Beispiel #1
0
def Stack(can, reverse=False):
    if can.GetPrimitive('pad_top'):
        return Stack(can.GetPrimitive('pad_top'), reverse=reverse)

    from ROOT import TH1, THStack
    stack = THStack('stack', 'stack')
    xaxislabel, yaxislabel = '', ''
    binlabels = []
    if reverse:
        the_primitives = reversed(can.GetListOfPrimitives())
    else:
        the_primitives = can.GetListOfPrimitives()
    for i in the_primitives:
        if issubclass(type(i), TH1):
            stack.Add(i)
            if not xaxislabel: xaxislabel = i.GetXaxis().GetTitle()
            if not yaxislabel: yaxislabel = i.GetYaxis().GetTitle()
            if not binlabels and i.GetXaxis().GetBinLabel(1):
                for j in range(i.GetNbinsX()):
                    binlabels.append(i.GetXaxis().GetBinLabel(j + 1))
    can.Clear()
    tobject_collector.append(stack)
    can.cd()
    stack.Draw('hist')
    stack.GetXaxis().SetTitle(xaxislabel)
    stack.GetYaxis().SetTitle(yaxislabel)
    if binlabels:
        for i in range(stack.GetXaxis().GetNbins()):
            stack.GetXaxis().SetBinLabel(i + 1, binlabels[i])
    can.Modified()
    can.Update()
    can.RedrawAxis()
    return
    def __draw_stack(self, regions, th1d_dict, output_name):

        canvas = TCanvas("canvas", 'A basic canvas', 1000, 600)
        stack = THStack("stack", "stack")
        leg = Plotting.Create_Legend(0.60, 0.60, 0.95, 0.95)

        for region in regions:
            hist = th1d_dict[region]

            hist.SetLineColor(1)
            hist.SetLineWidth(1)
            hist.SetMarkerColor(self.__get_colour(region))
            hist.SetMarkerStyle(0)
            hist.SetFillColor(self.__get_colour(region))

            leg.AddEntry(hist, self.__get_label(region), "f")
            stack.Add(hist)

            del hist

        stack.Draw("HIST")
        stack.GetYaxis().SetTitle("Events")
        stack.GetXaxis().SetTitle("True #it{E_{T}^{miss}} [GeV]")
        leg.Draw()
        canvas.Print(output_name)
Beispiel #3
0
    def getStack(self, lumi, name, var, nbin, xmin, xmax, cut, options,
                 xlabel):

        hs = THStack(name, "")

        for b in self.blocks:

            AuxName = "auxStack_block_" + name + "_" + b.name
            haux = b.getTH1F(lumi, AuxName, var, nbin, xmin, xmax, cut,
                             options, xlabel)
            haux.SetFillColor(b.color)
            hs.Add(haux)
            del haux

        can_aux = TCanvas("can_%s_%s" % (name, b.name))
        can_aux.cd()
        hs.Draw()

        del can_aux

        if xmax != xmin:
            hs.GetXaxis().SetTitle(xlabel)
            b = int((xmax - xmin) / nbin)
            ylabel = "Events / " + str(b) + " GeV"
        else:
            ylabel = "# events"

        hs.GetYaxis().SetTitle(ylabel)
        return hs
Beispiel #4
0
def plot_hist_diff(histlist1, histlist2, labellist, log, overflow, filename,
                   options):
    canv = TCanvas("c1", "c1", 800, 600)
    canv.SetTopMargin(10)
    canv.SetRightMargin(100)
    if log: gPad.SetLogy()
    histstack = THStack("stack", histlist1[0].GetTitle())
    legend = TLegend(0.76, 0.88 - 0.08 * len(histlist1), 0.91, 0.88, '', 'NDC')
    colorlist = [4, 8, 2, 6, 1]

    if options: options += " NOSTACK"
    else: options = "NOSTACK"

    maximum = 0
    for i in range(len(histlist1)):
        entries = histlist1[i].GetEntries()
        bad_entries = histlist2[i].GetEntries()
        histlist1[i].SetLineColorAlpha(colorlist[i], 0.65)
        histlist1[i].SetLineWidth(3)

        if entries: histlist1[i].Scale(1. / entries)
        if bad_entries: histlist2[i].Scale(1. / bad_entries)
        histlist1[i].Add(histlist2[i], -1.)

        nbins = histlist1[i].GetNbinsX()
        legend.AddEntry(
            histlist1[i], "#splitline{" + labellist[i] +
            "}{#splitline{%d total jets}{%d bad jets}}" %
            (entries, bad_entries), "l")

        if overflow:
            histlist1[i].SetBinContent(
                nbins, histlist1[i].GetBinContent(nbins) +
                histlist1[i].GetBinContent(nbins + 1))  #overflow
            histlist1[i].SetBinContent(
                1, histlist1[i].GetBinContent(0) +
                histlist1[i].GetBinContent(1))  #underflow

        if histlist1[i].GetMaximum() > maximum:
            maximum = histlist1[i].GetMaximum()
        histstack.Add(histlist1[i])
        #if i == 0: histlist[i].Draw(options)
        #else: histlist[i].Draw(same+options)

    histstack.SetMaximum(maximum * 1.4)
    histstack.Draw(options)
    histstack.GetXaxis().SetTitle(histlist1[0].GetXaxis().GetTitle())
    histstack.GetYaxis().SetTitle(histlist1[0].GetYaxis().GetTitle())

    legend.SetTextSize(0.02)
    legend.SetFillStyle(0)
    legend.SetBorderSize(0)
    legend.Draw("SAME")
    canv.SaveAs(filename)
    if log: gPad.Clear()
    canv.Clear()
    del canv
Beispiel #5
0
def plot_bar(histlist, axislabels, labels, norm, log, filename, options):
    canv = TCanvas("c1", "c1", 800, 600)
    canv.SetTopMargin(10)
    canv.SetRightMargin(100)
    if log: gPad.SetLogy()
    histstack = THStack("stack", histlist[0].GetTitle())
    if labels:
        legend = TLegend(0.76, 0.88 - 0.08 * len(histlist), 0.91, 0.88, '',
                         'NDC')
    colorlist = [4, 8, 2, 6, 1]

    if options: options += " NOSTACK"
    else: options = "NOSTACK"

    maximum = 0
    for i in range(len(histlist)):
        histlist[i].SetLineColorAlpha(colorlist[i], 0.65)
        histlist[i].SetLineWidth(3)
        entries = histlist[i].GetEntries()

        if entries and norm: histlist[i].Scale(1. / entries)
        if histlist[i].GetMaximum() > maximum:
            maximum = histlist[i].GetMaximum()
        if labels: legend.AddEntry(histlist[i], labels[i], "l")
        histstack.Add(histlist[i])

    histstack.SetMaximum(maximum * 1.4)
    histstack.Draw(options)
    histstack.GetXaxis().SetTitle(histlist[0].GetXaxis().GetTitle())
    histstack.GetYaxis().SetTitle(histlist[0].GetYaxis().GetTitle())
    histstack.GetXaxis().SetNdivisions(len(axislabels))
    histstack.GetXaxis().CenterLabels(True)
    for i, label in enumerate(axislabels):
        histstack.GetXaxis().ChangeLabel(i + 1, -1, -1, -1, -1, -1, str(label))

    if labels:
        legend.SetTextSize(0.02)
        legend.SetFillStyle(0)
        legend.SetBorderSize(0)
        legend.Draw("SAME")
    canv.SaveAs(filename)
    if log: gPad.Clear()
    canv.Clear()
    del canv
Beispiel #6
0
def Stack(can,reverse=False) :
    if can.GetPrimitive('pad_top') :
        return Stack(can.GetPrimitive('pad_top'),reverse=reverse)
    
    from ROOT import TH1,THStack
    stack = THStack('stack','stack')
    xaxislabel,yaxislabel = '',''
    binlabels = []
    if reverse :
        the_primitives = reversed(can.GetListOfPrimitives())
    else :
        the_primitives = can.GetListOfPrimitives()
    for i in the_primitives :
        if issubclass(type(i),TH1) :
            stack.Add(i)
            if not xaxislabel : xaxislabel = i.GetXaxis().GetTitle()
            if not yaxislabel : yaxislabel = i.GetYaxis().GetTitle()
            if not binlabels and i.GetXaxis().GetBinLabel(1) :
                for j in range(i.GetNbinsX()) :
                    binlabels.append(i.GetXaxis().GetBinLabel(j+1))
    # The original objects are cleared from the histogram:
    can.Clear()
    tobject_collector.append(stack)

    # Set draw option of underlying histograms for automatically nice legends
    for hist in stack.GetHists() :
        hist.SetOption('f')

    can.cd()
    stack.Draw('hist')
    stack.GetXaxis().SetTitle(xaxislabel)
    stack.GetYaxis().SetTitle(yaxislabel)
    if binlabels :
        for i in range(stack.GetXaxis().GetNbins()) :
            stack.GetXaxis().SetBinLabel(i+1,binlabels[i])
    can.RedrawAxis()
    can.Modified()
    can.Update()
    return
def plotstuff2(cut1,cut2,cutname):
    events.Draw("eleClT-posClT>>h1(200,-10,10)",cut1,"goff")
    events.Draw("eleClT-posClT>>h2(200,-10,10)",cut2,"goff")

    hs = THStack("hs",cutname);
    hs.Add(gDirectory.Get("h1"))
    hs.Add(gDirectory.Get("h2"))
    hs.Draw("nostack")
    leg = TLegend(0.6,0.75,0.9,0.9)
    leg.AddEntry(gDirectory.Get("h1"),"after base cuts")
    leg.AddEntry(gDirectory.Get("h2"),"after vertexing cuts")
    leg.Draw()
    gDirectory.Get("h1").SetLineColor(1)
    gDirectory.Get("h2").SetLineColor(2)
    hs.GetXaxis().SetTitle("tEle-tPos [ns]")
    hs.GetYaxis().SetTitle("events/(0.1 ns)")
    c.Print(sys.argv[1]+".pdf")
Beispiel #8
0
def histo_creation(lumi2017_param, variable_param, binHist_param,
                   minHist_param, maxHist_param, titleX_param, titleY_param):

    histo = []
    legend = TLegend(0.5, 0.5, 0.9, 0.9)
    canvas = TCanvas()

    if (lumi2017_param):
        legend.SetHeader("41.53 fb-1", "C")
        canvas.SetName(variable_param + "2017")
    else:
        legend.SetHeader("35.9 fb-1", "C")
        canvas.SetName(variable_param + "2016")

    for i in range(len(MC_sample)):
        foo = TH1F("essaie{}".format(i), "essaie{}".format(i), binHist_param,
                   minHist_param, maxHist_param)
        rootfile[i].Get('events').Project("essaie{}".format(i), variable_param,
                                          "weight")
        histo.append(foo)
        histo[i].SetFillColor(color[i])
        histo[i].Scale(luminosity2017 * 1000 * cross_sec[i] / eventsN0[i])
        if (not lumi2017_param):
            histo[i].Scale(lumiRatio)
        print(histo[i].GetEntries() * lumiRatio * luminosity2017 * 1000 *
              cross_sec[i] / eventsN0[i])
        histo[i].Draw()
        legend.AddEntry(histo[i], MC_name[i], "f")

    stack = THStack(variable_param, "")
    for i in range(len(MC_sample)):
        stack.Add(histo[len(MC_sample) - (i + 1)])
    stack.Draw("HIST")
    stack.GetXaxis().SetTitle(titleX_param)
    stack.GetYaxis().SetTitle(titleY_param)
    legend.Draw()

    if (lumi2017_param):
        canvas.SaveAs(localisation + "/results/MC_" + variable_param +
                      "2017.png")
    else:
        canvas.SaveAs(localisation + "/results/MC_" + variable_param +
                      "2016.png")

    canvas.Write()
def timing(data, leg_entries):

    """ Plot different timing delays after receiving the trigger. """

    stack = THStack('stack', 'Counts per BX')
    leg = TLegend(.8, .5, 1., .9)
    for idx, list in enumerate(data):
        h = TH1F('', '', 100, 0, 220)
        h.SetFillColor(idx+2)
        leg.AddEntry(h, leg_entries[idx], 'f')
        for val in list:
            h.Fill(val)
        stack.Add(h)
    canvas = TCanvas()
    stack.Draw()
    stack.GetXaxis().SetTitle('BX')
    stack.GetYaxis().SetTitle('Counts')
    leg.Draw()
    canvas.SaveAs('timing.pdf')
Beispiel #10
0
def plotstuff3(cuts,cutname):
    hs = THStack("hs",cutname);
    hs.Add(gDirectory.Get("h1"))
    leg = TLegend(0.6,0.75,0.9,0.9)
    events.Draw("eleClT-posClT>>h0(200,-10,10)",cuts[0],"goff")
    leg.AddEntry(gDirectory.Get("h0"),"after base cuts")
    hs.Add(gDirectory.Get("h0"))
    gDirectory.Get("h0").SetLineColor(1)
    #gDirectory.Get("h1").SetTitle(cutname)
    for i in range(1,len(cuts)):
        events.Draw("eleClT-posClT>>h{0}(100,-10,10)".format(i),makeCutString(cuts[0:i+1]),"goff")
        leg.AddEntry(gDirectory.Get("h{0}".format(i)),"after {0} cut".format(cutnames[i]))
        hs.Add(gDirectory.Get("h{0}".format(i)))
        gDirectory.Get("h{0}".format(i)).SetLineColor(i+1)

    hs.Draw("nostack")
    leg.Draw()
    hs.GetXaxis().SetTitle("tEle-tPos [ns]")
    hs.GetYaxis().SetTitle("events/(0.1 ns)")
    c.Print(sys.argv[1]+".pdf")
Beispiel #11
0
def plotstuff(cut1,cut2,cut3,cutname):
    events.Draw("eleClT-posClT>>h1(200,-10,10)",cut1,"goff")
    events.Draw("eleClT-posClT>>h2(200,-10,10)",cut2,"goff")
    events.Draw("eleClT-posClT>>h3(200,-10,10)",cut3,"goff")

    hs = THStack("hs","Effect of "+cutname+" cut");
    hs.Add(gDirectory.Get("h1"))
    hs.Add(gDirectory.Get("h2"))
    hs.Add(gDirectory.Get("h3"))
    hs.Draw("nostack")
    leg = TLegend(0.6,0.75,0.9,0.9)
    leg.AddEntry(gDirectory.Get("h1"),"passed all but this cut")
    leg.AddEntry(gDirectory.Get("h2"),"passed all cuts")
    leg.AddEntry(gDirectory.Get("h3"),"failed this cut")
    leg.Draw()
    gDirectory.Get("h1").SetLineColor(1)
    gDirectory.Get("h2").SetLineColor(4)
    gDirectory.Get("h3").SetLineColor(2)
    hs.GetXaxis().SetTitle("tEle-tPos [ns]")
    hs.GetYaxis().SetTitle("events/(0.1 ns)")
    c.Print(sys.argv[1]+".pdf")
Beispiel #12
0
def main():

    extension = "pdf"

    luminosity = 44307.4
    ymin = 0
    ymax = 0.024

    data_set_names = [
        (["SZee_all_susy_2l_0jets.root",
          "SZmumu_all_susy_2l_0jets.root"], "Z#rightarrowll", 860 + 0, 23),
        (["ZZ_1in3_susy_2l_0jets.root"], "ZZ#rightarrowll#nu#nu", 416 + 3, 43),
        (["WZ_1in3_susy_2l_0jets.root"], "WZ#rightarrowl#null", 416 - 8, 33),
        (["WW_1in3_susy_2l_0jets.root"], "WW#rightarrowl#nul#nu", 416 + 0, 20),
        ([
            "ttbar_1in3_susy_2l_0jets.root", "top_1in3_susy_2l_0jets.root",
            "antitop_1in3_susy_2l_0jets.root"
        ], "Top", 800 + 4, 21),
    ]

    DATA_dir = os.path.join(os.environ["HOME_DIRECTORY"], "Data", "SR_SUSY")

    ## Creating the plots
    gROOT.SetStyle("ATLAS")
    gROOT.ForceStyle()
    gStyle.SetErrorX(0.5)
    canvas = TCanvas("canvas", 'A basic canvas', 800, 600)
    # canvas.SetLogy()

    ## Adding in the legend
    leg = Plotting.Create_Legend(0.60, 0.60, 0.95, 0.95, ncols=1)

    ## Creating the stack
    stack = THStack("stack", "stack")
    stack.SetMinimum(ymin)
    stack.SetMaximum(ymax)

    ## Cycling through the different datasets
    for datasets, label, colour, style in data_set_names:

        ## Creating the total histogram which will be filled
        myhist = TH1D(label, label, 50, 0, 150)
        myhist.SetStats(True)
        myhist.StatOverflows(True)

        for dataset in datasets:

            ## The root file is opened
            rootfile_name = os.path.join(DATA_dir, dataset)
            print(rootfile_name)
            root_file = TFile.Open(rootfile_name, 'read')
            tree = root_file.Get("mt2_Truth")

            ## Creating the current histogram which will be filled
            thishist = TH1D(label, label, 50, 0, 150)
            thishist.SetStats(True)
            thishist.StatOverflows(True)

            ## Drawing the tree and saving the hist to the matrix
            execution = "mt2>>{}".format(label)
            tree.Draw(execution, "", "goff")

            thishist.SetDirectory(0)
            myhist.Add(thishist)

            ## We are dont with the file
            root_file.Close()
            del root_file

        ## Changing the properties of the histogram
        myhist.Scale(1 / myhist.Integral("width"))

        myhist.SetLineColor(colour)
        myhist.SetMarkerColor(colour)
        myhist.SetMarkerStyle(style)
        myhist.SetMarkerSize(1.5)

        ## Adding the legend entry
        leg.AddEntry(myhist, label, "p")

        ## Adding the object to the stack
        stack.Add(myhist)
        del myhist

    ## Drawing the stack on the currrent canvas
    stack.Draw("NOSTACK HIST P")
    leg.Draw()

    ## Setting axis labels
    stack.GetXaxis().SetTitle("m_{T2} (True #it{E}_{T}^{miss}) [GeV]")
    stack.GetYaxis().SetTitle("Normalised Distributions")

    ## Moving axis tick marks
    stack.GetYaxis().SetMaxDigits(3)
    stack.GetXaxis().SetLabelOffset(0.017)

    ## Drawing all text
    left = 0.2
    size = 1.0
    shift = 0.06
    pos = 0.88
    Plotting.Draw_ATLASLabel(left, pos, "Simulation", scale=1.0)
    pos -= shift
    Plotting.Draw_Text(left, pos, "work in progress", scale=size)
    pos -= shift
    Plotting.Draw_Lumi(left, pos, 0, scale=size)
    pos -= shift

    ## Updating the canvas
    canvas.Update()

    out_file = "true_strans.{}".format(extension)
    canvas.Print(out_file)

    del canvas

    return 0
Beispiel #13
0
	def plotFractionsOfBxId(self):
		##BX right plotting pt
		canvasBxRightPt = TCanvas("cBxRightPt","cBxRightPt",1200,1200)
		canvasBxRightPt.cd().SetLeftMargin(0.15)
		hBxRightPt = self.fileHandler.getHistogram('BxRightGen_Pt').Clone()
		setPlotStyle()
		hBxRightPt.Rebin(50)
		hBxRightPt.GetXaxis().SetRangeUser(0,200)
		hBxRightPt.GetYaxis().SetTitle("normalized Entries / 5 GeV")
		hBxRightPt.GetXaxis().SetTitle("p_{T} Gen")
		hBxRightPt.GetYaxis().SetTitleOffset(2)
		hBxRightPt.SetTitle("Events with right BX ID vs. p_{T}")
		hBxRightPt.SetStats(0)
		hBxRightPt.SetLineWidth(2)
		hBxRightPt.Scale(1/hBxRightPt.Integral())
		hBxRightPt.Draw()
		label = getLabelCmsPrivateSimulation()
		label.Draw()
		self.storeCanvas(canvasBxRightPt,"bxRightPt")
		
		##BX wrong plotting pt
		canvasBxWrongPt = TCanvas("cBxWrongPt","cBxWrongPt",1200,1200)
		canvasBxWrongPt.cd().SetLeftMargin(0.15)
		hBxWrongPt = self.fileHandler.getHistogram('BxWrongGen_Pt').Clone()
		setPlotStyle()
		hBxWrongPt.Rebin(50)
		hBxWrongPt.GetXaxis().SetRangeUser(0,200)
		hBxWrongPt.GetYaxis().SetTitle("normalized Entries / 5 GeV")
		hBxWrongPt.GetXaxis().SetTitle("p_{T} Gen")
		hBxWrongPt.GetYaxis().SetTitleOffset(2)
		hBxWrongPt.SetTitle("Events with wrong BX ID vs. p_{T}")
		hBxWrongPt.SetStats(0)
		hBxWrongPt.SetLineWidth(2)
		hBxWrongPt.Scale(1/hBxWrongPt.Integral())
		hBxWrongPt.DrawCopy()
		label = getLabelCmsPrivateSimulation()
		label.Draw()
		self.storeCanvas(canvasBxWrongPt,"bxWrongPt")

		#Plot the histogram stack
		canvasStack = TCanvas("cStacked","cStacked",1200,1200)
		canvasStack.cd().SetLeftMargin(0.15)
		hWrong = self.fileHandler.getHistogram('BxWrongGen_Pt')
		hRight = self.fileHandler.getHistogram('BxRightGen_Pt')
		hRightFraction = TH1D('hRightFraction','',100,0,500)
		hWrongFraction = TH1D('hWrongFraction','',100,0,500)
		#hWrong.Rebin(50)
		#hRight.Rebin(50)
		#Fill the histograms with the bin wise fractions
		for i in range(0,hRight.GetNbinsX()):
			nRight = hRight.GetBinContent(i+1)
			nWrong = hWrong.GetBinContent(i+1)
			if(nRight + nWrong == 0):
				continue
			hRightFraction.SetBinContent(i+1,nRight/(nRight+nWrong))
			hWrongFraction.SetBinContent(i+1,nWrong/(nRight+nWrong))
		
		#Create the stack
		stack = THStack("hstack","Fractions of events for BX ID correct and wrong")
		nRight = hRight.Integral()
		nWrong = hWrong.Integral()
		hRightFraction.SetLineColor(colorRwthDarkBlue)
		hRightFraction.SetFillColor(colorRwthDarkBlue)
		hRightFraction.SetFillStyle(3002)
		hWrongFraction.SetLineColor(colorRwthMagenta)
		hWrongFraction.SetFillColor(colorRwthMagenta)
		hWrongFraction.SetFillStyle(3002)
		stack.Add(hRightFraction)
		stack.Add(hWrongFraction)
		stack.Draw()
		stack.GetXaxis().SetRangeUser(0.5,201)
		stack.GetYaxis().SetTitle('rel. fraction / 5 GeV')
		stack.GetYaxis().SetTitleOffset(2)
		stack.GetXaxis().SetTitle('p_{T} Gen')
		stack.SetMinimum(0.9)
		stack.SetMaximum(1)
		legend = TLegend(0.6,0.75,0.9,0.9)
		legend.AddEntry(hRightFraction,"BX ID right","f")
		legend.AddEntry(hWrongFraction,"BX ID wrong","f")
		legend.Draw()
		label = getLabelCmsPrivateSimulation()
		label.Draw()
		canvasStack.Update()
		self.storeCanvas(canvasStack,"bxStacked")
chic0.Project('fromchic0', 'raw_ge')
chic1.Project('fromchic1', 'raw_ge')
chic2.Project('fromchic2', 'raw_ge')

fromchic0.Scale(214404 / 9997)
fromchic1.Scale(214404 / 10399)
fromchic2.Scale(214404 / 10177)

hs.Add(fromchic0)
hs.Add(fromchic1)
hs.Add(fromchic2)

mbc.cd()
hs.Draw()
hs.GetXaxis().SetTitle('E_{#gamma} (GeV)')
hs.GetYaxis().SetTitle(ytitle)
hs.GetYaxis().SetTitleOffset(1.5)

#f1 = TFile('run/chic2incl/hist_inclusiveMC/chic2incl_psip_mc_event_merged_ncostag.root')
#h_E = f1.Get('h_gam1_E')
#h_E.Draw('same')

legend = TLegend(0.5, 0.6, 0.72, 0.8)
legend.AddEntry('fromchic0', 'E_{#gamma} in process chic0')
legend.AddEntry('fromchic1', 'E_{#gamma} in process chic0')
legend.AddEntry('fromchic2', 'E_{#gamma} in process chic0')

#legend.SetNColums(1)
legend.SetBorderSize(0)
legend.SetFillColor(0)
    def ClusterSizeOneTrouble(self):
        RootDirectory = 'FTClusterMonitor'
        for files in self.ListOfFiles:
            tfile = TFile.Open(files)
            OutFileMantisse = files[:files.find(
                '-histos')] + "/" + RootDirectory + "_" + time.strftime(
                    '%y-%m-%d_%H-%M', time.localtime())
            self.CreateDir(OutFileMantisse)
            tdir = tfile.GetDirectory(RootDirectory)
            for type in {"x_position", "Channel"}:
                All = tdir.Get("Cluster_" + type + "_resolution_1Ch")
                Cell0 = tdir.Get("Cluster_" + type + "_resolution_1Ch_Cell0")
                Cell127 = tdir.Get("Cluster_" + type +
                                   "_resolution_1Ch_Cell127")
                Cell63 = tdir.Get("Cluster_" + type + "_resolution_1Ch_Cell63")
                Cell64 = tdir.Get("Cluster_" + type + "_resolution_1Ch_Cell64")
                CellNeighbour = tdir.Get(
                    "Cluster_" + type + "_resolution_1Ch_WithNeighbouringCell")

                All.SetLineColor(4)
                Cell0.SetLineColor(2)
                Cell127.SetLineColor(7)
                Cell63.SetLineColor(6)
                Cell64.SetLineColor(40)
                CellNeighbour.SetLineColor(28)
                # Standard drawing
                ClusterMoniSizeOneTroublecvs = TCanvas(
                    "ClusterSizeOneTroublecvs", "ClusterSizeOneTrouble")
                ClusterMoniSizeOneTroublecvs.SetGrid()
                ClusterMoniSizeOneTroublecvs.cd()
                All.Draw("H")
                Cell0.Draw("HSAME")
                Cell127.Draw("HSAME")
                Cell63.Draw("HSAME")
                Cell64.Draw("HSAME")
                CellNeighbour.Draw("HSAME")
                Leg = TLegend(0.11, 0.7, 0.4, 0.89)
                Leg.AddEntry(All, "All Cells", "l")
                Leg.AddEntry(Cell63, "Cell 63", "l")
                Leg.AddEntry(Cell64, "Cell 64", "l")
                Leg.AddEntry(Cell0, "Cell 0", "l")
                Leg.AddEntry(Cell127, "Cell 127", "l")
                Leg.AddEntry(CellNeighbour, "Cells with left/right neighbour",
                             "l")
                Leg.Draw()
                ClusterMoniSizeOneTroublecvs.SaveAs(
                    OutFileMantisse + "/" + (OutFileMantisse.split('/')[0]) +
                    "_" + All.GetName() + self.OutFileType)

                # Stack drawing
                Cell0.SetFillColor(2)
                Cell127.SetFillColor(7)
                Cell63.SetFillColor(6)
                Cell64.SetFillColor(40)
                CellNeighbour.SetFillColor(28)
                HistoStack = THStack("HistoStack", "Stacked 1D histograms")
                HistoStack.Add(Cell63)
                HistoStack.Add(Cell64)
                HistoStack.Add(Cell0)
                HistoStack.Add(Cell127)
                HistoStack.Add(CellNeighbour)

                ClusterMoniSizeOneTroubleStackcvs = TCanvas(
                    "ClusterSizeOneTroubleStackcvs",
                    "ClusterSizeOneTroubleStack")
                ClusterMoniSizeOneTroubleStackcvs.SetGrid()
                ClusterMoniSizeOneTroubleStackcvs.cd()
                HistoStack.Draw("H")
                HistoStack.GetXaxis().SetTitle(All.GetXaxis().GetTitle())
                HistoStack.GetYaxis().SetTitle(All.GetYaxis().GetTitle())
                #ClusterMoniSizeOneTroubleStackcvs.Update()
                All.Draw("HSAME")
                LegStack = TLegend(0.11, 0.7, 0.4, 0.89)
                LegStack.AddEntry(All, "All Cells", "l")
                LegStack.AddEntry(Cell63, "Cell 63", "f")
                LegStack.AddEntry(Cell64, "Cell 64", "f")
                LegStack.AddEntry(Cell0, "Cell 0", "l=f")
                LegStack.AddEntry(Cell127, "Cell 127", "f")
                LegStack.AddEntry(CellNeighbour,
                                  "Cells with left/right neighbour", "f")
                LegStack.Draw()
                ClusterMoniSizeOneTroubleStackcvs.SaveAs(
                    OutFileMantisse + "/" + (OutFileMantisse.split('/')[0]) +
                    "_" + All.GetName() + "_Stack" + self.OutFileType)

            # Details on cells with neighbours
            Cell1to4 = tdir.Get("Cluster_Channel_resolution_1Ch_Cell1to4")
            Cell59to62 = tdir.Get("Cluster_Channel_resolution_1Ch_Cell59to62")
            Cell65to68 = tdir.Get("Cluster_Channel_resolution_1Ch_Cell65to68")
            Cell122to126 = tdir.Get(
                "Cluster_Channel_resolution_1Ch_Cell122to126")
            CellAllOthers = tdir.Get(
                "Cluster_Channel_resolution_1Ch_AllOtherNeighbors")
            Cell1to4.SetLineColor(2)
            Cell1to4.SetFillColor(2)
            Cell59to62.SetLineColor(3)
            Cell59to62.SetFillColor(3)
            Cell65to68.SetLineColor(4)
            Cell65to68.SetFillColor(4)
            Cell122to126.SetLineColor(5)
            Cell122to126.SetFillColor(5)
            CellAllOthers.SetLineColor(6)
            CellAllOthers.SetFillColor(6)
            NeighbourStack = THStack("NeighbourStack", "Stacked 1D histograms")
            NeighbourStack.Add(Cell1to4)
            NeighbourStack.Add(Cell59to62)
            NeighbourStack.Add(Cell65to68)
            NeighbourStack.Add(Cell122to126)
            NeighbourStack.Add(CellAllOthers)

            ClusterMoniSizeOneTroubleNeighbourhoodcvs = TCanvas(
                "ClusterSizeOneTroubleNeighbourhoodcvs",
                "ClusterSizeOneTroubleNeighbourhood")
            ClusterMoniSizeOneTroubleNeighbourhoodcvs.SetGrid()
            ClusterMoniSizeOneTroubleNeighbourhoodcvs.cd()
            NeighbourStack.Draw("nostack")
            NeighbourStack.GetXaxis().SetTitle(Cell1to4.GetXaxis().GetTitle())
            NeighbourStack.GetYaxis().SetTitle(Cell1to4.GetYaxis().GetTitle())
            CellNeighbour.Draw("SAME")
            ClusterMoniSizeOneTroubleNeighbourhoodcvs.SaveAs(
                OutFileMantisse + "/" + (OutFileMantisse.split('/')[0]) +
                "_NeighboringStudy_Stack" + self.OutFileType)

            # Details on cells with/without Cluster size=4 neighbours
            #CellWithCl4Neighbour = tdir.Get("Cluster_Channel_resolution_1Ch_Cell1to4")
            CellWithCl4Neighbour = tdir.Get(
                "Cluster_Channel_resolution_1Ch_withSize4neigh")
            #CellWithoutCl4Neighbour = tdir.Get("Cluster_Channel_resolution_1Ch_Cell1to4")
            CellWithoutCl4Neighbour = tdir.Get(
                "Cluster_Channel_resolution_1Ch_withoutSize4neigh")

            CellWithCl4Neighbour.SetLineColor(2)
            CellWithCl4Neighbour.SetFillColor(2)
            CellWithoutCl4Neighbour.SetLineColor(3)
            CellWithoutCl4Neighbour.SetFillColor(3)
            Clus4NeighbourStack = THStack("Clus4NeighbourStack",
                                          "St histograms")
            Clus4NeighbourStack.Add(CellWithCl4Neighbour)
            Clus4NeighbourStack.Add(CellWithoutCl4Neighbour)
            Clus4TroubleNeighbourhoodcvs = TCanvas(
                "Clus4TroubleNeighbourhoodcvs", "Clus4TroubleNeighbourhoodcvs")
            Clus4TroubleNeighbourhoodcvs.SetGrid()
            Clus4TroubleNeighbourhoodcvs.cd()
            Clus4NeighbourStack.Draw("H")
            Clus4NeighbourStack.GetXaxis().SetTitle(
                CellWithCl4Neighbour.GetXaxis().GetTitle())
            Clus4NeighbourStack.GetYaxis().SetTitle(
                CellWithCl4Neighbour.GetYaxis().GetTitle())
            All.Draw("HSAME")
            LegClus4Size = TLegend(0.11, 0.7, 0.4, 0.89)
            LegClus4Size.AddEntry(All, "All Cells", "l")
            LegClus4Size.AddEntry(CellWithCl4Neighbour,
                                  "With size 4 neighbour ", "f")
            LegClus4Size.AddEntry(CellWithoutCl4Neighbour,
                                  "Without size 4 neighbour ", "f")
            LegClus4Size.Draw()
            Clus4TroubleNeighbourhoodcvs.SaveAs(
                OutFileMantisse + "/" + (OutFileMantisse.split('/')[0]) +
                "_CluS4NeighboringStudy_Stack" + self.OutFileType)
Beispiel #16
0
def createCompoundPlots(detector, plot, geometry):
    """Produce the requested plot for the specified detector.

       Function that will plot the requested @plot for the specified
       @detector. The specified detector could either be a real
       detector or a compound one. The list of available plots are the
       keys of plots dictionary (imported from plot_utils.

    """
    setTDRStyle()
    
    theDirname = 'Images'
    if not checkFile_(theDirname):
        os.mkdir(theDirname)

    goodToGo, theDetectorFilename = paramsGood_(detector, plot, geometry)
    if not goodToGo:
        return

    hist_X0_elements = OrderedDict()

    # stack
    stackTitle = "%s;%s;%s" % (detector,
                                               plots[plot].abscissa,
                                               plots[plot].ordinate)
    stack_X0 = THStack("stack_X0", stackTitle);
    theLegend = TLegend(0.50, 0.70, 0.70, 0.90);

    def setRanges(h):
        legendSpace = 1. + 0.3 # 30%
        minY = h.GetYaxis().GetXmin()
        maxY = h.GetBinContent(h.GetMaximumBin()) * legendSpace
        h.GetYaxis().SetRangeUser(minY, maxY)

    for label, [num, color, leg] in six.iteritems(hist_label_to_num):
        # We don't want the sum to be added as part of the stack
        if label is 'SUM':
            continue
        hist_X0_elements[label] = get1DHisto_(detector,
                                              num + plots[plot].plotNumber,
                                              geometry)
        hist_X0_elements[label].SetFillColor(color)
        hist_X0_elements[label].SetLineColor(kBlack)
        stack_X0.Add(hist_X0_elements[label])
        if hist_X0_elements[label].Integral() > 0.: theLegend.AddEntry(hist_X0_elements[label], leg, "f")

    # canvas
    canname = "MBCan_1D_%s_%s"  % (detector, plot)
    can = TCanvas(canname, canname, 800, 800)
    can.Range(0,0,25,25)
    gStyle.SetOptTitle(0)

    # Draw
    setRanges(stack_X0.GetStack().Last())
    stack_X0.Draw("HIST");
    stack_X0.GetXaxis().SetLabelSize(0.035)
    stack_X0.GetYaxis().SetLabelSize(0.035)
    theLegend.Draw();

    cmsMark = TLatex()
    cmsMark.SetNDC();
    cmsMark.SetTextAngle(0);
    cmsMark.SetTextColor(kBlack);    
    cmsMark.SetTextFont(61)
    cmsMark.SetTextSize(5e-2)
    cmsMark.SetTextAlign(11)
    cmsMark.DrawLatex(0.16,0.86,"CMS")

    simuMark = TLatex()
    simuMark.SetNDC();
    simuMark.SetTextAngle(0);
    simuMark.SetTextColor(kBlack);    
    simuMark.SetTextSize(3e-2)
    simuMark.SetTextAlign(11)
    simuMark.DrawLatex(0.16,0.82,"#font[52]{Simulation Internal}")
 
    # Store
    can.Update();
    can.SaveAs( "%s/%s_%s_%s.pdf" 
                % (theDirname, detector, plot, geometry))
    can.SaveAs( "%s/%s_%s_%s.png" 
                % (theDirname, detector, plot, geometry))
errorband.SetFillColor(kBlack)
errorband.SetFillStyle(3245)
errorband.SetMarkerSize(0)

legend.AddEntry(rebinnedData, "Data", 'pe')
legend.AddEntry(errorband, "Uncertainty", "f")

for ih in rebinnedHist:
    legend.AddEntry(rebinnedHist[ih], ih, 'f')

pad1.cd()

stack.Draw('HIST')
rebinnedData.Draw('E,X0,SAME')
legend.Draw("same")
stack.GetXaxis().SetTitle('')
stack.GetXaxis().SetLabelSize(0)
stack.GetYaxis().SetLabelSize(gStyle.GetLabelSize() /
                              (1. - padRatio + padOverlap))
stack.GetYaxis().SetTitleSize(gStyle.GetTitleSize() /
                              (1. - padRatio + padOverlap))
stack.GetYaxis().SetTitleOffset(gStyle.GetTitleYOffset() *
                                (1. - padRatio + padOverlap))
#stack.SetTitle(';;<Events/GeV>')# '%rebin)

#CMS_lumi.channelText = (channelText+"\\n"+regionText)
#if postfitPlots: CMS_lumi.channelText =channelText+"\\n "+regionText+"\\n "+chi2Text

CMS_lumi.channelText = "#splitline{%s}{%s}" % (channelText, regionText)
if postfitPlots:
    CMS_lumi.channelText = "#splitline{%s}{%s}" % (channelText + ";" +
Beispiel #18
0
if drawLog == '1':
    gPad.SetLogy()

if not legOnly:
    hs.Draw("Hist")
for ihist in reversed(templates[4:10]):
    print ihist.GetName()
    if not legOnly:
	ihist.Draw("same, hist")

xTitle = h_top.GetXaxis().GetTitle()
yTitle = h_top.GetYaxis().GetTitle()

if var == 'hCutflow':
    hs.SetMinimum(10000)
    hs.GetXaxis().SetRangeUser(1,10)

setTitle(hs, xTitle, yTitle)
gPad.RedrawAxis()

ll = TLatex()
ll.SetNDC(kTRUE)
ll.SetTextSize(0.05)
ll.DrawLatex(0.63, 0.92, "3000 fb^{-1} (14 TeV)");

prel = TLatex()
prel.SetNDC(kTRUE)
prel.SetTextFont(52)
prel.SetTextFont(52)
prel.SetTextSize(0.05)
prel.DrawLatex(0.28, 0.92, "Simulation")
Beispiel #19
0
def createPlots_(plot, geometry):
    """Cumulative material budget from simulation.
    
       Internal function that will produce a cumulative profile of the
       material budget inferred from the simulation starting from the
       single detectors that compose the tracker. It will iterate over
       all existing detectors contained in the DETECTORS
       dictionary. The function will automatically skip non-existent
       detectors.

    """

    IBs = ["InnerServices", "Phase2PixelBarrel", "TIB", "TIDF", "TIDB"]
    theDirname = "Figures"

    if plot not in plots.keys():
        print("Error: chosen plot name not known %s" % plot)
        return

    hist_X0_detectors = OrderedDict()
    hist_X0_IB = None
    hist_X0_elements = OrderedDict()

    for subDetector,color in six.iteritems(DETECTORS):
        h = get1DHisto_(subDetector,plots[plot].plotNumber,geometry)
        if not h: 
            print('Warning: Skipping %s'%subDetector)
            continue
        hist_X0_detectors[subDetector] = h


        # Merge together the "inner barrel detectors".
        if subDetector in IBs:
            hist_X0_IB = assignOrAddIfExists_(
                hist_X0_IB,
                hist_X0_detectors[subDetector]
                )

        # category profiles
        for label, [num, color, leg] in six.iteritems(hist_label_to_num):
            if label is 'SUM': continue
            hist_label = get1DHisto_(subDetector, num + plots[plot].plotNumber, geometry)
            hist_X0_elements[label] = assignOrAddIfExists_(
                hist_X0_elements.setdefault(label,None),
                hist_label,
                )
            hist_X0_elements[label].SetFillColor(color)


    cumulative_matbdg = TH1D("CumulativeSimulMatBdg",
                             "CumulativeSimulMatBdg",
                             hist_X0_IB.GetNbinsX(),
                             hist_X0_IB.GetXaxis().GetXmin(),
                             hist_X0_IB.GetXaxis().GetXmax())
    cumulative_matbdg.SetDirectory(0)

    # colors
    for det, color in six.iteritems(DETECTORS):
        setColorIfExists_(hist_X0_detectors, det,  color)

    # First Plot: BeamPipe + Pixel + TIB/TID + TOB + TEC + Outside
    # stack
    stackTitle_SubDetectors = "Tracker Material Budget;%s;%s" % (
        plots[plot].abscissa,plots[plot].ordinate)
    stack_X0_SubDetectors = THStack("stack_X0",stackTitle_SubDetectors)
    for det, histo in six.iteritems(hist_X0_detectors):
        stack_X0_SubDetectors.Add(histo)
        cumulative_matbdg.Add(histo, 1)

    # canvas
    can_SubDetectors = TCanvas("can_SubDetectors","can_SubDetectors",800,800)
    can_SubDetectors.Range(0,0,25,25)
    can_SubDetectors.SetFillColor(kWhite)

    # Draw
    stack_X0_SubDetectors.SetMinimum(plots[plot].ymin)
    stack_X0_SubDetectors.SetMaximum(plots[plot].ymax)
    stack_X0_SubDetectors.Draw("HIST")
    stack_X0_SubDetectors.GetXaxis().SetLimits(plots[plot].xmin, plots[plot].xmax)


    # Legenda
    theLegend_SubDetectors = TLegend(0.180,0.8,0.98,0.92)
    theLegend_SubDetectors.SetNColumns(3)
    theLegend_SubDetectors.SetFillColor(0)
    theLegend_SubDetectors.SetFillStyle(0)
    theLegend_SubDetectors.SetBorderSize(0)

    for det, histo in six.iteritems(hist_X0_detectors):
        theLegend_SubDetectors.AddEntry(histo, det,  "f")

    theLegend_SubDetectors.Draw()

    # text
    text_SubDetectors = TPaveText(0.180,0.727,0.402,0.787,"NDC")
    text_SubDetectors.SetFillColor(0)
    text_SubDetectors.SetBorderSize(0)
    text_SubDetectors.AddText("CMS Simulation")
    text_SubDetectors.SetTextAlign(11)
    text_SubDetectors.Draw()

    # Store
    can_SubDetectors.Update()
    if not checkFile_(theDirname):
        os.mkdir(theDirname)
    can_SubDetectors.SaveAs("%s/Tracker_SubDetectors_%s.pdf" % (theDirname, plot))
    can_SubDetectors.SaveAs("%s/Tracker_SubDetectors_%s.root" % (theDirname, plot))


    # Second Plot: BeamPipe + SEN + ELE + CAB + COL + SUP + OTH/AIR +
    # Outside stack
    stackTitle_Materials = "Tracker Material Budget;%s;%s" % (plots[plot].abscissa,
                                                              plots[plot].ordinate)
    stack_X0_Materials = THStack("stack_X0",stackTitle_Materials)
    stack_X0_Materials.Add(hist_X0_detectors["BeamPipe"])
    for label, [num, color, leg] in six.iteritems(hist_label_to_num):
        if label is 'SUM':
            continue
        stack_X0_Materials.Add(hist_X0_elements[label])

    # canvas
    can_Materials = TCanvas("can_Materials","can_Materials",800,800)
    can_Materials.Range(0,0,25,25)
    can_Materials.SetFillColor(kWhite)

    # Draw
    stack_X0_Materials.SetMinimum(plots[plot].ymin)
    stack_X0_Materials.SetMaximum(plots[plot].ymax)
    stack_X0_Materials.Draw("HIST")
    stack_X0_Materials.GetXaxis().SetLimits(plots[plot].xmin, plots[plot].xmax)

    # Legenda
    theLegend_Materials = TLegend(0.180,0.8,0.95,0.92)
    theLegend_Materials.SetNColumns(3)
    theLegend_Materials.SetFillColor(0)
    theLegend_Materials.SetBorderSize(0)

    theLegend_Materials.AddEntry(hist_X0_detectors["BeamPipe"],  "Beam Pipe", "f")
    for label, [num, color, leg] in six.iteritems(hist_label_to_num):
        if label is 'SUM':
            continue
        theLegend_Materials.AddEntry(hist_X0_elements[label], leg, "f")
    theLegend_Materials.Draw()

    # text
    text_Materials = TPaveText(0.180,0.727,0.402,0.787,"NDC")
    text_Materials.SetFillColor(0)
    text_Materials.SetBorderSize(0)
    text_Materials.AddText("CMS Simulation")
    text_Materials.SetTextAlign(11)
    text_Materials.Draw()

    # Store
    can_Materials.Update()
    can_Materials.SaveAs("%s/Tracker_Materials_%s.pdf" % (theDirname, plot))
    can_Materials.SaveAs("%s/Tracker_Materials_%s.root" % (theDirname, plot))

    return cumulative_matbdg
Beispiel #20
0
for i, hist in enumerate(rateHists):
    hist.SetFillColor(colors[i % len(colors)])
    hist.SetLineColor(colors[i % len(colors)])
    if i >= len(colors):
        hist.SetFillStyle(3004)
    hs1.Add(hist)
    # add individual event entries to legend
    l1.AddEntry(hist, filterNames_mAug[i], "f")

# draw individual filter stack + overall rate hist
hs1.Draw("HIST")
totalRateHist.Draw("pSAME")

## configure axes
# set axis titles
hs1.GetXaxis().SetTitle("lumi block")
hs1.GetYaxis().SetTitle("n events")
hs1.GetYaxis().SetTitleOffset(.75)
# set axis ranges
hs1.GetXaxis().SetRangeUser(first_lb - 20, last_lb + 20)
hs1.GetYaxis().SetRangeUser(0, 100)
# set tick marks on all axes
gPad.SetTicks(1, 1)

# draw legend
l1.Draw()

# add text to plot
latex1 = ROOT.TLatex(0.52, 0.875, "#font[72]{ATLAS }#font[42]{Internal}")
latex1.SetNDC()
latex1.SetTextSize(0.05)
Beispiel #21
0
    TH1.AddDirectory(0)
    #    gStyle.SetPalette(53)
    hist_met_.SetFillColor(color[i])
    #hist_met_.SetLineColor(color[i])
    bkgStack.Add(hist_met_, 'hist')
    legend.AddEntry(hist_met_, processesLegend[i], "f")
    i = i + 1

c = TCanvas()

c.SetLogy(1)

bkgStack.Draw()
j = 0
for iregion in region:
    bkgStack.GetXaxis().SetBinLabel(j + 1, iregion)
    j = j + 1
legend.Draw()

latex = TLatex(0.15, 0.85, 'CMS')
latex.SetTextSize(0.036)
latex.SetTextAlign(12)
latex.SetNDC(kTRUE)
latex.SetTextFont(61)
latex.Draw()

latex1 = TLatex(0.13, 0.82, 'Preliminary')
latex1.SetTextSize(0.036)
latex1.SetTextAlign(12)
latex1.SetNDC(kTRUE)
latex1.SetTextFont(61)
    hs.Add(inMCDY_list[i])

    #upper plot pad
    pad1 = TPad("pad1", "pad1", 0, 0.3, 1, 1.0)
    pad1.Draw()
    pad1.cd()

    hs.SetMaximum(1.3 * max(hs.GetMaximum(), inDATA_list[i].GetMaximum()))
    inDATA_list[i].SetMaximum(
        1.3 * max(hs.GetMaximum(), inDATA_list[i].GetMaximum()))

    hs.Draw("histo")
    inDATA_list[i].Draw("sameEP")

    hs.SetTitle("")
    hs.GetXaxis().SetTitle(inDATA_list[i].GetTitle())
    hs.GetXaxis().SetLabelFont(43)
    hs.GetXaxis().SetLabelSize(15)
    hs.GetYaxis().SetTitleSize(20)
    hs.GetYaxis().SetTitleFont(43)
    hs.GetYaxis().SetTitleOffset(1.8)
    hs.GetYaxis().SetLabelFont(43)
    hs.GetYaxis().SetLabelSize(15)
    hs.GetYaxis().SetTitle("Events")

    gStyle.SetOptStat(0)

    if "Pt" in inDATA_list[i].GetTitle():
        pad1.SetLogy()

    # legend
	#if flavour_name == 'g': tmp_histogram_sublist[-1].SetFillStyle(3001)
	tmp_histogram_sublist[-1].SetLineColor(kBlack)
	tmp_histogram_sublist[-1].SetMarkerColor(flavour_color)
	#tmp_histogram_sublist[-1].SetStats(kTRUE)
	#tmp_histogram_sublist[-1].Draw()
	#tmp_canvas_single.Write()
	#tmp_canvas_single.SaveAs(histogram_name+"_"+flavour_name+'_Canvas.pdf')
	tmp_stack.Add(tmp_histogram_sublist[-1])
	tmp_legend.AddEntry(tmp_histogram_sublist[-1],flavour_name,'f')
      tmp_process_sublist.append(tmp_histogram_sublist)
      stack_process_sublist.append(tmp_stack) 
      tmp_canvas=TCanvas(histogram_name+'_'+process_name.split('.')[-1]+'_'+'CanvasStack','')
      #tmp_canvas.cd()
      #tmp_histogram_sublist[-1].Draw('histo')
      tmp_stack.Draw('histo')
      tmp_stack.GetXaxis().SetTitle(histogram_xaxis)
      tmp_stack.GetYaxis().SetTitle(histogram_yaxis)
      tmp_stack.SetTitle(histogram_description)
      tmp_legend.Draw()
      #tmp_canvas.BuildLegend(0.2,0.2,0.8,0.8)#tmp_legend.Draw()
      #autolegend=tmp_canvas.BuildLegend()
      stackcanvas_process_sublist.append(tmp_canvas)
 #     outfile.Cd()
      if histogram_name in ["subTrackNPixelHits","subTrackMomentum","subTrackJetDistVal","subTrackDecayLenVal","subTrackSip3dVal","subTrackSip3dSig","subJetNSecondaryVertices","subCSV"]:
	tmp_canvas.SetLogy()
      tmp_canvas.Write()
      if histogram_name in ["subTrackNPixelHits","subTrackMomentum","subTrackJetDistVal","subTrackDecayLenVal","subTrackSip3dVal","subTrackSip3dSig","subFlightDistance3dSig","subVertexMassJTC","subJetNSecondaryVertices","subVertexNTracks","subCSV"]:
	tmp_canvas.SaveAs(histogram_name+'_'+process_name.split('.')[-1]+'_'+'CanvasStack.pdf')
      #tmp_stack.Write()
    input_histos.append(tmp_process_sublist)
    output_histos.append(stack_process_sublist)
Beispiel #24
0
def plot_hist(histlist,
              labellist,
              norm,
              log,
              overflow,
              filename,
              options,
              scaling=[]):
    canv = TCanvas("c1", "c1", 800, 600)
    canv.SetTopMargin(10)
    canv.SetRightMargin(100)
    if log: gPad.SetLogy()
    histstack = THStack("stack", histlist[0].GetTitle())
    legend = TLegend(0.76, 0.88 - 0.08 * len(histlist), 0.91, 0.88, '', 'NDC')
    colorlist = [4, 8, 2, 6, 1]
    if len(scaling) > 1 and scaling[1] == 0: scaling = []

    if options: options += " NOSTACK"
    else: options = "NOSTACK"

    maximum = 0
    for i in range(len(histlist)):
        entries = histlist[i].GetEntries()
        mean = histlist[i].GetMean()
        histlist[i].SetLineColorAlpha(colorlist[i], 0.65)
        histlist[i].SetLineWidth(3)
        nbins = histlist[i].GetNbinsX()
        legend.AddEntry(
            histlist[i], "#splitline{" + labellist[i] +
            "}{#splitline{%d entries}{mean=%.2f}}" % (entries, mean), "l")

        if overflow:
            histlist[i].SetBinContent(
                nbins, histlist[i].GetBinContent(nbins) +
                histlist[i].GetBinContent(nbins + 1))  #overflow
            histlist[i].SetBinContent(1, histlist[i].GetBinContent(0) +
                                      histlist[i].GetBinContent(1))  #underflow
        if entries and norm: histlist[i].Scale(1. / entries)

        if histlist[i].GetMaximum() > maximum:
            maximum = histlist[i].GetMaximum()
        histstack.Add(histlist[i])

    histstack.SetMaximum(maximum * 1.4)
    histstack.Draw(options)
    histstack.GetXaxis().SetTitle(histlist[0].GetXaxis().GetTitle())
    histstack.GetYaxis().SetTitle(histlist[0].GetYaxis().GetTitle())
    xlimit = [
        histlist[0].GetBinLowEdge(1),
        histlist[0].GetBinLowEdge(histlist[0].GetNbinsX()) +
        histlist[0].GetBinWidth(histlist[0].GetNbinsX())
    ]
    if len(scaling) != 0:
        top_axis = TGaxis(xlimit[0], maximum * 1.4, xlimit[1], maximum * 1.4,
                          (xlimit[0] - scaling[0]) / scaling[1],
                          (xlimit[1] - scaling[0]) / scaling[1], 510, "-")
        top_axis.SetTitle("normalized scale")
        top_axis.SetTickSize(0)
        top_axis.Draw("SAME")

    legend.SetTextSize(0.02)
    legend.SetFillStyle(0)
    legend.SetBorderSize(0)
    legend.Draw("SAME")
    canv.SaveAs(filename)
    if log: gPad.Clear()
    canv.Clear()
    del canv
latex.SetTextAlign(align_)

extraTextSize = extraOverCmsTextSize * cmsTextSize
latex.SetTextFont(extraTextFont)
latex.SetTextAlign(align_)
latex.SetTextSize(0.8 * extraTextSize * t)

hs.SetMaximum(1.6 * hs.GetMaximum())

fPads1.cd()
hs.Draw("HIST")
hs.GetYaxis().SetTitle("Events/bin")
hs.GetYaxis().SetTitleSize(0.04)
hs.GetYaxis().SetTickLength(0.02)
hs.GetYaxis().SetTitleOffset(1.2)
hs.GetXaxis().SetTitleOffset(1.3)
hs.GetXaxis().SetLabelSize(0.0)
hs.GetXaxis().SetTitle("M_{jj} [GeV]")

bin_width_signal = ['500', '600', '700', '1000', 'inf']
bin_width_control = ['200', '300', '400', '500']
hs.Print("all")
x1 = array('d', (4, 4))
y1 = array('d', (0, 1.1 * hs.GetMaximum()))
g1 = TGraph(2, x1, y1)
g1.SetLineColor(1)
g1.SetLineStyle(2)
g1.SetLineWidth(2)

x2 = array('d', (8, 8))
y2 = array('d', (0, 1.1 * hs.GetMaximum()))
Beispiel #26
0
def plotStack():
    inputfile = TFile(filename, "read")
    if inputfile.IsZombie():
        print("inputfile is Zombie")
        sys.exit()

    # loop over features
    for feature, values in features.items():
        file = open(
            "%s%s_%s_isNorm%s_wtStat%s_isBlind%s.txt" %
            (outputdir, feature, plotname, normalization, showStats, blind),
            "w")

        file.write(
            "\\begin{table}[]\n\\resizebox{!}{.33\\paperheight}{\n \\begin{tabular}{|l|l|l|}\n\\hline\nProcess & Yield & Entries \\\\ \\hline \n"
        )
        # set up legend
        legend = TLegend(0.2, 0.6, 0.7, 0.88)
        legend.SetHeader("%i  %s" % (year, region))
        legend.SetNColumns(4)
        legend.SetBorderSize(0)

        c, pad1, pad2 = createCanvasPads()

        hstack = THStack("hstack", "hstack")
        hstack.SetTitle(
            "#scale[0.9]{#font[22]{CMS} #font[12]{Preliminary}                                                            %i at %.2f fb^{-1}(13TeV)}"
            % (year, luminosity[year]))

        histName = "TTH_" + feature  # assuming TTH is always there
        if not inputfile.GetListOfKeys().Contains(histName):
            print("%s doesn't have histogram %s, please use another hist " %
                  (inputfile, histName))
            sys.exit()

        h0 = inputfile.Get(histName)

        h_totalsig = h0.Clone("h_totalsig")
        h_totalsig.SetDirectory(0)
        h_totalsig.Reset()
        h_totalsig.SetMarkerStyle(20)
        h_totalsig.Sumw2()

        h_totalbkg = h0.Clone("h_totalbkg")
        h_totalbkg.SetDirectory(0)
        h_totalbkg.Reset()
        h_totalbkg.SetMarkerStyle(20)
        h_totalbkg.Sumw2()

        h_totalmc = h0.Clone("h_totalmc")
        h_totalmc.SetDirectory(0)
        h_totalmc.Reset()
        h_totalmc.SetLineColor(kBlack)
        h_totalmc.SetFillColor(kGray + 3)
        h_totalmc.SetFillStyle(3001)
        h_totalmc.SetTitle("")
        #h_totalmc.SetMinimum(0.8)
        #h_totalmc.SetMaximum(1.35)
        h_totalmc.Sumw2()
        h_totalmc.SetStats(0)

        h_dataobs = h0.Clone("h_dataobs")
        h_dataobs.SetDirectory(0)
        h_dataobs.Reset()
        h_dataobs.SetMarkerStyle(20)

        # loop over samples
        for sample in Samples:
            hist = h_totalmc.Clone(sample)
            hist.SetDirectory(0)
            hist.Reset()
            if sample not in Process:
                print("sample %s is not in Process " % sample)
                continue
            # loop over data:
            if sample == "Data" or sample == "data":
                for p in Process[sample]:
                    if p not in sampleName:
                        print("process %s is not in sampleName " % s)
                        continue
                    hist_name = p + "_" + feature
                    if not inputfile.GetListOfKeys().Contains(hist_name):
                        print("%s doesn't have histogram %s" %
                              (inputfile, hist_name))
                        continue
                    h1 = inputfile.Get(hist_name).Clone(hist_name)
                    h1.SetDirectory(0)
                    h_dataobs.Add(h1)
                    error = Double(0)
                    h1.IntegralAndError(0, h1.GetNbinsX(), error)
                    if not blind:
                        file.write(
                            "%s &  %.2f +/- %.2f &   %i \\\\ \\hline \n" %
                            (p.replace('_', '\\_'), h1.Integral(), error,
                             h1.GetEntries()))
            # loop over mc
            # loop over signal
            elif sample in Signals:
                for p in Process[sample]:
                    if p not in sampleName:
                        print("process %s is not in sampleName " % s)
                        continue
                    hist_name = p + "_" + feature
                    if not inputfile.GetListOfKeys().Contains(hist_name):
                        print("%s doesn't have histogram %s" %
                              (filename, hist_name))
                        continue
                    h1 = inputfile.Get(hist_name).Clone(hist_name)
                    h1.SetDirectory(0)
                    if p == "FakeSub" and sample == "Fakes":
                        hist.Add(h1, -1)
                        h_totalsig.Add(h1, -1)
                        h_totalmc.Add(h1, -1)
                    else:
                        hist.Add(h1)
                        h_totalsig.Add(h1)
                        h_totalmc.Add(h1)
                    error = Double(0)
                    h1.IntegralAndError(0, h1.GetNbinsX(), error)
                    if h1.Integral() < 0.05 or h1.GetEntries() < 100:
                        file.write(
                            "\\textcolor{red}{%s} &  %.2f +/- %.2f &   %i \\\\ \\hline \n"
                            % (p.replace('_', '\\_'), h1.Integral(), error,
                               h1.GetEntries()))
                    else:
                        file.write(
                            "%s &  %.2f +/- %.2f &   %i \\\\ \\hline \n" %
                            (p.replace('_', '\\_'), h1.Integral(), error,
                             h1.GetEntries()))
                hist.SetFillColor(Color[sample])
                hist.SetLineColor(kBlack)
                hist.SetFillStyle(Style[sample])
                if sample == "TH" and tH != 1:
                    hist.Scale(tH)
                    hist.SetFillColor(Color[sample])
                    hist.SetLineColor(kBlack)
                    hist.SetFillStyle(Style[sample])
                    hstack.Add(hist)
                    legend.AddEntry(hist, "%s * %i" % (sample, tH), "f")
                else:
                    hstack.Add(hist)
                    legend.AddEntry(hist, sample, "f")

        # create required parts
        # loop over bkg
            else:
                for p in Process[sample]:
                    if p not in sampleName:
                        print("process %s is not in sampleName " % p)
                        continue
                    hist_name = p + "_" + feature
                    if not inputfile.GetListOfKeys().Contains(hist_name):
                        print("%s doesn't have histogram %s" %
                              (filename, hist_name))
                        continue
                    h1 = inputfile.Get(hist_name).Clone(hist_name)
                    h1.SetDirectory(0)
                    if p == "FakeSub" and sample == "Fakes":
                        hist.Add(h1, -1)
                        h_totalmc.Add(h1, -1)
                        h_totalbkg.Add(h1, -1)
                    else:
                        hist.Add(h1)
                        h_totalmc.Add(h1)
                        h_totalbkg.Add(h1)
                    error = Double(0)
                    h1.IntegralAndError(0, h1.GetNbinsX(), error)
                    if h1.Integral() < 0.05 or h1.GetEntries() < 100:
                        file.write(
                            "\\textcolor{red}{%s} &  %.2f +/- %.2f &   %i \\\\ \\hline \n"
                            % (p.replace('_', '\\_'), h1.Integral(), error,
                               h1.GetEntries()))
                    else:
                        file.write(
                            "%s &  %.2f +/- %.2f &   %i \\\\ \\hline \n" %
                            (p.replace('_', '\\_'), h1.Integral(), error,
                             h1.GetEntries()))
                hist.SetFillColor(Color[sample])
                hist.SetLineColor(kBlack)
                hist.SetFillStyle(Style[sample])
                if sample == "TH" and tH != 1:
                    hist.Scale(tH)
                    hist.SetFillColor(Color[sample])
                    hist.SetLineColor(kBlack)
                    hist.SetFillStyle(Style[sample])
                    hstack.Add(hist)
                    legend.AddEntry(hist, "%s * %i" % (sample, tH), "f")
                else:
                    hstack.Add(hist)
                    legend.AddEntry(hist, sample, "f")

        error = Double(0)
        h_totalsig.IntegralAndError(0, h_totalsig.GetNbinsX(), error)
        file.write("signal &  %.2f +/- %.2f &   %i \\\\ \\hline \n" %
                   (h_totalsig.Integral(), error, h_totalsig.GetEntries()))

        error = Double(0)
        h_totalbkg.IntegralAndError(0, h_totalbkg.GetNbinsX(), error)
        file.write("bkg &  %.2f +/- %.2f &   %i \\\\ \\hline \n" %
                   (h_totalbkg.Integral(), error, h_totalbkg.GetEntries()))

        # create required parts

        if blind:
            h_sqrtB = createSqrt(h_totalbkg)
            h_MCerr = createTotalMCErr(h_sqrtB, values["xlabel"])
            h_ratio = createRatio(h_totalsig, h_sqrtB, values["xlabel"],
                                  normalization)
        else:
            h_MCerr = createTotalMCErr(h_totalmc, feature)
            h_ratio = createRatio(h_dataobs, h_totalmc, values["xlabel"],
                                  normalization)
            legend.AddEntry(h_dataobs, "observed", "lep")

        legend.AddEntry(h_totalmc, "Uncertainty", "f")

        # draw everything

        pad1.cd()
        if values["logy"] == 1:
            pad1.SetLogy()
        maximum = h_dataobs.GetMaximum()
        upperbound = 2. * maximum
        lowerbound = -maximum / 40.
        if values["logy"] == 1:
            upperbound = 1000 * maximum
            lowerbound = 0.1

        hstack.SetMinimum(lowerbound)
        hstack.SetMaximum(upperbound)
        hstack.Draw("HISTY")
        # Adjust y-axis settings
        y = hstack.GetYaxis()
        y.SetTitle("Events ")
        y.SetTitleSize(25)
        y.SetTitleFont(43)
        y.SetTitleOffset(1.55)
        y.SetLabelFont(43)
        y.SetLabelSize(20)

        nbins = h_ratio.GetNbinsX()
        #hstack.GetXaxis().SetRange(0, nbins+1)
        hstack.GetXaxis().SetRangeUser(values["min"], values["max"])

        h_totalmc.Draw("e2same")
        if not blind:
            h_dataobs.Draw("same")
        legend.Draw("same")

        pad2.cd()
        if blind:
            h_ratio.SetMinimum(0.)
            #maximum = h_ratio.GetMaximum()
            #upperbound = 1.5*maximum
            #h_ratio.SetMaximum(upperbound)
            h_ratio.SetMaximum(3.)
            h_ratio.GetXaxis().SetRangeUser(values["min"], values["max"])
            h_ratio.Draw("")
        else:
            h_MCerr.SetMinimum(0.5)
            h_MCerr.SetMaximum(1.8)
            h_MCerr.GetXaxis().SetRangeUser(values["min"], values["max"])
            h_MCerr.Draw("e2")
            h_ratio.Draw("same")

        c.SaveAs(
            "%s%s_%s_isNorm%s_wtStat%s_isBlind%s_stack.png" %
            (outputdir, feature, plotname, normalization, showStats, blind))
        file.write("\\end{tabular}\n}\n\\end{table}\n")
        file.close()
    inputfile.Close()
Beispiel #27
0
def Draw_1D_Comp(rootfile_name, var, min, max, WP_list, leg, isTail=False):
    gStyle.SetErrorX(0.5)

    ## The TStack is created with min and max set
    stack = THStack("stack", var.name)
    stack.SetMinimum(min)
    stack.SetMaximum(max)

    for wp in WP_list:

        ## Loading the graph using its name and file location
        graph_name = "{}_{}".format(var.name, wp.name)
        if isTail:
            graph_name += "_cumulative"

        graph = GetGraphFromFile(rootfile_name, graph_name)
        if graph == -1:
            continue

        ## Setting the colors specific to the working point
        graph.SetLineColor(wp.colour)
        graph.SetMarkerColor(wp.colour)
        graph.SetMarkerStyle((wp.marker))

        leg.AddEntry(graph, wp.name, "p")

        width = graph.GetBinWidth(0)

        ## We check if the legend requires values for statistics
        if leg.GetNColumns() == 2:

            ## Calculate the MEAN and RMSE and add to the legend
            mean = graph.GetMean()
            stdev = graph.GetStdDev()
            rms = np.sqrt(mean * mean + stdev * stdev)

            ## Adding the legend entry
            # leg.AddEntry( 0, "{:5.2f}".format(mean), "")
            leg.AddEntry(0, "{:5.2f}".format(rms), "")

        ## Adding the object to the stack
        stack.Add(graph)
        del graph

    ## Checking to see if any graphs were found for this variable
    if stack.GetNhists() == 0:
        print("\n\n\nNo graphs found for working point {}\n\n\n".format(
            wp.name))
        return -1

    ## Drawing the stack on the currrent canvas
    stack.Draw("nostack EP")
    leg.Draw()

    ## Setting axis labels
    if isTail:
        stack.GetXaxis().SetTitle(var.x_label + " threshold " + var.units)
        stack.GetYaxis().SetTitle("#it{f}_{tail}")
    else:
        stack_y_label = "Events per {:.0f} GeV".format(
            width) if width > 1 else "Events per GeV"

        stack.GetXaxis().SetTitle(var.x_label + " " + var.units)
        stack.GetYaxis().SetTitle(stack_y_label)

    ## Moving axis tick marks
    stack.GetYaxis().SetMaxDigits(3)
    stack.GetXaxis().SetLabelOffset(0.017)

    return stack
Beispiel #28
0
def Direct_Estimator(var, cut, year):
    from root_numpy import root2array, fill_hist, array2root
    import numpy.lib.recfunctions as rfn
    ### Preliminary Operations ###
    treeRead = not cut in [
        "nnqq", "en", "enqq", "mn", "mnqq", "ee", "eeqq", "mm", "mmqq", "em",
        "emqq", "qqqq"
    ]  # Read from tree
    channel = cut
    unit = ''
    if "GeV" in variable[var]['title']: unit = ' GeV'
    isBlind = BLIND and 'SR' in channel
    isAH = False  #'qqqq' in channel or 'hp' in channel or 'lp' in channel
    showSignal = False if 'SB' in cut or 'TR' in cut else True  #'SR' in channel or channel=='qqqq'#or len(channel)==5
    stype = "HVT model B"
    if len(sign) > 0 and 'AZh' in sign[0]: stype = "2HDM"
    elif len(sign) > 0 and 'monoH' in sign[0]: stype = "Z'-2HDM m_{A}=300 GeV"
    if treeRead:
        for k in sorted(alias.keys(), key=len, reverse=True):
            if BTAGGING == 'semimedium':
                if k in cut:
                    cut = cut.replace(k, aliasSM[k])

            else:
                if k in cut:
                    cut = cut.replace(
                        k, alias[k].format(WP=working_points[BTAGGING]))

    print "Plotting from", ("tree" if treeRead else
                            "file"), var, "in", channel, "channel with:"
    print "  cut    :", cut

    if var == 'jj_deltaEta_widejet':
        if "jj_deltaEta_widejet<1.1 && " in cut:
            print
            print "omitting jj_deltaEta_widejet<1.1 cut to draw the deltaEta distribution"
            print
            cut = cut.replace("jj_deltaEta_widejet<1.1 && ", "")
        else:
            print
            print "no 'jj_deltaEta_widejet<1.1 && ' in the cut string detected, so it cannot be ommited explicitly"
            print

    ### Create and fill MC histograms ###
    # Create dict
    file = {}
    tree = {}
    hist = {}

    ### Create and fill MC histograms ###
    for i, s in enumerate(back + sign):
        if True:  #FIXME

            if variable[var]['nbins'] > 0:
                hist[s] = TH1F(
                    s, ";" + variable[var]['title'] + ";Events / ( " + str(
                        (variable[var]['max'] - variable[var]['min']) /
                        variable[var]['nbins']) + unit + " );" +
                    ('log' if variable[var]['log'] else ''),
                    variable[var]['nbins'], variable[var]['min'],
                    variable[var]['max'])
            else:
                hist[s] = TH1F(
                    s, ";" + variable[var]['title'] + ";Events" +
                    ('log' if variable[var]['log'] else ''),
                    len(variable[var]['bins']) - 1,
                    array('f', variable[var]['bins']))
            hist[s].Sumw2()

            for j, ss in enumerate(sample[s]['files']):
                if not 'data' in s:
                    if year == "run2" or year in ss:
                        arr = root2array(
                            NTUPLEDIR + ss + ".root",
                            branches=[
                                var, "jpt_1", "jpt_2", "eventWeightLumi",
                                "TMath::Abs(jflavour_1)==5 && TMath::Abs(jflavour_2)==5",
                                "TMath::Abs(jflavour_1)==5 && TMath::Abs(jflavour_2)!=5",
                                "TMath::Abs(jflavour_1)!=5 && TMath::Abs(jflavour_2)==5",
                                "TMath::Abs(jflavour_1)!=5 && TMath::Abs(jflavour_2)!=5"
                            ],
                            selection=cut if len(cut) > 0 else "")
                        print "imported " + NTUPLEDIR + ss + ".root"
                        arr.dtype.names = [
                            var, "jpt_1", "jpt_2", "eventWeightLumi", "bb",
                            "bq", "qb", "qq"
                        ]
                        MANtag_eff1 = np.array(map(MANtag_eff, arr["jpt_1"]))
                        MANtag_eff2 = np.array(map(MANtag_eff, arr["jpt_2"]))
                        MANtag_mis1 = np.array(map(MANtag_mis, arr["jpt_1"]))
                        MANtag_mis2 = np.array(map(MANtag_mis, arr["jpt_2"]))
                        MANtag_weight = np.multiply(
                            arr["eventWeightLumi"],
                            np.multiply(arr['bb'],
                                        np.multiply(MANtag_eff1, MANtag_eff2))
                            + np.multiply(
                                arr['bq'], np.multiply(MANtag_eff1,
                                                       MANtag_mis2)) +
                            np.multiply(arr['qb'],
                                        np.multiply(MANtag_mis1,
                                                    MANtag_eff2)) +
                            np.multiply(arr['qq'],
                                        np.multiply(MANtag_mis1, MANtag_mis2)))
                        fill_hist(hist[s], arr[var], weights=MANtag_weight)
                        deepCSV_eff1 = np.array(map(deepCSV_eff, arr["jpt_1"]))
                        deepCSV_eff2 = np.array(map(deepCSV_eff, arr["jpt_2"]))
                        deepCSV_mis1 = np.array(map(deepCSV_mis, arr["jpt_1"]))
                        deepCSV_mis2 = np.array(map(deepCSV_mis, arr["jpt_2"]))
                        deepCSV_weight = np.multiply(
                            arr["eventWeightLumi"],
                            np.multiply(
                                arr['bb'],
                                np.multiply(deepCSV_eff1, deepCSV_eff2)) +
                            np.multiply(
                                arr['bq'],
                                np.multiply(deepCSV_eff1, deepCSV_mis2)) +
                            np.multiply(
                                arr['qb'],
                                np.multiply(deepCSV_mis1, deepCSV_eff2)) +
                            np.multiply(
                                arr['qq'],
                                np.multiply(deepCSV_mis1, deepCSV_mis2)))

                        if var == "jj_mass_widejet" and options.save and not "data" in ss:
                            arr = rfn.append_fields(arr,
                                                    "MANtag_weight",
                                                    MANtag_weight,
                                                    usemask=False)
                            arr = rfn.append_fields(arr,
                                                    "deepCSV_weight",
                                                    deepCSV_weight,
                                                    usemask=False)
                            array2root(arr,
                                       NTUPLEDIR + "MANtag/" + ss + "_" +
                                       BTAGGING + ".root",
                                       treename="tree",
                                       mode='recreate')
                            print "saved as", NTUPLEDIR + "MANtag/" + ss + "_" + BTAGGING + ".root"
                        arr = None

        hist[s].Scale(sample[s]['weight'] if hist[s].Integral() >= 0 else 0)
        hist[s].SetFillColor(sample[s]['fillcolor'])
        hist[s].SetFillStyle(sample[s]['fillstyle'])
        hist[s].SetLineColor(sample[s]['linecolor'])
        hist[s].SetLineStyle(sample[s]['linestyle'])

    if channel.endswith('TR') and channel.replace('TR', '') in topSF:
        hist['TTbarSL'].Scale(topSF[channel.replace('TR', '')][0])
        hist['ST'].Scale(topSF[channel.replace('TR', '')][0])

    hist['BkgSum'] = hist['data_obs'].Clone(
        "BkgSum") if 'data_obs' in hist else hist[back[0]].Clone("BkgSum")
    hist['BkgSum'].Reset("MICES")
    hist['BkgSum'].SetFillStyle(3003)
    hist['BkgSum'].SetFillColor(1)
    for i, s in enumerate(back):
        hist['BkgSum'].Add(hist[s])

    # Create data and Bkg sum histograms
    if options.blind or 'SR' in channel:
        hist['data_obs'] = hist['BkgSum'].Clone("data_obs")
        hist['data_obs'].Reset("MICES")
    # Set histogram style
    hist['data_obs'].SetMarkerStyle(20)
    hist['data_obs'].SetMarkerSize(1.25)

    for i, s in enumerate(back + sign + ['BkgSum']):
        addOverflow(hist[s], False)  # Add overflow
    for i, s in enumerate(sign):
        hist[s].SetLineWidth(3)
    for i, s in enumerate(sign):
        sample[s][
            'plot'] = True  #sample[s]['plot'] and s.startswith(channel[:2])

    if isAH:
        for i, s in enumerate(back):
            hist[s].SetFillStyle(3005)
            hist[s].SetLineWidth(2)
        #for i, s in enumerate(sign):
        #    hist[s].SetFillStyle(0)
        if not var == "Events":
            sfnorm = hist[data[0]].Integral() / hist['BkgSum'].Integral()
            print "Applying SF:", sfnorm
            for i, s in enumerate(back + ['BkgSum']):
                hist[s].Scale(sfnorm)
        if BLIND and var.endswith("Mass"):
            for i, s in enumerate(data + back + ['BkgSum']):
                first, last = hist[s].FindBin(65), hist[s].FindBin(135)
                for j in range(first, last):
                    hist[s].SetBinContent(j, -1.e-4)
        if BLIND and var.endswith("Tau21"):
            for i, s in enumerate(data):
                first, last = hist[s].FindBin(0), hist[s].FindBin(0.6)
                for j in range(first, last):
                    hist[s].SetBinContent(j, -1.e-4)

    # Create stack
    if variable[var]['nbins'] > 0:
        bkg = THStack(
            "Bkg",
            ";" + hist['BkgSum'].GetXaxis().GetTitle() + ";Events / ( " + str(
                (variable[var]['max'] - variable[var]['min']) /
                variable[var]['nbins']) + unit + " )")
    else:
        bkg = THStack("Bkg",
                      ";" + hist['BkgSum'].GetXaxis().GetTitle() + ";Events; ")
    for i, s in enumerate(back):
        bkg.Add(hist[s])

    # Legend
    leg = TLegend(0.65, 0.6, 0.95, 0.9)
    leg.SetBorderSize(0)
    leg.SetFillStyle(0)  #1001
    leg.SetFillColor(0)
    if len(data) > 0:
        leg.AddEntry(hist[data[0]], sample[data[0]]['label'], "pe")
    for i, s in reversed(list(enumerate(['BkgSum'] + back))):
        leg.AddEntry(hist[s], sample[s]['label'], "f")
    if showSignal:
        for i, s in enumerate(sign):
            if sample[s]['plot']:
                leg.AddEntry(hist[s], sample[s]['label'], "fl")

    leg.SetY1(0.9 - leg.GetNRows() * 0.05)

    # --- Display ---
    c1 = TCanvas("c1",
                 hist.values()[0].GetXaxis().GetTitle(), 800,
                 800 if RATIO else 600)

    if RATIO:
        c1.Divide(1, 2)
        setTopPad(c1.GetPad(1), RATIO)
        setBotPad(c1.GetPad(2), RATIO)
    c1.cd(1)
    c1.GetPad(bool(RATIO)).SetTopMargin(0.06)
    c1.GetPad(bool(RATIO)).SetRightMargin(0.05)
    c1.GetPad(bool(RATIO)).SetTicks(1, 1)

    log = variable[var]['log']  #"log" in hist['BkgSum'].GetZaxis().GetTitle()
    if log: c1.GetPad(bool(RATIO)).SetLogy()

    # Draw
    bkg.Draw("HIST")  # stack
    hist['BkgSum'].Draw("SAME, E2")  # sum of bkg
    if not isBlind and len(data) > 0: hist['data_obs'].Draw("SAME, PE")  # data
    if 'sync' in hist: hist['sync'].Draw("SAME, PE")
    #data_graph.Draw("SAME, PE")
    if showSignal:
        smagn = 1.  #if treeRead else 1.e2 #if log else 1.e2
        for i, s in enumerate(sign):
            #        if sample[s]['plot']:
            hist[s].Scale(smagn)
            hist[s].Draw(
                "SAME, HIST"
            )  # signals Normalized, hist[s].Integral()*sample[s]['weight']
        textS = drawText(0.80, 0.9 - leg.GetNRows() * 0.05 - 0.02,
                         stype + " (x%d)" % smagn, True)
    #bkg.GetYaxis().SetTitleOffset(bkg.GetYaxis().GetTitleOffset()*1.075)
    bkg.GetYaxis().SetTitleOffset(0.9)
    #bkg.GetYaxis().SetTitleOffset(2.)
    bkg.SetMaximum((5. if log else 1.25) * max(
        bkg.GetMaximum(),
        hist['data_obs'].GetBinContent(hist['data_obs'].GetMaximumBin()) +
        hist['data_obs'].GetBinError(hist['data_obs'].GetMaximumBin())))
    #if bkg.GetMaximum() < max(hist[sign[0]].GetMaximum(), hist[sign[-1]].GetMaximum()): bkg.SetMaximum(max(hist[sign[0]].GetMaximum(), hist[sign[-1]].GetMaximum())*1.25)
    bkg.SetMinimum(
        max(
            min(hist['BkgSum'].GetBinContent(hist['BkgSum'].GetMinimumBin(
            )), hist['data_obs'].GetMinimum()), 5.e-1) if log else 0.)
    if log:
        bkg.GetYaxis().SetNoExponent(bkg.GetMaximum() < 1.e4)
        #bkg.GetYaxis().SetMoreLogLabels(True)
    bkg.GetXaxis().SetRangeUser(variable[var]['min'], variable[var]['max'])

    #if log: bkg.SetMinimum(1)
    leg.Draw()
    #drawCMS(LUMI[year], "Preliminary")
    drawCMS(LUMI[year], "Work in Progress", suppressCMS=True)
    drawRegion('XVH' + channel, True)
    drawAnalysis(channel)

    setHistStyle(bkg, 1.2 if RATIO else 1.1)
    setHistStyle(hist['BkgSum'], 1.2 if RATIO else 1.1)

    if RATIO:
        c1.cd(2)
        err = hist['BkgSum'].Clone("BkgErr;")
        err.SetTitle("")
        err.GetYaxis().SetTitle("Data / MC")
        err.GetYaxis().SetTitleOffset(0.9)

        err.GetXaxis().SetRangeUser(variable[var]['min'], variable[var]['max'])
        for i in range(1, err.GetNbinsX() + 1):
            err.SetBinContent(i, 1)
            if hist['BkgSum'].GetBinContent(i) > 0:
                err.SetBinError(
                    i, hist['BkgSum'].GetBinError(i) /
                    hist['BkgSum'].GetBinContent(i))
        setBotStyle(err)
        errLine = err.Clone("errLine")
        errLine.SetLineWidth(1)
        errLine.SetFillStyle(0)
        res = hist['data_obs'].Clone("Residues")
        for i in range(0, res.GetNbinsX() + 1):
            if hist['BkgSum'].GetBinContent(i) > 0:
                res.SetBinContent(
                    i,
                    res.GetBinContent(i) / hist['BkgSum'].GetBinContent(i))
                res.SetBinError(
                    i,
                    res.GetBinError(i) / hist['BkgSum'].GetBinContent(i))
        if 'sync' in hist:
            res.SetMarkerColor(2)
            res.SetMarkerStyle(31)
            res.Reset()
            for i in range(0, res.GetNbinsX() + 1):
                x = hist['data_obs'].GetXaxis().GetBinCenter(i)
                if hist['sync'].GetBinContent(hist['sync'].FindBin(x)) > 0:
                    res.SetBinContent(
                        i, hist['data_obs'].GetBinContent(
                            hist['data_obs'].FindBin(x)) /
                        hist['sync'].GetBinContent(hist['sync'].FindBin(x)))
                    res.SetBinError(
                        i, hist['data_obs'].GetBinError(
                            hist['data_obs'].FindBin(x)) /
                        hist['sync'].GetBinContent(hist['sync'].FindBin(x)))
        setBotStyle(res)
        #err.GetXaxis().SetLabelOffset(err.GetXaxis().GetLabelOffset()*5)
        #err.GetXaxis().SetTitleOffset(err.GetXaxis().GetTitleOffset()*2)
        err.Draw("E2")
        errLine.Draw("SAME, HIST")
        if not isBlind and len(data) > 0:
            res.Draw("SAME, PE0")
            #res_graph.Draw("SAME, PE0")
            if len(err.GetXaxis().GetBinLabel(
                    1)) == 0:  # Bin labels: not a ordinary plot
                drawRatio(hist['data_obs'], hist['BkgSum'])
                drawStat(hist['data_obs'], hist['BkgSum'])

    c1.Update()

    if gROOT.IsBatch():
        if channel == "": channel = "nocut"
        varname = var.replace('.', '_').replace('()', '')
        if not os.path.exists("plots/" + channel):
            os.makedirs("plots/" + channel)
        suffix = ''
        if "b" in channel or 'mu' in channel: suffix += "_" + BTAGGING
        c1.Print("plots/MANtag_study/" + channel + "/" + varname + "_" + year +
                 suffix + ".png")
        c1.Print("plots/MANtag_study/" + channel + "/" + varname + "_" + year +
                 suffix + ".pdf")

    # Print table
    printTable(hist, sign)
Beispiel #29
0
    #upper plot pad
    pad1 = TPad("pad1", "pad1", 0, 0.3, 1, 1.0)
    pad1.Draw()
    pad1.cd()

    hs.SetMaximum(1.6 * max(hs.GetMaximum(), LepBDTDATA_list[i].GetMaximum()))
    LepBDTDATA_list[i].SetMaximum(
        1.6 * max(hs.GetMaximum(), LepBDTDATA_list[i].GetMaximum()))
    hs.SetMinimum(10)  #EF for ele BDT

    hs.Draw("histo")
    LepBDTDATA_list[i].Draw("sameEP")

    hs.SetTitle("")
    hs.GetXaxis().SetTitle("BDT score")
    hs.GetXaxis().SetRangeUser(0.75, 1)  #EF for ele BDT
    hs.GetXaxis().SetLabelFont(43)
    hs.GetXaxis().SetLabelSize(15)
    hs.GetYaxis().SetTitleSize(20)
    hs.GetYaxis().SetTitleFont(43)
    hs.GetYaxis().SetTitleOffset(1.8)
    hs.GetYaxis().SetLabelFont(43)
    hs.GetYaxis().SetLabelSize(15)
    hs.GetYaxis().SetTitle("Events")

    gStyle.SetOptStat(0)
    pad1.SetLogy()

    # legend
    legend = TLegend(0.1, 0.75, 0.3, 0.9)  #left alignment
Beispiel #30
0
def DeepCSV_pt_distribution(
        year):  ## everything below is jsut copy&past from above
    from root_numpy import root2array, fill_hist, array2root
    import numpy.lib.recfunctions as rfn
    from aliases import alias_deepCSV, WP_deepCSV
    ### Preliminary Operations ###
    treeRead = True
    var = 'jpt_1'
    channel = 'preselection'
    cut = alias_deepCSV['preselection']
    unit = ''
    if "GeV" in variable[var]['title']: unit = ' GeV'
    isBlind = BLIND and 'SR' in channel
    isAH = False
    showSignal = True
    stype = "HVT model B"
    if len(sign) > 0 and 'AZh' in sign[0]: stype = "2HDM"
    elif len(sign) > 0 and 'monoH' in sign[0]: stype = "Z'-2HDM m_{A}=300 GeV"
    if treeRead:
        for k in sorted(alias_deepCSV.keys(), key=len, reverse=True):
            if k in cut:
                cut = cut.replace(
                    k, alias_deepCSV[k].format(WP=WP_deepCSV[BTAGGING][year]))

    print "Plotting from", ("tree" if treeRead else
                            "file"), var, "in", channel, "channel with:"
    print "  cut    :", cut

    ### Create and fill MC histograms ###
    # Create dict
    file = {}
    tree = {}
    hist = {}
    N_signal_tot = 0.
    N_signal_tag = 0.

    ### Create and fill MC histograms ###
    for i, s in enumerate(back + sign):

        if variable[var]['nbins'] > 0:
            hist[s] = TH1F(
                s, ";jet p_{T};Events / ( " + str(
                    (variable[var]['max'] - variable[var]['min']) /
                    variable[var]['nbins']) + unit + " );" +
                ('log' if variable[var]['log'] else ''),
                variable[var]['nbins'], variable[var]['min'],
                variable[var]['max'])
        else:
            hist[s] = TH1F(
                s,
                ";jet p_{T};Events" + ('log' if variable[var]['log'] else ''),
                len(variable[var]['bins']) - 1,
                array('f', variable[var]['bins']))
        hist[s].Sumw2()

        for j, ss in enumerate(sample[s]['files']):
            if not 'data' in s:
                if year == "run2" or year in ss:
                    arr = root2array(NTUPLEDIR + ss + ".root",
                                     branches=["jpt_1", "eventWeightLumi"],
                                     selection=cut + " && jdeepCSV_1>" +
                                     str(WP_deepCSV[BTAGGING][year]))
                    if 'signal' in ss.lower():
                        N_signal_tag += len(arr['jpt_1'][arr['jpt_1'] > 3500])
                    print "imported " + NTUPLEDIR + ss + ".root"
                    fill_hist(hist[s],
                              arr["jpt_1"],
                              weights=arr["eventWeightLumi"])
                    arr = None

                    arr = root2array(NTUPLEDIR + ss + ".root",
                                     branches=["jpt_2", "eventWeightLumi"],
                                     selection=cut + " && jdeepCSV_2>" +
                                     str(WP_deepCSV[BTAGGING][year]))
                    print "imported " + NTUPLEDIR + ss + ".root"
                    if 'signal' in ss.lower():
                        N_signal_tag += len(arr['jpt_2'][arr['jpt_2'] > 3500])
                    fill_hist(hist[s],
                              arr["jpt_2"],
                              weights=arr["eventWeightLumi"])
                    arr = None

                    if 'signal' in ss.lower():
                        arr = root2array(NTUPLEDIR + ss + ".root",
                                         branches=["jpt_1", "eventWeightLumi"],
                                         selection=cut)
                        N_signal_tot += len(arr['jpt_1'][arr['jpt_1'] > 3500])
                        arr = None

                        arr = root2array(NTUPLEDIR + ss + ".root",
                                         branches=["jpt_2", "eventWeightLumi"],
                                         selection=cut)
                        N_signal_tot += len(arr['jpt_2'][arr['jpt_2'] > 3500])
                        arr = None

        hist[s].Scale(sample[s]['weight'] if hist[s].Integral() >= 0 else 0)
        hist[s].SetFillColor(sample[s]['fillcolor'])
        hist[s].SetFillStyle(sample[s]['fillstyle'])
        hist[s].SetLineColor(sample[s]['linecolor'])
        hist[s].SetLineStyle(sample[s]['linestyle'])

    if channel.endswith('TR') and channel.replace('TR', '') in topSF:
        hist['TTbarSL'].Scale(topSF[channel.replace('TR', '')][0])
        hist['ST'].Scale(topSF[channel.replace('TR', '')][0])

    hist['BkgSum'] = hist['data_obs'].Clone(
        "BkgSum") if 'data_obs' in hist else hist[back[0]].Clone("BkgSum")
    hist['BkgSum'].Reset("MICES")
    hist['BkgSum'].SetFillStyle(3003)
    hist['BkgSum'].SetFillColor(1)
    for i, s in enumerate(back):
        hist['BkgSum'].Add(hist[s])

    # Create data and Bkg sum histograms
    if options.blind or 'SR' in channel:
        hist['data_obs'] = hist['BkgSum'].Clone("data_obs")
        hist['data_obs'].Reset("MICES")
    # Set histogram style
    hist['data_obs'].SetMarkerStyle(20)
    hist['data_obs'].SetMarkerSize(1.25)

    for i, s in enumerate(back + sign + ['BkgSum']):
        addOverflow(hist[s], False)  # Add overflow
    for i, s in enumerate(sign):
        hist[s].SetLineWidth(3)
    for i, s in enumerate(sign):
        sample[s][
            'plot'] = True  #sample[s]['plot'] and s.startswith(channel[:2])

    if isAH:
        for i, s in enumerate(back):
            hist[s].SetFillStyle(3005)
            hist[s].SetLineWidth(2)
        #for i, s in enumerate(sign):
        #    hist[s].SetFillStyle(0)
        if not var == "Events":
            sfnorm = hist[data[0]].Integral() / hist['BkgSum'].Integral()
            print "Applying SF:", sfnorm
            for i, s in enumerate(back + ['BkgSum']):
                hist[s].Scale(sfnorm)
        if BLIND and var.endswith("Mass"):
            for i, s in enumerate(data + back + ['BkgSum']):
                first, last = hist[s].FindBin(65), hist[s].FindBin(135)
                for j in range(first, last):
                    hist[s].SetBinContent(j, -1.e-4)
        if BLIND and var.endswith("Tau21"):
            for i, s in enumerate(data):
                first, last = hist[s].FindBin(0), hist[s].FindBin(0.6)
                for j in range(first, last):
                    hist[s].SetBinContent(j, -1.e-4)

    # Create stack
    if variable[var]['nbins'] > 0:
        bkg = THStack(
            "Bkg",
            ";" + hist['BkgSum'].GetXaxis().GetTitle() + ";Events / ( " + str(
                (variable[var]['max'] - variable[var]['min']) /
                variable[var]['nbins']) + unit + " )")
    else:
        bkg = THStack("Bkg",
                      ";" + hist['BkgSum'].GetXaxis().GetTitle() + ";Events; ")
    for i, s in enumerate(back):
        bkg.Add(hist[s])

    # Legend
    leg = TLegend(0.65, 0.6, 0.95, 0.9)
    leg.SetBorderSize(0)
    leg.SetFillStyle(0)  #1001
    leg.SetFillColor(0)
    if len(data) > 0:
        leg.AddEntry(hist[data[0]], sample[data[0]]['label'], "pe")
    for i, s in reversed(list(enumerate(['BkgSum'] + back))):
        leg.AddEntry(hist[s], sample[s]['label'], "f")
    if showSignal:
        for i, s in enumerate(sign):
            if sample[s]['plot']:
                leg.AddEntry(hist[s], sample[s]['label'], "fl")

    leg.SetY1(0.9 - leg.GetNRows() * 0.05)

    # --- Display ---
    c1 = TCanvas("c1",
                 hist.values()[0].GetXaxis().GetTitle(), 800,
                 800 if RATIO else 600)

    if RATIO:
        c1.Divide(1, 2)
        setTopPad(c1.GetPad(1), RATIO)
        setBotPad(c1.GetPad(2), RATIO)
    c1.cd(1)
    c1.GetPad(bool(RATIO)).SetTopMargin(0.06)
    c1.GetPad(bool(RATIO)).SetRightMargin(0.05)
    c1.GetPad(bool(RATIO)).SetTicks(1, 1)

    log = variable[var]['log']  #"log" in hist['BkgSum'].GetZaxis().GetTitle()
    if log: c1.GetPad(bool(RATIO)).SetLogy()

    # Draw
    bkg.Draw("HIST")  # stack
    hist['BkgSum'].Draw("SAME, E2")  # sum of bkg
    if not isBlind and len(data) > 0: hist['data_obs'].Draw("SAME, PE")  # data
    if 'sync' in hist: hist['sync'].Draw("SAME, PE")
    #data_graph.Draw("SAME, PE")
    if showSignal:
        smagn = 1.  #if treeRead else 1.e2 #if log else 1.e2
        for i, s in enumerate(sign):
            #        if sample[s]['plot']:
            hist[s].Scale(smagn)
            hist[s].Draw(
                "SAME, HIST"
            )  # signals Normalized, hist[s].Integral()*sample[s]['weight']
        textS = drawText(0.80, 0.9 - leg.GetNRows() * 0.05 - 0.02,
                         stype + " (x%d)" % smagn, True)
    #bkg.GetYaxis().SetTitleOffset(bkg.GetYaxis().GetTitleOffset()*1.075)
    bkg.GetYaxis().SetTitleOffset(0.9)
    #bkg.GetYaxis().SetTitleOffset(2.)
    bkg.SetMaximum((5. if log else 1.25) * max(
        bkg.GetMaximum(),
        hist['data_obs'].GetBinContent(hist['data_obs'].GetMaximumBin()) +
        hist['data_obs'].GetBinError(hist['data_obs'].GetMaximumBin())))
    #if bkg.GetMaximum() < max(hist[sign[0]].GetMaximum(), hist[sign[-1]].GetMaximum()): bkg.SetMaximum(max(hist[sign[0]].GetMaximum(), hist[sign[-1]].GetMaximum())*1.25)
    bkg.SetMinimum(
        max(
            min(hist['BkgSum'].GetBinContent(hist['BkgSum'].GetMinimumBin(
            )), hist['data_obs'].GetMinimum()), 5.e-1) if log else 0.)
    if log:
        bkg.GetYaxis().SetNoExponent(bkg.GetMaximum() < 1.e4)
        #bkg.GetYaxis().SetMoreLogLabels(True)
    bkg.GetXaxis().SetRangeUser(variable[var]['min'], variable[var]['max'])

    #if log: bkg.SetMinimum(1)
    leg.Draw()
    #drawCMS(LUMI[year], "Preliminary")
    drawCMS(LUMI[year], "", suppressCMS=True)
    drawRegion('XVH' + channel, True)
    drawAnalysis(channel)

    setHistStyle(bkg, 1.2 if RATIO else 1.1)
    setHistStyle(hist['BkgSum'], 1.2 if RATIO else 1.1)

    if RATIO:
        c1.cd(2)
        err = hist['BkgSum'].Clone("BkgErr;")
        err.SetTitle("")
        err.GetYaxis().SetTitle("Data / MC")
        err.GetYaxis().SetTitleOffset(0.9)

        err.GetXaxis().SetRangeUser(variable[var]['min'], variable[var]['max'])
        for i in range(1, err.GetNbinsX() + 1):
            err.SetBinContent(i, 1)
            if hist['BkgSum'].GetBinContent(i) > 0:
                err.SetBinError(
                    i, hist['BkgSum'].GetBinError(i) /
                    hist['BkgSum'].GetBinContent(i))
        setBotStyle(err)
        errLine = err.Clone("errLine")
        errLine.SetLineWidth(1)
        errLine.SetFillStyle(0)
        res = hist['data_obs'].Clone("Residues")
        for i in range(0, res.GetNbinsX() + 1):
            if hist['BkgSum'].GetBinContent(i) > 0:
                res.SetBinContent(
                    i,
                    res.GetBinContent(i) / hist['BkgSum'].GetBinContent(i))
                res.SetBinError(
                    i,
                    res.GetBinError(i) / hist['BkgSum'].GetBinContent(i))
        if 'sync' in hist:
            res.SetMarkerColor(2)
            res.SetMarkerStyle(31)
            res.Reset()
            for i in range(0, res.GetNbinsX() + 1):
                x = hist['data_obs'].GetXaxis().GetBinCenter(i)
                if hist['sync'].GetBinContent(hist['sync'].FindBin(x)) > 0:
                    res.SetBinContent(
                        i, hist['data_obs'].GetBinContent(
                            hist['data_obs'].FindBin(x)) /
                        hist['sync'].GetBinContent(hist['sync'].FindBin(x)))
                    res.SetBinError(
                        i, hist['data_obs'].GetBinError(
                            hist['data_obs'].FindBin(x)) /
                        hist['sync'].GetBinContent(hist['sync'].FindBin(x)))
        setBotStyle(res)
        #err.GetXaxis().SetLabelOffset(err.GetXaxis().GetLabelOffset()*5)
        #err.GetXaxis().SetTitleOffset(err.GetXaxis().GetTitleOffset()*2)
        err.Draw("E2")
        errLine.Draw("SAME, HIST")
        if not isBlind and len(data) > 0:
            res.Draw("SAME, PE0")
            #res_graph.Draw("SAME, PE0")
            if len(err.GetXaxis().GetBinLabel(
                    1)) == 0:  # Bin labels: not a ordinary plot
                drawRatio(hist['data_obs'], hist['BkgSum'])
                drawStat(hist['data_obs'], hist['BkgSum'])

    c1.Update()

    if gROOT.IsBatch():
        if channel == "": channel = "nocut"
        varname = var.replace('.', '_').replace('()', '')
        if not os.path.exists("plots/" + channel):
            os.makedirs("plots/" + channel)
        suffix = ''
        if "b" in channel or 'mu' in channel: suffix += "_" + BTAGGING
        c1.Print("plots/MANtag_study/deepCSV_plots/pt_" + year + suffix +
                 ".png")
        c1.Print("plots/MANtag_study/deepCSV_plots/pt_" + year + suffix +
                 ".pdf")

    # Print table
    printTable(hist, sign)

    print 'deepCSV efficiency:', N_signal_tag / N_signal_tot