_file.write("<BODY><CENTER>\n\n")
	
	years=du.getYears(funds)

	html_file.write("<H2>Performance Summary for "+sys.argv[1]+"</H2>\n")
	html_file.write("For the dates "+readableDate(funds.index[0])+" to "+readableDate(funds.index[-1])+"\n")


	html_file.write("<H3>Yearly Performance Metrics</H3>\n")


	html_file.write("<TABLE CELLPADDING=10>\n")
	html_file.write("<TR><TH></TH>\n")
	for year in years:
		html_file.write("<TH>"+str(year)+"</TH>\n")
	html_file.write("</TR>\n")

	#yearly return
	html_file.write("<TR>\n")
	html_file.write("<TH>Annualized Return:</TH>\n")
	for year in years:
		retur=getYearReturn(funds,year)
		html_file.write("<TD>\n")
		print >>html_file, "%.2f\n" % (retur*100) 
		html_file.write("%</TD>\n")
	html_file.write("</TR>\n")

	#yearly winning days
	html_file.write("<TR>\n")
	html_file.write("<TH>Winning Days:</TH>\n")
	for year in years:
		# change to compare to inputs - ratio=tsu.getYearRatio(funds,year)
		if(arg2!=0):
			win=getWinningDays(funds,funds2,year)
			html_file.write("<TD>\n")
			print >>html_file, "%.2f\n" % (win*100)
			html_file.write("%</TD>\n")
		else:
			html_file.write("<TD>No comparison.</TD>\n")
	html_file.write("</TR>\n")

	#max draw down
	html_file.write("<TR>\n")
	html_file.write("<TH>Max Draw Down:</TH>\n")
	for year in years:
		drop=getYearMaxDrop(funds,year)
		html_file.write("<TD>\n")
		print >>html_file, "%.2f" % (drop*100)
		html_file.write("%</TD>\n")
	html_file.write("</TR>\n")

	#yearly sharpe ratio using daily rets
	html_file.write("<TR>\n")
	html_file.write("<TH>Daily Sharpe Ratio:</TH>\n")
	for year in years:
		ratio=tsu.getYearRatio(funds,year)
		html_file.write("<TD>\n")
		print >>html_file, "%.2f\n" % ratio
		html_file.write("</TD>\n")
	html_file.write("</TR>\n")


	#yearly sharpe ratio using monthly rets
	html_file.write("<TR>\n")
	html_file.write("<TH>Monthly Sharpe Ratio:</TH>\n")
	for year in years:
		ratio=getYearRatioUsingMonth(funds,year)
		html_file.write("<TD>\n")
		print >>html_file, "%.2f\n" % ratio
		html_file.write("</TD>\n")
	html_file.write("</TR>\n")
	
	html_file.write("</TABLE>\n")
	html_file.write("<BR/>\n\n")

	vals=funds.values;
	vals2=np.append(vals,funds2.values,2)


	df=DataMatrix(index=funds.index,data=funds.values, columns=['fund'])
	df2=DataMatrix(index=funds2.index,data=funds2.values,columns=['other'])
	df['other']=df2['other']

	corrcoef=numpy.corrcoef(funds.values[0:-1],funds2.values)
	html_file.write("<H3>Correlation=")
	print >>html_file, "%.2f\n" % corrcoef[0][1]
	html_file.write("<H3>\n")
	html_file.write("<BR/>\n\n")


	#montly returns
	mrets=tsu.monthly(funds)
	html_file.write("<H2>Monthly Returns</H2>\n")
	html_file.write("<TABLE CELLPADDING=10>\n")
	html_file.write("<TR>\n")
	html_file.write("<TH></TH>\n")
	month_names=du.getMonthNames()
	for name in month_names:
		html_file.write("<TH>"+str(name)+"</TH>\n")
	html_file.write("</TR>\n")

	i=0
	for year in years:
		html_file.write("<TR>\n")
		html_file.write("<TH>"+str(year)+"</TH>\n")
		months=du.getMonths(funds,year)
		for month in months:
			html_file.write("<TD>\n")
			print >>html_file, "%.2f\n" % (mrets[i]*100)
			html_file.write("%</TD>\n")
			i+=1
		html_file.write("</TR>\n")
	html_file.write("</TABLE>\n")
	html_file.write("<BR/>\n\n")

	#fund value graph
	fundlist=[];
	fundlist.append(funds)
	fundlist.append(funds2)
	converter.fundsToPNG(fundlist,'funds.png')
	html_file.write("<IMG SRC=\'./funds.png\'/>\n")
	html_file.write("<BR/>\n\n")
	
	#end
	html_file.write("</CENTER></BODY>\n\n")
	html_file.write("</HTML>")