Beispiel #1
0
def fit_distribution(run_num,
                     attr1='FitResult_Energy',
                     attr2='FitResult_XtalNum==0',
                     draw=False):
    """give an output file number from fitter,
    fit peak to find mean and variance with their errors"""
    #in_file = TFile("/home/newg2/Workspace/L1Tests/crunchedFiles/gm2uw_%05i_analysis.root" % run_num)
    in_file = TFile(
        "/Users/kimsiang/Work/UWCENPA/gm2/SLAC2016/Data/gm2uw_run%05i_analysis.root"
        % run_num)
    tree = in_file.Get("slacAnalyzer/eventTree")
    tree.Draw("%s>>h1(200)" % attr1, attr2, "goff")
    hist = gROOT.FindObject("h1")
    mean = hist.GetMean()
    std = hist.GetRMS()
    low = mean - 3 * std
    high = mean + 3 * std
    tree.Draw("%s>>h2(100,%s,%s)" % (attr1, str(low), str(high)), attr2,
              "goff")
    hist = gROOT.FindObject("h2")
    hist.Fit("gaus", "0q")
    func = hist.GetFunction("gaus")
    out = (func.GetParameter(1), func.GetParameter(2), func.GetParError(1),
           func.GetParError(2))
    if draw:
        gStyle.SetOptFit(1)
        hist.Draw()
        hist.GetFunction("gaus").Draw("same")
        raw_input('any key to continue')
    in_file.Close()
    return out
def plot_inpix(inputfilename=None,
               histofilename="EfficiencyHistos.root",
               basecut="nTelTracks == 1",
               matchcut="hasHit == 0",
               usize=0.0,
               vsize=0.0,
               ubins=10,
               vbins=10):

    if inputfilename == None:
        return None

    total_cut = TCut(basecut)
    pass_cut = TCut(basecut) + TCut(matchcut)

    rawfile = gROOT.FindObject(inputfilename)
    if rawfile:
        rawfile.Close()
    rawfile = TFile(inputfilename, 'READ')

    histofile = gROOT.FindObject(histofilename)
    if histofile:
        histofile.Close()
    histofile = TFile(
        histofilename, 'RECREATE',
        'Efficiency histos created from input file ' + inputfilename)

    # Get access to tracks
    tree = rawfile.Get("Track")

    h_track_total = TH2F("h_track_total", "", ubins, -usize, +usize, vbins,
                         -vsize, vsize)
    tree.Draw(" v_fit:u_fit >> +h_track_total", total_cut, "goff")
    h_track_total.GetXaxis().SetTitle("u_fit [mm]")
    h_track_total.GetYaxis().SetTitle("v_fit [mm]")
    h_track_total.GetZaxis().SetTitle("tracks")
    h_track_total.SetStats(0)

    h_track_pass = TH2F("h_track_pass", "", ubins, -usize, usize, vbins,
                        -vsize, +usize)
    tree.Draw(" v_fit:u_fit >> +h_track_pass", pass_cut, "goff")
    h_track_pass.GetXaxis().SetTitle("u_fit [mm]")
    h_track_pass.GetYaxis().SetTitle("v_fit [mm]")
    h_track_pass.GetZaxis().SetTitle("tracks")
    h_track_pass.SetStats(0)

    h_efficiency = h_track_pass
    h_efficiency.SetName("h_efficiency")
    h_efficiency.Divide(h_track_total)
    h_efficiency.SetTitle("")
    h_efficiency.SetXTitle("u_fit [mm]")
    h_efficiency.SetYTitle("v_fit [mm]")
    h_efficiency.SetZTitle("efficiency")
    h_efficiency.SetStats(0)

    # write the tree into the output file and close the file
    histofile.Write()
    histofile.Close()
    rawfile.Close()
Beispiel #3
0
def clear_hist(sample):
    for s in attr:
        if gROOT.FindObject( sample+s ) != None:
            hh = gROOT.FindObject( sample+s ) #to find the histogram
            hh.Delete()    #to delete the histogram
        if gROOT.FindObject( sample+s+'CHS' ) != None:
            hhchs = gROOT.FindObject( sample+s+'CHS' ) #to find the histogram
            hhchs.Delete()    #to delete the histogram
Beispiel #4
0
def plot(inputfilename = None, histofilename = "OccupancyHistos.root", ucells=0,vcells=0):
  
  if inputfilename == None:
    return None
  
  rawfile = gROOT.FindObject( inputfilename )
  if rawfile:
    rawfile.Close()
  rawfile = TFile( inputfilename, 'READ' )
  
  histofile = gROOT.FindObject( histofilename )
  if histofile:
    histofile.Close()
  histofile = TFile( histofilename, 'RECREATE', 'Occupancy histos created from input file ' + inputfilename )
  
  
  # Get access to hits 
  tree = rawfile.Get("Hit")

  # Only count hits not matched to a track
  basecut = TCut("hasTrack == -1")

  # Number of events 
  events = rawfile.Get("Event").GetEntries()
   
  # Compute occupancy for v cells 
  h_occupancy_v = TH1F("h_occupancy_v","",vcells,0,vcells)
  tree.Draw("cellV_hit >> +h_occupancy_v", basecut ,  "goff")
  h_occupancy_v.Scale(1.0/(ucells*events ) ) 
  h_occupancy_v.SetTitle("")
  h_occupancy_v.GetXaxis().SetTitle("cellV [cellID]")
  h_occupancy_v.GetYaxis().SetTitle("occupancy") 
 
  # Compute occupancy for u cells 
  h_occupancy_u = TH1F("h_occupancy_u","",ucells,0,ucells)
  tree.Draw("cellU_hit >> +h_occupancy_u", basecut ,  "goff")
  h_occupancy_u.Scale(1.0/(vcells*events ) ) 
  h_occupancy_u.SetTitle("")
  h_occupancy_u.GetXaxis().SetTitle("cellU [cellID]")
  h_occupancy_u.GetYaxis().SetTitle("occupancy") 

  # Compute occupancy for u:v cells 
  h_occupancy = TH2F("h_occupancy","",ucells,0,ucells,vcells,0,vcells)
  tree.Draw("cellV_hit:cellU_hit >> +h_occupancy", basecut ,  "goff")
  h_occupancy.Scale(1.0/( 1.0*events ) ) 
  h_occupancy.SetTitle("")
  h_occupancy.GetXaxis().SetTitle("cellU [cellID]")
  h_occupancy.GetYaxis().SetTitle("cellV [cellID]")
  h_occupancy.GetYaxis().SetTitle("occupancy") 

 
  # write the tree into the output file and close the file
  histofile.Write()
  histofile.Close()
  rawfile.Close()
Beispiel #5
0
def study_cal_eff():
    # Import data and MC files:
    f_data = TFile.Open("../trees_5gev_e/data_nn50.root", 'read')
    t_data = f_data.data

    f_mc = TFile.Open("../trees_5gev_e/lucas.root", 'read')
    t_mc = f_mc.lumical
    t_mc.AddFriend("lumical_noise=lumical",
                   "../trees_5gev_e/lucas_geocuts_noise_cal.root")
    t_mc.AddFriend("lumical_eff=lumical",
                   "../trees_5gev_e/lucas_geocuts_noise_cal_eff.root")

    c = TCanvas()
    hs = THStack("hs", "title")

    t_data.Draw("energy*(layer > 1)>>h_data50(200, 0, 50)",
                "energy*(layer > 1) > 0")
    h_data50 = gROOT.FindObject("h_data50")
    h_data50.SetTitle("Data")
    h_data50.SetLineWidth(2)
    h_data50.SetLineColor(1)
    hs.Add(h_data50, "histo")

    t_mc.Draw("cal_energy_new/0.0885>>h_mc(200, 0, 50)",
              "cal_energy_new/0.0885 > 0", "", 100000)
    h_mc = gROOT.FindObject("h_mc")
    h_mc.SetTitle("MC smearing and cal eff")
    h_mc.SetLineWidth(2)
    h_mc.SetLineColor(3)
    h_mc.Scale(t_data.GetEntries() / 100000)  #t_mc.GetEntries())
    hs.Add(h_mc, "histo")

    t_mc.Draw("cal_energy_smeared7/0.0885>>h_mc7(200, 0, 50)",
              "cal_energy_smeared7/0.0885 > 0", "", 100000)
    h_mc7 = gROOT.FindObject("h_mc7")
    h_mc7.SetTitle("MC smearing=0.7*#sigma")
    h_mc7.SetLineWidth(2)
    h_mc7.SetLineColor(2)
    h_mc7.Scale(t_data.GetEntries() / 100000)  #t_mc.GetEntries())
    hs.Add(h_mc7, "histo")
    print(h_mc7.GetEntries())
    hs.Draw("nostack")
    hs.SetTitle(
        "Deposited energy in the pads of calorimeter;E, [MIP]; N_{hits}")

    c.SetGridx()
    c.SetGridy()
    c.BuildLegend()
    c.Update()
    input("wait")
Beispiel #6
0
    def test2ObjectDestructionCallback(self):
        """Test ROOT notification on object destruction"""

        # create ROOT traced object
        a = TH1F('memtest_th1f', 'title', 100, -1., 1.)

        # locate it
        self.assertEqual(a, gROOT.FindObject('memtest_th1f'))

        # destroy it
        del a

        # should no longer be accessible
        self.assert_(not gROOT.FindObject('memtest_th1f'))
Beispiel #7
0
 def MakeHisto(self):
     file_handle = TFile.Open(self.filepath)
     tree = file_handle.Get(self.tree)
     if not tree:
         logging.error("Could not open tree '%s' from file '%s'" %
                       (self.tree, self.filename))
     if self.weight and self.weight != '':
         tree.Draw(
             self.variable + '>>' + self.name + '(' + str(self.bins) + ',' +
             str(self.xmin) + ',' + str(self.xmax) + ')',
             self.weight + '*(' + self.cut + ')', "goff")
     else:
         tree.Draw(
             self.variable + '>>' + self.name + '(' + str(self.bins) + ',' +
             str(self.xmin) + ',' + str(self.xmax) + ')', self.cut, "goff")
     histo = gROOT.FindObject(self.name)
     histo.SetTitle(self.title + ' (%s sample)' % self.filename + ';' +
                    self.xlabel + ';' + self.ylabel + ' / %0.2f' %
                    (histo.GetBinWidth(1)))
     self.histo = copy.deepcopy(histo)
     file_handle.Close()
     # Overflow #
     self.histo.SetBinContent(
         1,
         self.histo.GetBinContent(0) + self.histo.GetBinContent(1))
     self.histo.SetBinContent(
         self.histo.GetNbinsX(),
         self.histo.GetBinContent(self.histo.GetNbinsX()) +
         self.histo.GetBinContent(self.histo.GetNbinsX() + 1))
Beispiel #8
0
def Hist_create(hist_name):
    x_index = []
    x_count = []
    x_index_out = []

    hist_o = gROOT.FindObject(hist_name)

    if "TH1" in hist_o.ClassName():
        print ""
        cal_ans = raw_input("Calibrate? [y / n] ")
        Get_Data(hist_name, x_index, x_count)
        if cal_ans == "y":
            Calibrate(x_index, x_index_out)
            print ""
            print "Drawing graph..."
            plt.plot(x_index_out, x_count, "m")
            plt.show()
        else:
            print "Drawing graph..."
            print ""
            #val = Get_Data(hist_name, x_index, x_count)
            Draw_Hist(x_index, x_count)

    if "TH2" in hist_o.ClassName():
        #print "YES"
        #val_x = 0
        #val_y = 0
        y_index = []
        z_count = []
        Get_Data_2D(hist_name, x_index, y_index, z_count)  #, val_x, val_y)
        Draw_2D(x_index, y_index, z_count)
def contourPlot(tree, pmin, pmax, bestFit=(10.1, 1.5)):
    n = tree.Draw("r_" + to_do_first + ":r_"+to_do, "%f <= quantileExpected && quantileExpected <= %f && quantileExpected != 1" % (pmin,pmax), "")
    print "Drawing for r_%s:%s, %f <= quantileExpected && quantileExpected <= %f && quantileExpected != 1 yielded %d points" % (to_do_first, to_do,pmin, pmax, n)
    gr = gROOT.FindObject("Graph").Clone()

    xi = gr.GetX()
    yi = gr.GetY()
    npoints = gr.GetN()
    for i in range(npoints):
       xi[i] -= bestFit[0]
       yi[i] -= bestFit[1]

    def compArg(i, j):
        return 1 if TGraph.CompareArg(gr, i, j) else -1

    sorted_points = sorted(range(npoints), cmp=compArg)
    sorted_graph = TGraph(npoints+1)
    for n,i in enumerate(sorted_points):
        sorted_graph.SetPoint(n, xi[i], yi[i])
    sorted_graph.SetPoint(npoints, xi[sorted_points[0]],
                                   yi[sorted_points[0]])

    xi_sorted = sorted_graph.GetX()
    yi_sorted = sorted_graph.GetY()

    for i in range(npoints+1):
       xi_sorted[i] += bestFit[0]
       yi_sorted[i] += bestFit[1]

    return sorted_graph
Beispiel #10
0
def study_geo_cuts():
    # Import data and MC files:
    f_data = TFile.Open("../trees_5gev_e/data_nn50.root", 'read')
    t_data = f_data.data

    f_mc = TFile.Open("../trees_5gev_e/lucas.root", 'read')
    t_mc = f_mc.lumical
    t_mc.AddFriend("lumical_tr_clusters=lumical",
                   "../trees/lucas_5gev_e_tr_clusters.root")

    c = TCanvas("tr1_mc_hit_map")

    t_data.Draw("cal_hit_pad:cal_hit_sector>>h_data(4, 0, 4, 64, 0, 64)",
                "cal_hit_layer == 6", "colz")
    h_data = gROOT.FindObject("h_data")
    h_data.SetTitle("Data: hit map in tracker 2; sector, [0-3]; pad, [0-63]")
    h_data.SetStats(0)

    # t_mc.Draw("tr1_pad:tr1_sector>>h_mc(4, 0, 4, 64, 0, 64)", "", "colz")
    # h_mc = gROOT.FindObject("h_mc")
    # h_mc.SetTitle("MC: hit map in tracker 1; sector, [0-3]; pad, [0-63]")
    # h_mc.SetStats(0)

    c.SetLogz()
    c.Update()
    input("wait")
Beispiel #11
0
 def MakeHisto(self):
     file_handle = TFile.Open(self.filepath)
     tree = file_handle.Get(self.tree)
     if not tree:
         logging.error("Could not open tree '%s' from file '%s'"%(self.tree,self.filename))
     first_arg = self.variable+'>>'+self.name+'('+str(self.bins)+','+str(self.xmin)+','+str(self.xmax)+')'
     if self.weight and self.weight != '' and self.cut != '':
         second_arg = self.weight + "* (" + self.cut + ")"
     elif self.weight and self.weight != '':
         second_arg = self.weight
     elif self.cut != '':
         second_arg = self.cut
     else:
         second_arg = ''
     tree.Draw(first_arg,second_arg,"goff")    
     histo = gROOT.FindObject(self.name)
     try: 
         histo.ClassName()
     except ReferenceError:
         raise RuntimeError('Could not produce histogram %s'%self.name)
     histo.SetTitle(self.title+';'+self.xlabel+';'+self.filename+' '+self.ylabel+' / %0.2f'%(histo.GetBinWidth(1)))
     self.histo = copy.deepcopy(histo)
     file_handle.Close()
     # Overflow #
     self.histo.SetBinContent(1,self.histo.GetBinContent(0)+self.histo.GetBinContent(1))
     self.histo.SetBinContent(self.histo.GetNbinsX(),self.histo.GetBinContent(self.histo.GetNbinsX())+self.histo.GetBinContent(self.histo.GetNbinsX()+1))
Beispiel #12
0
def B_Sub_Work(hist_name, it, b_num, count):

    hist_o = gROOT.FindObject(hist_name)
    s = TSpectrum()
    B_hist = s.Background(hist_o, it, "same")

    b_x = []
    b_count = []
    nb_x = []
    nb_count = []

    b_x_max = B_hist.GetNbinsX()
    i = 0
    while i < b_x_max:  #Iterates over all the bins getting their content
        b_count.append(B_hist.GetBinContent(i))
        b_x.append(i)
        i += 1

    nb_x_max = hist_o.GetNbinsX()
    j = 0
    while j < nb_x_max:  #Iterates over all the bins getting their content
        nb_count.append(hist_o.GetBinContent(j))
        nb_x.append(j)
        j += 1

    k = 0
    while k < len(b_x):
        count.append(nb_count[k] - b_count[k])
        b_num.append(k)
        k += 1
Beispiel #13
0
def def_matrix():
    edata_events = experimental_events()[1]
    f1 = TFile("histograms/mc.root")
    ntuple = gROOT.FindObject('Tree')
    i = 0
    j = 0
    NtrueMC = array('d')
    while i < N:
        cut1 = "m3pimc > " + str(list[i]) + " && m3pimc < " + str(list[i + 1])
        Nev0 = float(ntuple.GetEntries(cut1))
        NtrueMC.append(Nev0)
        while j < N:
            if abs(i - j) < 14:
                cut2 = "m3pi > " + str(list[j]) + " && m3pi < " + str(
                    list[j + 1])
                Nev = ntuple.GetEntries(cut2 + " && " + cut1)
                MAT[i][j] = Nev / edata_events[i]  #/Nev0
            j = j + 1
        i = i + 1
        j = 0
    print(MAT)
    #plt.imshow(MAT)
    #plt.colorbar()
    #plt.show()
    np.savetxt('Matrix2.txt', MAT, fmt='%.1f')
    np.savetxt('NtrueMC.txt', NtrueMC, fmt='%.1f')
    input("wait")
    return 1
Beispiel #14
0
def study_trigger():
    # Import data and MC files:
    f_data = TFile.Open("../trees_5gev_e/.root", 'read')
    t_data = f_data.data

    f_mc = TFile.Open("../trees_5gev_e/lucas.root", 'read')
    t_mc = f_mc.lumical
    t_mc.AddFriend("lumical_tr_clusters=lumical", "../trees_5gev_e/.root")

    c = TCanvas()

    t_data.Draw("tr1_n_clusters>>h_data(6, 0, 6)")
    h_data = gROOT.FindObject("h_data")
    h_data.SetTitle("Data")
    h_data.SetLineWidth(2)
    h_data.SetLineColor(1)

    t_mc.Draw("tr1_n_hits>>h_mc(6, 0, 6)")
    h_mc = gROOT.FindObject("h_mc")
    h_mc.SetTitle("MC")
    h_mc.SetLineWidth(2)
    h_mc.SetLineColor(2)
    h_mc.Scale(t_data.GetEntries() / t_mc.GetEntries())

    t_mc.Draw("tr1_n_clusters>>h_mc2(6, 0, 6)", "n_triggers == 3")
    h_mc2 = gROOT.FindObject("h_mc2")
    h_mc2.SetTitle("MC w/ trigger")
    h_mc2.SetLineWidth(2)
    h_mc2.SetLineColor(4)
    h_mc2.Scale(t_data.GetEntries() / t_mc.GetEntries())

    hs = THStack("hs", "title")
    hs.Add(h_data, "histo")
    hs.Add(h_mc, "histo")
    hs.Add(h_mc2, "histo")
    hs.Draw("nostack")
    hs.SetTitle(
        "Number of clusters in the 1st tracker;N_{particles}; N_{events}")

    c.SetGridx()
    c.SetGridy()
    c.BuildLegend()
    c.Update()
    input("wait")
Beispiel #15
0
def BestFit(tree):
    n = tree.Draw("limit>>h1", "quantileExpected==-1", "")
    h1 = gROOT.FindObject("h1").Clone()
    if h1.GetEntries() > 1:
        print("ERROR Best Fit hist has more than 1 entries ")
        sys.exit()
    bestFit = h1.GetMean()

    print("BestFit from data_file: %s" % bestFit)
    return bestFit
Beispiel #16
0
    def test07ObjectValidity(self):
        """Test object validity checking"""

        t1 = TObject()

        self.assert_(t1)
        self.assert_(not not t1)

        t2 = gROOT.FindObject("Nah, I don't exist")

        self.assert_(not t2)
Beispiel #17
0
def get_canvas(cname="c1"):
    """Return the canvas named CNAME.
Create it if it doesn't exist.
"""
    global _canvas
    _canvas = gROOT.FindObject(cname)
    if not _canvas:
        _canvas = TCanvas(cname, cname, 700, 600)
        _canvas.SetLeftMargin(0.15)
        _canvas.SetBottomMargin(0.15)
        _canvas.SetLogy(0)
    return _canvas
Beispiel #18
0
def Get_Data(hist, index_out, count_out):

    hist_o = gROOT.FindObject(hist)

    x_max = hist_o.GetNbinsX()
    #print x_max
    #val = hist_o.GetBinContent(x_max)
    i = 0
    while i < x_max:  #Iterates over all the bins getting their content
        count_out.append(hist_o.GetBinContent(i))
        index_out.append(i)
        i += 1
Beispiel #19
0
 def getRunHisto(self, f):
     print("Extracting run hist from file %s" % f)
     try:
         root_file = TFile.Open(f)
         tree = root_file.Get("Runs")
         tree.Draw("run>>h(" + str(self.run_stop - self.run_start) + "," +
                   str(self.run_start) + "," + str(self.run_stop) + ")")
         h = copy.deepcopy(gROOT.FindObject("h"))
         root_file.Close()
         return h
     except Exception as e:
         print("Exception %s for file %s" % (e, f))
    def MakeHisto(self):
        file_handle = TFile.Open(self.filepath)
        tree = file_handle.Get(self.tree)
        if not tree:
            logging.error("Could not open tree '%s' from file '%s'" %
                          (self.tree, self.filename))
        first_arg = self.variabley + ':' + self.variablex + '>>' + self.name + '(' + str(
            self.binsx) + ',' + str(self.xmin) + ',' + str(
                self.xmax) + ',' + str(self.binsy) + ',' + str(
                    self.ymin) + ',' + str(self.ymax) + ')'
        if self.weight and self.weight != '' and self.cut != '':
            second_arg = self.weight + "* (" + self.cut + ")"
        elif self.weight and self.weight != '':
            second_arg = self.weight
        elif self.cut != '':
            second_arg = self.cut
        else:
            second_arg = ''
        tree.Draw(first_arg, second_arg, "goff " + self.option)
        self.histo = copy.deepcopy(gROOT.FindObject(self.name))
        if self.normalizeX:
            for x in range(0, self.histo.GetNbinsX() + 1):
                sum_y = 0
                for y in range(0, self.histo.GetNbinsY() + 1):
                    sum_y += self.histo.GetBinContent(x, y)
                if sum_y == 0:
                    continue
                for y in range(0, self.histo.GetNbinsY() + 1):
                    self.histo.SetBinContent(
                        x, y,
                        self.histo.GetBinContent(x, y) / sum_y)
            self.title += ' [Normalized]'

        if self.normalizeY:
            for y in range(0, self.histo.GetNbinsY() + 1):
                sum_x = 0
                for x in range(0, self.histo.GetNbinsX() + 1):
                    sum_x += self.histo.GetBinContent(x, y)
                if sum_x == 0:
                    continue
                for x in range(0, self.histo.GetNbinsX() + 1):
                    self.histo.SetBinContent(
                        x, y,
                        self.histo.GetBinContent(x, y) / sum_x)
            self.title += ' [Normalized]'
        self.histo.SetTitle(self.title + ';' + self.xlabel + ';' +
                            self.ylabel + ';' + self.zlabel +
                            ' / %0.2f / %0.2f' %
                            (self.histo.GetXaxis().GetBinWidth(1),
                             self.histo.GetYaxis().GetBinWidth(1)))
        self.histo.SetMinimum(0)
        file_handle.Close()
Beispiel #21
0
def ToyFit(tree, data_obs):
    x = tree.Draw("limit>>h2")
    h2 = gROOT.FindObject("h2").Clone()
    nentries = h2.GetEntries()
    h2.Scale(1. / h2.Integral())
    cdf = h2.GetCumulative()
    CL99 = cdf.GetBinCenter(cdf.FindFirstBinAbove(0.99))
    CL95 = cdf.GetBinCenter(cdf.FindFirstBinAbove(0.95))
    CL90 = cdf.GetBinCenter(cdf.FindFirstBinAbove(0.90))
    p_value = 1 - cdf.GetBinContent(cdf.FindBin(data_obs))
    print(
        " CL90: {}\n CL95: {}\n CL99: {}\n obs: {} \n p_value: {}\n sample size {} \n toy_file {}"
        .format(CL90, CL95, CL99, data_obs, p_value, nentries, toy_file))
    return CL90, CL95, CL99, p_value, h2
Beispiel #22
0
def main(m1, m2):
    f1 = TFile("histograms/mc.root")
    h1 = TH1D("h1", "h1", 40, -0.04, 0.04)
    h2 = TH1D("h2", "h2", 40, -0.04, 0.04)
    ntuple = gROOT.FindObject('Tree')
    cut1 = TCut("abs(m3pimc - " + str(m1) + ") < 0.05")
    ntuple.Draw("m3pimc-m3pi >> h1", cut1)
    cut2 = TCut("abs(m3pimc - " + str(m2) + ") < 0.05")
    ntuple.Draw("m3pimc-m3pi >> h2", cut2)
    h2.Scale(h1.GetEntries() / h2.GetEntries())
    h2.SetLineColor(2)
    h1.Draw()
    h2.Draw("same")
    input()
Beispiel #23
0
def main():
    Quit = False
    print ""
    print "DanWare - V.1.9"
    print "---------------"
    print ""
    print "Ha ha get it - DanWare - like radware.. Get it?"
    print ""
    print "The point of this is to see if I can make a grutinizer-esque program"
    print "in python. I will attempt to use PyROOT to do this."
    print ""
    print "--------------------------------------"
    print ""
    print "Enter 'h' for help."

    while True:

        File_1 = Read_File()

        if File_1 == "q": break
        if File_1 == "c": continue

        while True:
            print "File Content: "
            print ""

            File_1.ls()

            print ""
            print "Which histogram do you want to look at? (1D only) "
            hist_name = raw_input("Hist name = ")
            print ""
            if hist_name == "q": break
            hist_o = gROOT.FindObject(hist_name)
            if "TDirectoryFile" in hist_o.ClassName():
                hist_o.cd()
                continue
            Hist_create(hist_name)
            break

        if hist_name == "q": continue
        print ""
        print "Quit?"
        q_answer = raw_input("[y / n] = ")
        if q_answer == "y": break

    print ""
    print "Exiting..."
    print ""
Beispiel #24
0
def save_targetpos(treefilename=None,dbfilename=None): 
  """
  Updates the alignment DB with the expected target position from the vertex fit
    :@filename:    Name of file with MSCTree which includes the vertex parameters 
    :@dbfilename   Name of the db root file 
    :author: [email protected]  
  """ 

  if treefilename == None:
    return None

  if dbfilename == None:
    return None

  gROOT.SetBatch(1)
  rawfile = gROOT.FindObject( treefilename )

  # if tree file is open, close it
  if rawfile:
    rawfile.Close()

  # Open tree file in read mode
  rawfile = TFile( treefilename, 'READ' )
  tree=rawfile.Get('MSCTree')
  
  # Calculate mean value of the vertex z position
  count=0
  mean=0
 
  for event in tree:
    mean += getCurrentValue(event,"vertex_z")
    count +=1

  if count == 0:
    raise ValueError('Tree is empty!')

  # Round mean value to first decimal (100 microns)
  mean=round(mean/count,1)

  print "New target position is"
  print mean

  Modify_AlignmentDBFile(dbfilename=dbfilename, planenumber=3, mode='z', value=mean)
Beispiel #25
0
def Get_Data_2D(hist, index_x, index_y, count_y):  #, val_x, val_y):

    hist_o = gROOT.FindObject(hist)

    x_max = hist_o.GetNbinsX()
    y_max = hist_o.GetNbinsY()
    #val_x = hist_o.GetBinContent(x_max)
    #val_y = hist_o.GetBinContent(y_max)
    i = 0
    while i < x_max:  #Iterates over all the bins getting their content
        j = 0
        while j < y_max:  #Iterates over all the bins getting their content
            z = hist_o.GetBinContent(i, j)
            index_x.append(i)
            #print z
            count_y.append(z)
            #print index_x[i], index_y[j], hist_o.GetBinContent(i,j)
            index_y.append(j)
            #print index_x[i], index_y[j], hist_o.GetBinContent(i,j)
            j += 1
        i += 1
Beispiel #26
0
def Background_Sub(hist_name):
    #c_list = ['b','r','g','c','m','k']
    #print ""
    #print "Which histogram do you want to look at? (1D only) "
    #hist_name = raw_input("Hist name = ")
    print ""
    iterations = raw_input("How many iterations do you want? ")
    if iterations == "": iterations = 20
    else: iterations = int(iterations)
    print ""
    opt = raw_input("Subtraction intensity? [b / m / h / i] ")
    if opt == "": opt = "b"
    print ""
    cal_ans = raw_input("Calibrate? [y / n] ")
    print ""
    x_index = []
    x_index_in = []
    x_count = []

    hist_o = gROOT.FindObject(hist_name)

    if "TH1" in hist_o.ClassName():
        print "Drawing graph..."
        print ""
        #val = Get_Data(hist_name, x_index, x_count)
        #Get_Data(hist_name, x_index_in, x_count)
        B_Sub_Work(hist_name, iterations, x_index_in, x_count, opt)

        if cal_ans == "y":
            Calibrate(x_index_in, x_index)
            plt.plot(x_index, x_count)  #, c_list[i % 6])
        else:
            plt.plot(x_index_in, x_count)  #, c_list[i % 6])
        #if "TH2" in hist_o.ClassName():
    else:
        print "BROKEN!!!"
        print ""

    plt.show()
def drawlik(input, gr = TGraph(), color = 8, second = False, Folder = "") :
    print ("reading " + Folder+"/"+input)
    tf2 = TFile.Open(Folder+"/"+input, "READ")
    tree2 = tf2.Get("limit")
    bu = "P"
    if second : bu = "P same"
    tree2.Draw("2*deltaNLL:kappa_t>>hist(50,-3,3)","2*deltaNLL<50", bu)
    canv.Update();
    canv.Modified();
    gr = gROOT.FindObject("Graph").Clone()
    gr.Sort()
    tf2.Close()
    gROOT.Reset()
    #hist = gDirectory.Get("hist")
    gr.GetXaxis().SetTitleFont(43)
    gr.GetYaxis().SetTitleFont(43)
    gr.GetXaxis().SetTitleSize(28)
    gr.GetYaxis().SetTitleSize(28)
    gr.GetXaxis().SetTitleOffset(0.8)
    gr.GetYaxis().SetTitleOffset(0.7)
    gr.GetXaxis().SetTitle("#kappa_t")
    gr.GetYaxis().SetTitle("-2#Delta lnL")
    #gr2.SetMarkerStyle(34)
    return gr
Beispiel #28
0
gROOT.Reset()

# Create a new canvas, and customize it.
c1 = TCanvas('c1', 'Dynamic Filling Example', 200, 10, 700, 500)
c1.SetFillColor(42)
c1.GetFrame().SetFillColor(21)
c1.GetFrame().SetBorderSize(6)
c1.GetFrame().SetBorderMode(-1)

# Create a new ROOT binary machine independent file.
# Note that this file may contain any kind of ROOT objects, histograms,
# pictures, graphics objects, detector geometries, tracks, events, etc..
# This file is now becoming the current directory.

hfile = gROOT.FindObject('hsimple.root')
if hfile:
    hfile.Close()
hfile = TFile('hsimple.root', 'RECREATE', 'Demo ROOT file with histograms')

# Create some histograms, a profile histogram and an ntuple
hpx = TH1F('hpx', 'This is the px distribution', 100, -4, 4)
hpxpy = TH2F('hpxpy', 'py vs px', 40, -4, 4, 40, -4, 4)
hprof = TProfile('hprof', 'Profile of pz versus px', 100, -4, 4, 0, 20)
ntuple = TNtuple('ntuple', 'Demo ntuple', 'px:py:pz:random:i')

# Set canvas/frame attributes.
hpx.SetFillColor(48)

gBenchmark.Start('hsimple')
Beispiel #29
0
def generator(nuslice_tree, rootfile, pset):
    n_bins = pset.n_bins
    drift_distance = pset.DriftDistance
    bin_width = drift_distance/n_bins
    half_bin_width = bin_width/2.

    xvals = np.arange(half_bin_width, drift_distance, bin_width)
    xerrs = np.array([half_bin_width] * len(xvals))
    dist_to_anode_bins = n_bins
    dist_to_anode_low = 0.
    dist_to_anode_up = drift_distance
    profile_bins = n_bins
    profile_option = 's'  # errors are the standard deviation

    dy_spreads = [None] * n_bins
    dy_means = [None] * n_bins
    dy_hist = TH2D("dy_hist", "#Delta y",
                   dist_to_anode_bins, dist_to_anode_low, dist_to_anode_up,
                   pset.dy_bins, pset.dy_low, pset.dy_up)
    dy_hist.GetXaxis().SetTitle("distance from anode (cm)")
    dy_hist.GetYaxis().SetTitle("y_flash - y_TPC (cm)")
    dy_prof = TProfile("dy_prof", "Profile of dy_spreads in #Delta y",
                       profile_bins, dist_to_anode_low, dist_to_anode_up,
                       pset.dy_low*2, pset.dy_up*2, profile_option)
    dy_prof.GetXaxis().SetTitle("distance from anode (cm)")
    dy_prof.GetYaxis().SetTitle("y_flash - y_TPC (cm)")
    dy_h1 = TH1D("dy_h1", "",
                 profile_bins, dist_to_anode_low, dist_to_anode_up)
    dy_h1.GetXaxis().SetTitle("distance from anode (cm)")
    dy_h1.GetYaxis().SetTitle("y_flash - y_TPC (cm)")

    dz_spreads = [None] * n_bins
    dz_means = [None] * n_bins
    dz_hist = TH2D("dz_hist", "#Delta z",
                   dist_to_anode_bins, dist_to_anode_low, dist_to_anode_up,
                   pset.dz_bins, pset.dz_low, pset.dz_up)
    dz_hist.GetXaxis().SetTitle("distance from anode (cm)")
    dz_hist.GetYaxis().SetTitle("z_flash - z_TPC (cm)")
    dz_prof = TProfile("dz_prof", "Profile of dz_spreads in #Delta z",
                       profile_bins, dist_to_anode_low, dist_to_anode_up,
                       pset.dz_low*2.5, pset.dz_up*2.5, profile_option)
    dz_prof.GetXaxis().SetTitle("distance from anode (cm)")
    dz_prof.GetYaxis().SetTitle("z_flash - z_TPC (cm)")
    dz_h1 = TH1D("dz_h1", "",
                 profile_bins, dist_to_anode_low, dist_to_anode_up)
    dz_h1.GetXaxis().SetTitle("distance from anode (cm)")
    dz_h1.GetYaxis().SetTitle("z_flash - z_TPC (cm)")

    rr_spreads = [None] * n_bins
    rr_means = [None] * n_bins
    rr_hist = TH2D("rr_hist", "PE Spread",
                   dist_to_anode_bins, dist_to_anode_low, dist_to_anode_up,
                   pset.rr_bins, pset.rr_low, pset.rr_up)
    rr_hist.GetXaxis().SetTitle("distance from anode (cm)")
    rr_hist.GetYaxis().SetTitle("RMS flash (cm)")
    rr_prof = TProfile("rr_prof", "Profile of PE Spread",
                       profile_bins, dist_to_anode_low, dist_to_anode_up,
                       pset.rr_low, pset.rr_up, profile_option)
    rr_prof.GetXaxis().SetTitle("distance from anode (cm)")
    rr_prof.GetYaxis().SetTitle("RMS flash (cm)")
    rr_h1 = TH1D("rr_h1", "",
                 profile_bins, dist_to_anode_low, dist_to_anode_up)
    rr_h1.GetXaxis().SetTitle("distance from anode (cm)")
    rr_h1.GetYaxis().SetTitle("RMS flash (cm)")

    if detector == "sbnd":
        pe_spreads = [None] * n_bins
        pe_means = [None] * n_bins
        pe_hist = TH2D("pe_hist", "Uncoated/Coated Ratio",
                       dist_to_anode_bins, dist_to_anode_low, dist_to_anode_up,
                       pset.pe_bins, pset.pe_low, pset.pe_up)
        pe_hist.GetXaxis().SetTitle("distance from anode (cm)")
        pe_hist.GetYaxis().SetTitle("ratio_{uncoated/coated}")
        pe_prof = TProfile("pe_prof", "Profile of Uncoated/Coated Ratio",
                           profile_bins, dist_to_anode_low, dist_to_anode_up,
                           pset.pe_low, pset.pe_up, profile_option)
        pe_prof.GetXaxis().SetTitle("distance from anode (cm)")
        pe_prof.GetYaxis().SetTitle("ratio_{uncoated/coated}")
        pe_h1 = TH1D("pe_h1", "",
                     profile_bins, dist_to_anode_low, dist_to_anode_up)
        pe_h1.GetXaxis().SetTitle("distance from anode (cm)")
        pe_h1.GetYaxis().SetTitle("ratio_{uncoated/coated}")

    match_score_scatter = TH2D("match_score_scatter", "Scatter plot of match scores",
                               dist_to_anode_bins, dist_to_anode_low, dist_to_anode_up,
                               pset.score_hist_bins, pset.score_hist_low, pset.score_hist_up*(3./5.))
    match_score_scatter.GetXaxis().SetTitle("distance from anode (cm)")
    match_score_scatter.GetYaxis().SetTitle("match score (arbitrary)")
    match_score_hist = TH1D("match_score", "Match Score",
                            pset.score_hist_bins, pset.score_hist_low, pset.score_hist_up)
    match_score_hist.GetXaxis().SetTitle("match score (arbitrary)")

    for e in nuslice_tree:
        slice = e.charge_x

        dy_hist.Fill(slice, e.flash_y - e.charge_y)
        dy_prof.Fill(slice, e.flash_y - e.charge_y)
        dz_hist.Fill(slice, e.flash_z - e.charge_z)
        dz_prof.Fill(slice, e.flash_z - e.charge_z)
        rr_hist.Fill(slice, e.flash_r)
        rr_prof.Fill(slice, e.flash_r)
        if detector == "sbnd":
            pe_hist.Fill(slice, e.flash_ratio)
            pe_prof.Fill(slice, e.flash_ratio)

    # fill histograms for match score calculation from profile histograms
    for ib in list(range(0, profile_bins)):
        ibp = ib + 1
        dy_h1.SetBinContent(ibp, dy_prof.GetBinContent(ibp))
        dy_h1.SetBinError(ibp, dy_prof.GetBinError(ibp))
        dy_means[int(ib)] = dy_prof.GetBinContent(ibp)
        dy_spreads[int(ib)] = dy_prof.GetBinError(ibp)
        dz_h1.SetBinContent(ibp, dz_prof.GetBinContent(ibp))
        dz_h1.SetBinError(ibp, dz_prof.GetBinError(ibp))
        dz_means[int(ib)] = dz_prof.GetBinContent(ibp)
        dz_spreads[int(ib)] = dz_prof.GetBinError(ibp)
        rr_h1.SetBinContent(ibp, rr_prof.GetBinContent(ibp))
        rr_h1.SetBinError(ibp, rr_prof.GetBinError(ibp))
        rr_means[int(ib)] = rr_prof.GetBinContent(ibp)
        rr_spreads[int(ib)] = rr_prof.GetBinError(ibp)
        if detector == "sbnd":
            pe_h1.SetBinContent(ibp, pe_prof.GetBinContent(ibp))
            pe_h1.SetBinError(ibp, pe_prof.GetBinError(ibp))
            pe_means[int(ib)] = pe_prof.GetBinContent(ibp)
            pe_spreads[int(ib)] = pe_prof.GetBinError(ibp)

    for e in nuslice_tree:
        slice = e.charge_x
        # calculate match score
        isl = int(slice/bin_width)
        score = 0.
        if dy_spreads[isl] <= 1.e-8:
            print("Warning zero spread.\n",
                  f"slice: {slice}. isl: {isl}. dy_spreads[isl]: {dy_spreads[isl]} ")
            dy_spreads[isl] = dy_spreads[isl+1]
        if dz_spreads[isl] <= 1.e-8:
            print("Warning zero spread.\n",
                  f"slice: {slice}. isl: {isl}. dz_spreads[isl]: {dz_spreads[isl]} ")
            dz_spreads[isl] = dz_spreads[isl+1]
        if rr_spreads[isl] <= 1.e-8:
            print("Warning zero spread.\n",
                  f"slice: {slice}. isl: {isl}. rr_spreads[isl]: {rr_spreads[isl]} ")
            rr_spreads[isl] = rr_spreads[isl+1]
        if detector == "sbnd" and pe_spreads[isl] <= 1.e-8:
            print("Warning zero spread.\n",
                  f"slice: {slice}. isl: {isl}. pe_spreads[isl]: {pe_spreads[isl]} ")
            pe_spreads[isl] = pe_spreads[isl+1]
        score += abs(abs(e.flash_y-e.charge_y) - dy_means[isl])/dy_spreads[isl]
        score += abs(abs(e.flash_z-e.charge_z) - dz_means[isl])/dz_spreads[isl]
        score += abs(e.flash_r-rr_means[isl])/rr_spreads[isl]
        if detector == "sbnd" and pset.UseUncoatedPMT:
            score += abs(e.flash_ratio-pe_means[isl])/pe_spreads[isl]
        match_score_scatter.Fill(slice, score)
        match_score_hist.Fill(score)
    metrics_filename = 'fm_metrics_' + detector + '.root'
    hfile = gROOT.FindObject(metrics_filename)
    if hfile:
        hfile.Close()
    hfile = TFile(metrics_filename, 'RECREATE',
                  'Simple flash matching metrics for ' + detector.upper())
    dy_hist.Write()
    dy_prof.Write()
    dy_h1.Write()
    dz_hist.Write()
    dz_prof.Write()
    dz_h1.Write()
    rr_hist.Write()
    rr_prof.Write()
    rr_h1.Write()
    if detector == "sbnd":
        pe_hist.Write()
        pe_prof.Write()
        pe_h1.Write()
    match_score_scatter.Write()
    match_score_hist.Write()
    hfile.Close()

    canv = TCanvas("canv")

    dy_hist.Draw()
    crosses = TGraphErrors(n_bins,
                           array('f', xvals), array('f', dy_means),
                           array('f', xerrs), array('f', dy_spreads))
    crosses.SetLineColor(9)
    crosses.SetLineWidth(3)
    crosses.Draw("Psame")
    canv.Print("dy.pdf")
    canv.Update()

    dz_hist.Draw()
    crosses = TGraphErrors(n_bins,
                           array('f', xvals), array('f', dz_means),
                           array('f', xerrs), array('f', dz_spreads))
    crosses.SetLineColor(9)
    crosses.SetLineWidth(3)
    crosses.Draw("Psame")
    canv.Print("dz.pdf")
    canv.Update()

    rr_hist.Draw()
    crosses = TGraphErrors(n_bins,
                           array('f', xvals), array('f', rr_means),
                           array('f', xerrs), array('f', rr_spreads))
    crosses.SetLineColor(9)
    crosses.SetLineWidth(3)
    crosses.Draw("Psame")
    canv.Print("rr.pdf")
    canv.Update()

    if detector == "sbnd":
        pe_hist.Draw()
        crosses = TGraphErrors(n_bins,
                               array('f', xvals), array('f', pe_means),
                               array('f', xerrs), array('f', pe_spreads))
        crosses.SetLineColor(9)
        crosses.SetLineWidth(3)
        crosses.Draw("Psame")
        canv.Print("pe.pdf")
        canv.Update()

    match_score_scatter.Draw()
    canv.Print("match_score_scatter.pdf")
    canv.Update()

    match_score_hist.Draw()
    canv.Print("match_score.pdf")
    canv.Update()
    sleep(20)
Beispiel #30
0
# see begin_html <a href="hsimple.C.html">An example creating/filling/saving histograms/ntuples on file</a> end_html
#
example = TFile('py-hsimple.root')
example.ls()

# Draw a global picture title
title = TPaveLabel(0.1, 0.94, 0.9, 0.98,
                   'Drawing options for one dimensional histograms')
title.SetFillColor(16)
title.SetTextFont(52)
title.Draw()
#
# Draw histogram hpx in first pad with the default option.
pad1.cd()
pad1.GetFrame().SetFillColor(18)
hpx = gROOT.FindObject('hpx')
hpx.SetFillColor(45)
hpx.DrawCopy()
label1 = TPaveLabel(-3.5, 700, -1, 800, 'Default option')
label1.SetFillColor(42)
label1.Draw()
#
# Draw hpx as a lego. Clicking on the lego area will show
# a "transparent cube" to guide you rotating the lego in real time.
pad2.cd()
hpx.DrawCopy('lego1')
label2 = TPaveLabel(-0.72, 0.74, -0.22, 0.88, 'option Lego1')
label2.SetFillColor(42)
label2.Draw()
label2a = TPaveLabel(-0.93, -1.08, 0.25, -0.92, 'Click on lego to rotate')
label2a.SetFillColor(42)