Beispiel #1
0
def subset_image_baseimage(output_file,input_file,baseimage,same_res=False):
    """
    subset a image base on the extent of another image
    Args:
        output_file:the result file
        input_file:the image need to subset
        baseimage:the base image which provide the extend for subset
        same_res: if true, then will resample the output to the resolution of baseimage, otherwise, keep the resolution

    Returns:True is successful, False otherwise

    """
    (ulx,uly,lrx,lry) = RSImage.get_image_proj_extent(baseimage)
    if ulx is False:
        return False
    # check the save folder is valid or not
    save_dir = os.path.dirname(output_file)
    if len(save_dir) < 1:
        basic.outputlogMessage('output save to current folder')
    else:
        basic.outputlogMessage('result save to %s'%save_dir)

    img_obj = RSImageclass()
    if same_res:
        img_obj.open(baseimage)
    else:
        img_obj.open(input_file)    # the resolution should keep the same
    xres = img_obj.GetXresolution()
    yres = img_obj.GetYresolution()
    img_obj=None

    if subset_image_projwin(output_file,input_file,ulx,uly,lrx,lry,xres=xres,yres=yres) is False:
        return False
    return True
Beispiel #2
0
def calculate_mean_of_images(images_list):
    if len(images_list)<1:
        basic.outputlogMessage('No image in the list')
        return False
    # get band number
    img_obj = RSImageclass()
    first_img = get_first_path_in_line(images_list[0])
    if first_img is False:
        return False
    img_obj.open(first_img)
    band_count = img_obj.GetBandCount()
    img_obj = None

    mean_of_images = []  # each band has one value
    for i in range(0,band_count):
        mean_of_images.append(0.0)
    total_pixel = 0

    number = 0
    for image in images_list:
        (width,height,mean_of_band) = cal_the_mean_of_bands(image)
        pixel_count = width*height
        number = number +1
        print ('%d / %d'%(number,len(images_list)))
        if width is False:
            return False
        if len(mean_of_band) != band_count:
            basic.outputlogMessage('error, band count is different')
            return False
        for i in range(0, band_count):
            mean_of_images[i] = (mean_of_images[i]*total_pixel + mean_of_band[i]*pixel_count)

        total_pixel = total_pixel + width*height
        for i in range(0, band_count):
            mean_of_images[i] = mean_of_images[i]/total_pixel


    for i in range(0, band_count):
        basic.outputlogMessage('band {}: mean {}'.format(i+1, mean_of_images[i]))

    f_obj =  open('mean_value.txt','w')
    f_obj.writelines('total image count {} \n'.format(len(images_list)))
    for i in range(0,len(mean_of_images)):
        f_obj.writelines('band {} \n'.format(i + 1))
    for i in range(0,len(mean_of_images)):
        f_obj.writelines('mean_value: {} \n'.format(mean_of_images[i]))
    f_obj.close()

    return mean_of_images
Beispiel #3
0
def convert_pixel_xy_to_map_coordinate(pixel_x, pixel_y, ref_image):
    """
    get the map x,y of a pixel point
    Args:
        pixel_x: pixel, column index
        pixel_y: pixel, row index
        ref_image: the georeference image

    Returns: x_map, y_map

    """
    img_obj = RSImageclass()
    if img_obj.open(ref_image) is False:
        raise IOError('Open %s failed' % ref_image)

    # pixel to map coordiante
    # https://www.gdal.org/classGDALDataset.html#a5101119705f5fa2bc1344ab26f66fd1d
    # Xp = padfTransform[0] + P*padfTransform[1] + L*padfTransform[2];
    # Yp = padfTransform[3] + P*padfTransform[4] + L*padfTransform[5];
    padfTransform = img_obj.GetGeoTransform()

    x_map = padfTransform[
        0] + pixel_x * padfTransform[1] + pixel_y * padfTransform[2]
    y_map = padfTransform[
        3] + pixel_x * padfTransform[4] + pixel_y * padfTransform[5]
    return x_map, y_map
Beispiel #4
0
def subset_image_by_shapefile(imagefile, shapefile, bkeepmidfile):
    """
    subset an image by polygons contained in the shapefile
    Args:
        imagefile:input image file path
        shapefile:input shapefile contains polygon
        bkeepmidfile:indicate whether keep middle file

    Returns:output file name if succussful, False Otherwise

    """
    if io_function.is_file_exist(imagefile) is False:
        return False
    if io_function.is_file_exist(shapefile) is False:
        return False

    Outfilename = io_function.get_name_by_adding_tail(imagefile, 'vsub')

    # ds = ogr.Open(shapefile)
    # lyr = ds.GetLayer(0)
    # lyr.ResetReading()
    # ft = lyr.GetNextFeature()

    # subprocess.call(['gdalwarp', imagefile, Outfilename, '-cutline', shapefile,\
    #                       '-crop_to_cutline'])

    orgimg_obj = RSImageclass()
    if orgimg_obj.open(imagefile) is False:
        return False
    x_res = abs(orgimg_obj.GetXresolution())
    y_res = abs(orgimg_obj.GetYresolution())

    CommandString = 'gdalwarp ' + ' -tr ' + str(x_res) + '  ' + str(
        y_res
    ) + ' ' + imagefile + ' ' + Outfilename + ' -cutline ' + shapefile + ' -crop_to_cutline ' + ' -overwrite '
    if basic.exec_command_string_one_file(CommandString, Outfilename) is False:
        return False

    # while ft:
    #     country_name = ft.GetFieldAsString('admin')
    #     outraster = imagefile.replace('.tif', '_%s.tif' % country_name.replace(' ', '_'))
    #     subprocess.call(['gdalwarp', imagefile, Outfilename, '-cutline', shapefile,
    #                      '-crop_to_cutline', '-cwhere', "'admin'='%s'" % country_name])
    #
    #     ft = lyr.GetNextFeature()

    if not bkeepmidfile:
        io_function.delete_file_or_dir(imagefile)
        os.remove(imagefile)

    if io_function.is_file_exist(Outfilename):
        return Outfilename
    else:
        # basic.outputlogMessage(result)
        basic.outputlogMessage(
            'The version of GDAL must be great than 2.0 in order to use the r option '
        )
        return False
Beispiel #5
0
def coregistration(exefile, parafile_inp, parafile_ini, basefile, warpfile):
    #check input
    if not is_file_exist(exefile):
        return False
    if (not is_file_exist(parafile_inp)) or (not is_file_exist(parafile_ini)):
        return False
    if (not is_file_exist(basefile)) or (not is_file_exist(warpfile)):
        return False

    baseimage = RSImageclass()
    warpimage = RSImageclass()
    if not baseimage.open(basefile):
        return False
    if not warpimage.open(warpfile):
        return False

    if not check_format(baseimage):
        return False
    if not check_format(warpimage):
        return False

    Outbandname = setparameters(parafile_inp, parafile_ini, baseimage,
                                warpimage)

    CommandString = exefile + ' -r ' + parafile_inp
    basic.outputlogMessage(CommandString)
    (status, result) = commands.getstatusoutput(CommandString)
    basic.outputlogMessage(result)
    if not os.path.isfile(Outbandname):
        return False


#convert the result file to tif
    Outputtiff = Outbandname.split('.')[0] + '_tran.tif'
    CommandString = 'gdal_translate -of GTiff ' + Outbandname + ' ' + Outputtiff
    basic.outputlogMessage(CommandString)
    (status, result) = commands.getstatusoutput(CommandString)
    basic.outputlogMessage(result)
    if not os.path.isfile(Outputtiff):
        return False

    return True
Beispiel #6
0
def cal_the_mean_of_bands(image_path):
    img_obj = RSImageclass()
    if img_obj.open(image_path):
        width = img_obj.GetWidth()
        height = img_obj.GetHeight()
        mean_of_bands = RSImage.get_image_mean_value(image_path)

        if mean_of_bands is False:
            return (False,False,False)
        return (width,height,mean_of_bands)
    else:
        basic.outputlogMessage('error, Open image %s failed' %image_path)
        return (False,False,False)
Beispiel #7
0
def calculate_mean_of_images(images_list):
    if len(images_list)<1:
        basic.outputlogMessage('No image in the list')
        return False
    # get band number
    img_obj = RSImageclass()
    img_obj.open(images_list[0])
    band_count = img_obj.GetBandCount()
    img_obj = None

    mean_of_images = []  # each band has one value
    for i in range(0,band_count):
        mean_of_images.append(0.0)
    total_pixel = 0

    number = 0
    for image in images_list:
        (width,height,mean_of_band) = cal_the_mean_of_bands(image)
        pixel_count = width*height
        number = number +1
        print ('%d / %d'%(number,len(images_list)))
        if width is False:
            return False
        if len(mean_of_band) != band_count:
            basic.outputlogMessage('error, band count is different')
            return False
        for i in range(0, band_count):
            mean_of_images[i] = (mean_of_images[i]*total_pixel + mean_of_band[i]*pixel_count)

        total_pixel = total_pixel + width*height
        for i in range(0, band_count):
            mean_of_images[i] = mean_of_images[i]/total_pixel


    for i in range(0, band_count):
        basic.outputlogMessage('band {}: mean {}'.format(i+1,mean_of_images[i]))
    return mean_of_images
def convert_image_to_gray_auto(output_image, input_image):
    """
    convert inputed image to 8bit
    Args:
        output_image:output image file path
        input_image: input imag file path

    Returns:output_image if successful, False otherwise

    """
    if os.path.isfile(output_image) is True:
        basic.outputlogMessage('%s already exist,skip' % output_image)
        return output_image

    input_image_obj = RSImageclass()
    if input_image_obj.open(input_image) is False:
        return False

    # GDT_Unknown = 0, GDT_Byte = 1, GDT_UInt16 = 2, GDT_Int16 = 3,
    # GDT_UInt32 = 4, GDT_Int32 = 5, GDT_Float32 = 6, GDT_Float64 = 7,
    # GDT_CInt16 = 8, GDT_CInt32 = 9, GDT_CFloat32 = 10, GDT_CFloat64 = 11,
    #GDT_Byte
    if input_image_obj.GetGDALDataType() == 1:
        # io_function.copy_file_to_dst(input_image,output_image)
        output_image = input_image
        return output_image

    (max_value_list,
     min_value_list) = RSImage.get_image_max_min_value(input_image)
    if max_value_list is False or min_value_list is False:
        return False
    input_image_obj = None

    # CommandString = 'gdal_translate  -r bilinear -ot Byte -scale  ' + input_image + ' '+output_image
    # return basic.exec_command_string_one_file(CommandString,output_image)
    args_list = ['gdal_translate', '-r', 'bilinear', '-ot', 'Byte']
    for band_index in range(0, len(max_value_list)):
        args_list.append('-b')
        args_list.append(str(band_index + 1))
        args_list.append('-scale')
        args_list.append(str(min_value_list[band_index]))
        args_list.append(str(max_value_list[band_index]))
        args_list.append(str(1))
        args_list.append(str(254))
    args_list.append(input_image)
    args_list.append(output_image)

    return basic.exec_command_args_list_one_file(args_list, output_image)
Beispiel #9
0
def cal_the_mean_of_bands(input_path):

    # if multi files in one line, then only consider the first file
    image_path = get_first_path_in_line(input_path)
    if image_path is False:
        return False

    img_obj = RSImageclass()
    if img_obj.open(image_path):
        width = img_obj.GetWidth()
        height = img_obj.GetHeight()
        mean_of_bands = RSImage.get_image_mean_value(image_path)

        if mean_of_bands is False:
            return (False,False,False)
        return (width,height,mean_of_bands)
    else:
        basic.outputlogMessage('error, Open image %s failed' %image_path)
        return (False,False,False)
class RSImgProclass(object):
    def __init__(self):
        self.imgpath = ''
        self.img__obj = None  #RSImageclass  object

    def __del__(self):
        # close dataset
        # print 'RSImageclass__del__'
        self.img__obj = None

    def Read_Image_band_data_to_numpy_array_all_pixel(self, bandindex,
                                                      image_path):
        if io_function.is_file_exist(image_path) is False:
            return False
        self.img__obj = RSImageclass()
        if self.img__obj.open(image_path) is False:
            return False
        width = self.img__obj.GetWidth()
        height = self.img__obj.GetHeight()
        return self.__Read_band_data_to_numpy_array(bandindex, 0, 0, width,
                                                    height, self.img__obj)

    def __Read_Image_band_data_to_numpy_array(self, bandindex, xoff, yoff,
                                              width, height, image_path):
        return True

    def __Read_band_data_to_numpy_array(self,
                                        bandindex,
                                        xoff,
                                        yoff,
                                        width,
                                        height,
                                        image_obj=None):
        if image_obj is None:
            image_obj = self.img__obj
        offsetvaluestr = image_obj.ReadbandData(
            bandindex, xoff, yoff, width, height,
            image_obj.GetGDALDataType())  #first band offset, may be xoffset
        if offsetvaluestr is False:
            return False
        # offsetvalue = None
        # print image_obj.GetGDALDataType()
        if image_obj.GetGDALDataType() == 3:  #GDT_Int16
            offsetvalue = struct.unpack('h' * width * height, offsetvaluestr)
        elif image_obj.GetGDALDataType() == 6:
            offsetvalue = struct.unpack('f' * width * height, offsetvaluestr)
        else:
            basic.outputlogMessage('error: not support datatype currently')
            return False

        return numpy.asarray(offsetvalue)

    def statistic_element_count(self, value, myarray):
        loc_nodata = numpy.where(numpy.fabs(myarray - value) < 0.001)
        loc_nodatanum = numpy.array(loc_nodata).size
        return loc_nodatanum

    def statistic_not_element_count(self, not_value, myarray):
        loc_not_value = numpy.where(numpy.fabs(myarray - not_value) > 0.0001)
        loc_not_value_num = numpy.array(loc_not_value).size
        return loc_not_value_num

    def statistic_pixel_count(self, pixel_value, RSImageclass_object):

        return True

    def compose_two_image(self, main_image, second_image, nodata):

        if io_function.is_file_exist(main_image) is False:
            return False
        if io_function.is_file_exist(second_image) is False:
            return False
        main_img = RSImageclass()
        if main_img.open(main_image) is False:
            return False
        width_main = main_img.GetWidth()
        height_main = main_img.GetHeight()
        bandcount_main = main_img.GetBandCount()

        sec_img = RSImageclass()
        if sec_img.open(second_image) is False:
            return False
        width_sec = sec_img.GetWidth()
        height_sec = sec_img.GetHeight()
        bandcount_sec = sec_img.GetBandCount()

        if width_main != width_sec or height_main != height_sec or bandcount_main != bandcount_sec:
            basic.outputlogMessage(
                'Error: The dimension of two composed images is different')
            return False
        if main_img.GetGDALDataType() != sec_img.GetGDALDataType(
        ) or main_img.GetGDALDataType() != 6:
            basic.outputlogMessage(
                'Error: The Data type of two composed imagaes is different or is not float'
            )
            return False

        outputfile = io_function.get_name_by_adding_tail(main_image, 'comp')
        imagenew = RSImageclass()
        width = width_main
        height = height_main
        if not imagenew.New(outputfile, width, height, bandcount_main,
                            main_img.GetGDALDataType()):
            return False
        for i in range(0, bandcount_main):
            bandindex = i + 1
            band_main_str = main_img.ReadbandData(bandindex, 0, 0, width,
                                                  height,
                                                  main_img.GetGDALDataType())
            band_sec_str = sec_img.ReadbandData(bandindex, 0, 0, width, height,
                                                sec_img.GetGDALDataType())

            band_main_data = struct.unpack('f' * width * height, band_main_str)
            band_main_numpy = numpy.asarray(band_main_data)

            band_sec_data = struct.unpack('f' * width * height, band_sec_str)
            band_sec_numpy = numpy.asarray(band_sec_data)

            compose_loc = numpy.where(
                (numpy.fabs(band_main_numpy - nodata) < 0.0001)
                & (numpy.fabs(band_sec_numpy - nodata) > 0.0001))
            band_main_numpy[compose_loc] = band_sec_numpy[compose_loc]
            basic.outputlogMessage('outputfortest2: compose_loc_num = %d' %
                                   numpy.array(compose_loc).size)

            templist = band_main_numpy.tolist()
            band_composed_str = struct.pack('%sf' % width * height, *templist)
            if imagenew.WritebandData(bandindex, 0, 0, width, height,
                                      band_composed_str,
                                      imagenew.GetGDALDataType()) is False:
                return False
            imagenew.SetBandNoDataValue(bandindex, nodata)

        imagenew.SetGeoTransform(main_img.GetGeoTransform())
        imagenew.SetProjection(main_img.GetProjection())

        main_img = None
        sec_img = None
        imagenew = None

        return outputfile
Beispiel #11
0
def subset_image_by_shapefile(imagefile,
                              shapefile,
                              bkeepmidfile=True,
                              overwrite=False,
                              format='GTiff',
                              save_path=None,
                              resample_m='bilinear',
                              src_nodata=None,
                              dst_nondata=None,
                              xres=None,
                              yres=None,
                              compress=None,
                              tiled=None,
                              bigtiff=None,
                              thread_num=None):
    """
    subset an image by polygons contained in the shapefile
    the shapefile and imagefile may have different projections, the gdalwarp can handle
    Args:
        imagefile:input image file path
        shapefile:input shapefile contains polygon
        bkeepmidfile:indicate whether keep middle file
        format: output format,  default is GTiff, GeoTIFF File Format. Use "VRT": GDAL Virtual Format to save disk storage

    Returns:output file name if succussful, False Otherwise

    """
    if io_function.is_file_exist(imagefile) is False:
        return False
    if io_function.is_file_exist(shapefile) is False:
        return False

    if save_path is None:
        Outfilename = io_function.get_name_by_adding_tail(imagefile, 'vsub')
    else:
        Outfilename = save_path

    # ds = ogr.Open(shapefile)
    # lyr = ds.GetLayer(0)
    # lyr.ResetReading()
    # ft = lyr.GetNextFeature()

    # subprocess.call(['gdalwarp', imagefile, Outfilename, '-cutline', shapefile,\
    #                       '-crop_to_cutline'])

    if overwrite is False and os.path.isfile(Outfilename):
        basic.outputlogMessage('warning, crop file: %s already exist, skip' %
                               Outfilename)
        return Outfilename

    orgimg_obj = RSImageclass()
    if orgimg_obj.open(imagefile) is False:
        return False
    if xres is None or yres is None:
        x_res = abs(orgimg_obj.GetXresolution())
        y_res = abs(orgimg_obj.GetYresolution())
    else:
        x_res = xres
        y_res = yres


    CommandString = 'gdalwarp -r %s '% resample_m+' -tr ' + str(x_res) + '  '+ str(y_res)+ ' -of ' + format + ' ' + \
                    imagefile +' ' + Outfilename +' -cutline ' +shapefile +' -crop_to_cutline ' + ' -overwrite '

    if src_nodata != None:
        CommandString += ' -srcnodata %d ' % src_nodata
    if dst_nondata != None:
        CommandString += ' -dstnodata %d ' % dst_nondata

    if compress != None:
        CommandString += ' -co ' + 'compress=%s' % compress  # lzw
    if tiled != None:
        CommandString += ' -co ' + 'TILED=%s' % tiled  # yes
    if bigtiff != None:
        CommandString += ' -co ' + 'bigtiff=%s' % bigtiff  # IF_SAFER

    if thread_num != None:
        CommandString += ' -multi -wo NUM_THREADS=%d ' % thread_num

    if basic.exec_command_string_one_file(CommandString, Outfilename) is False:
        return False

    # while ft:
    #     country_name = ft.GetFieldAsString('admin')
    #     outraster = imagefile.replace('.tif', '_%s.tif' % country_name.replace(' ', '_'))
    #     subprocess.call(['gdalwarp', imagefile, Outfilename, '-cutline', shapefile,
    #                      '-crop_to_cutline', '-cwhere', "'admin'='%s'" % country_name])
    #
    #     ft = lyr.GetNextFeature()

    if not bkeepmidfile:
        io_function.delete_file_or_dir(imagefile)
        os.remove(imagefile)

    if io_function.is_file_exist(Outfilename):
        return Outfilename
    else:
        # basic.outputlogMessage(result)
        basic.outputlogMessage(
            'The version of GDAL must be great than 2.0 in order to use the r option '
        )
        return False
Beispiel #12
0
def coregistration_siftGPU(basefile, warpfile, bkeepmidfile, xml_obj):
    tiepointfile = '0_1_after.pts'
    if os.path.isfile(tiepointfile):
        basic.outputlogMessage(
            'warning:tie points already exist in dir, skip get_tie_points_by_ZY3ImageMatch'
        )
    else:
        tiepointfile = tiepoints.get_tie_points_by_ZY3ImageMatch(
            basefile, warpfile, bkeepmidfile)

    if tiepointfile is False:
        basic.outputlogMessage('Get tie points by ZY3ImageMatch failed')
        return False

    xml_obj.add_coregistration_info('tie_points_file', tiepointfile)
    #draw tie points rms vector on base image
    result_rms_files = '0_1_fs.txt'
    tiepoint_vector_ = 'tiepoints_vector.png'
    output_tie_points_vector_on_base_image(basefile, result_rms_files,
                                           tiepoint_vector_)
    xml_obj.add_coregistration_info('tie_points_drawed_image',
                                    os.path.abspath(tiepoint_vector_))

    #check the tie points
    try:
        rms_files_obj = open(result_rms_files, 'r')
        rms_lines = rms_files_obj.readlines()
        if len(rms_lines) < 2:
            basic.outputlogMessage("%s do not contain tie points information" %
                                   os.path.abspath(result_rms_files))
            return False
        required_point_count = parameters.get_required_minimum_tiepoint_number(
        )
        acceptable_rms = parameters.get_acceptable_maximum_RMS()
        xml_obj.add_coregistration_info('required_tie_point_count',
                                        str(required_point_count))
        xml_obj.add_coregistration_info('acceptable_rms', str(acceptable_rms))
        try:
            digit_str = re.findall('\d+', rms_lines[0])
            tiepoints_count = int(digit_str[0])
            xml_obj.add_coregistration_info('tie_points_count',
                                            str(tiepoints_count))
            if tiepoints_count < required_point_count:
                basic.outputlogMessage(
                    "ERROR: tiepoints count(%d) is less than required one(%d)"
                    % (tiepoints_count, required_point_count))
                return False
            digit_str = re.findall('\d+\.?\d*', rms_lines[1])
            totalrms_value = float(digit_str[2])
            xml_obj.add_coregistration_info('total_rms_value',
                                            str(totalrms_value))
            if totalrms_value > acceptable_rms:
                basic.outputlogMessage(
                    "ERROR:Total RMS(%f) exceeds the acceptable one(%f)" %
                    (totalrms_value, acceptable_rms))
                return False
        except ValueError:
            return basic.outputlogMessage(str(ValueError))
            return False
        rms_files_obj.close()
    except IOError:
        syslog.outputlogMessage(str(IOError))
        return False

    baseimg = RSImageclass()
    if not baseimg.open(basefile):
        return False
    proj = baseimg.GetProjection()
    geotransform = baseimg.GetGeoTransform()
    xres = baseimg.GetXresolution()
    yres = baseimg.GetYresolution()

    try:
        Outputtiff = setGCPsfromptsFile(warpfile, proj, geotransform,
                                        tiepointfile)
    except RuntimeError as e:
        basic.outputlogMessage('setGCPsfromptsFile failed: ')
        basic.outputlogMessage(str(e))
        return False
    if Outputtiff is False:
        return False
    else:
        basic.outputlogMessage('setGCPsfromptsFile completed, Out file: ' +
                               Outputtiff)

    # if not bkeepmidfile:
    #     os.remove(warpfile)

    xml_obj.add_coregistration_info('setted_gcps_file', Outputtiff)

    #warp image
    warpresultfile = Outputtiff.split('.')[0] + '_warp.tif'
    #-order 1  -tps
    #-tr xres yres: set output file resolution (in target georeferenced units)
    # set resolution as the same as base image is important
    order_number = parameters.get_gdalwarp_polynomial_order()
    xml_obj.add_coregistration_info('warp_polynomial_order_number',
                                    str(order_number))
    if order_number is False:
        return False
    CommandString = 'gdalwarp ' + ' -order ' + str(
        order_number) + ' -r bilinear -tr ' + str(xres) + ' ' + str(
            yres) + ' ' + Outputtiff + ' ' + warpresultfile
    basic.outputlogMessage(CommandString)
    (status, result) = commands.getstatusoutput(CommandString)
    basic.outputlogMessage(result)
    if not os.path.isfile(warpresultfile):
        return False

    if not bkeepmidfile:
        os.remove(Outputtiff)

    return warpresultfile
Beispiel #13
0
def setGCPsfromptsFile(imagefile, projection, GeoTransform, ptsfile):
    if not is_file_exist(imagefile):
        return False
    image = RSImageclass()
    if not image.open(imagefile):
        return False
    ngcpcount = image.ds.GetGCPCount()
    if ngcpcount > 0:
        basic.outputlogMessage(
            'warning: The file already have GCP,GCP count is ' +
            str(ngcpcount))

    allgcps = []
    inputfile_object = open(ptsfile, 'r')
    all_points = inputfile_object.readlines()
    for linestr in all_points:
        if linestr[0:1] == '#' or linestr[0:1] == ';' or len(linestr) < 2:
            continue
        if len(allgcps) >= 10000:
            basic.outputlogMessage(
                'warning: the count of gcps already greater than 10000, and ignore the others to make geotiff work correctly'
            )
            continue
        tiepointXY = linestr.split()
        base_x = float(tiepointXY[0])
        base_y = float(tiepointXY[1])
        Xp = GeoTransform[
            0] + base_x * GeoTransform[1] + base_y * GeoTransform[2]
        Yp = GeoTransform[
            3] + base_x * GeoTransform[4] + base_y * GeoTransform[5]

        warp_x = float(tiepointXY[2])
        warp_y = float(tiepointXY[3])
        info = 'GCPbysiftgpu_%d' % len(allgcps)
        id = str(len(allgcps))
        gcp1 = gdal.GCP(Xp, Yp, 0, warp_x, warp_y, info, id)
        allgcps.append(gcp1)
    inputfile_object.close()

    Outputtiff = imagefile.split('.')[0] + '_new.tif'
    format = "GTiff"
    driver = gdal.GetDriverByName(format)
    metadata = driver.GetMetadata()
    if metadata.has_key(
            gdal.DCAP_CREATE) and metadata[gdal.DCAP_CREATE] == 'YES':
        basic.outputlogMessage('Driver %s supports Create() method.' % format)
    else:
        basic.outputlogMessage('Driver %s not supports Create() method.' %
                               format)
        return False
    # if metadata.has_key(gdal.DCAP_CREATECOPY) and metadata[gdal.DCAP_CREATECOPY] == 'YES':
    #     syslog.outputlogMessage('Driver %s supports CreateCopy() method.' % format)

    # dst_ds = driver.CreateCopy(Outputtiff, dataset, 0)
    datatype = image.GetGDALDataType()
    dst_ds = driver.Create(Outputtiff, image.GetWidth(), image.GetHeight(),
                           image.GetBandCount(), datatype)
    for bandindex in range(0, image.GetBandCount()):
        bandobject = image.Getband(bandindex + 1)
        banddata = bandobject.ReadRaster(0, 0, image.GetWidth(),
                                         image.GetHeight(), image.GetWidth(),
                                         image.GetHeight(), datatype)
        #byte
        # if banddata is 1:
        #     bandarray = struct.unpack('B'*image.GetWidth()*image.GetHeight(), banddata)
        dst_ds.GetRasterBand(bandindex + 1).WriteRaster(
            0, 0, image.GetWidth(), image.GetHeight(), banddata,
            image.GetWidth(), image.GetHeight(), datatype)

    dst_ds.SetGCPs(allgcps, projection)

    # if I have set the GCPs, should not do this again, or SetGCPs will be undo
    # dst_ds.SetGeoTransform(image.GetGeoTransform())
    # dst_ds.SetProjection(image.GetProjection())

    if not os.path.isfile(Outputtiff):
        basic.outputlogMessage(
            'result file not exist, the operation of create set gcp failed')
        return False
    dst_ds = None
    image = None

    return Outputtiff
Beispiel #14
0
def prepare_gimpdem_for_Jakobshavn(workdir):
    nodata = parameters.get_nodata_value()
    #mosaics gimdem files
    os.chdir(workdir)
    gimpdem_file = ['gimpdem1_2.tif', 'gimpdem2_2.tif']
    gimpdem_output = 'dem_gimp_jako.tif'
    if os.path.isfile(gimpdem_output) is False:
        if RSImageProcess.mosaics_images(gimpdem_file,
                                         gimpdem_output) is False:
            return False

    geoid_file = 'geoid_hegith_jako.tif'

    #convert srs
    img_temp = RSImageclass()
    if not img_temp.open(gimpdem_output):
        return False
    x_res = img_temp.GetXresolution()
    y_res = img_temp.GetYresolution()
    srs_UTM_prj4 = '\'+proj=utm +zone=22 +datum=WGS84 +units=m +no_defs\' '
    gimpdem_utm = io_function.get_name_by_adding_tail(gimpdem_output, 'utm22')
    if os.path.isfile(gimpdem_utm) is False:
        if RSImageProcess.transforms_raster_srs(gimpdem_output, srs_UTM_prj4,
                                                gimpdem_utm, abs(x_res),
                                                abs(y_res)) is False:
            return False

    # print img_temp.GetGDALDataType(),type(img_temp.GetGDALDataType())
    # print img_temp.GetProjection(),type(img_temp.GetProjection())
    # print img_temp.GetGeoTransform(),type(img_temp.GetGeoTransform())

    #get geoid_height
    # srs_longlat_wkt = "GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563]],PRIMEM[\"Greenwich\",0],UNIT[\"degree\",0.01745329251994328]]"
    # srs_longlat_prj4 = '\'+proj=longlat +datum=WGS84 +no_defs\' '
    # image = RSImageclass(syslog)
    # if not image.open(gimpdem_utm):
    #     return False
    #
    # img_pro = RSImgProclass(syslog)
    # dem_data = img_pro.Read_Image_band_data_to_numpy_array_all_pixel(1,gimpdem_utm)
    # if dem_data is False:
    #     return False
    #
    # # geoid_height = geoid_height + -9999
    # geoid_utm_file = basic.get_name_by_adding_tail(geoid_file,'tran',syslog)
    # if RSImageProcess.transforms_raster_srs_to_base_image(geoid_file,gimpdem_utm,geoid_utm_file,\
    #                                                       x_res,y_res,syslog) is False:
    #     return False
    # geoid_height = img_pro.Read_Image_band_data_to_numpy_array_all_pixel(1,geoid_utm_file)
    # if geoid_height is False:
    #     return False
    #
    # #get ellipsoidal height
    # Image_array = dem_data + geoid_height
    # gimpdem_utm_elli = basic.get_name_by_adding_tail(gimpdem_utm,'elli',syslog)
    # RSImageProcess.save_numpy_2d_array_to_image_tif(gimpdem_utm_elli,Image_array,\
    #     image.GetGDALDataType(),image.GetGeoTransform(),image.GetProjection(),nodata)

    # image = None
    # img_pro = None
    return True
Beispiel #15
0
def convert_orthometricH_to_elliopsoidalH(output, orthometricH_file,
                                          geoidHfile):
    if io_function.is_file_exist(
            orthometricH_file) is False or io_function.is_file_exist(
                geoidHfile) is False:
        return False

    orthom_obj = RSImageclass()
    if orthom_obj.open(orthometricH_file) is False:
        return False
    geoidH_obj = RSImageclass()
    if geoidH_obj.open(geoidHfile) is False:
        return False

    Nodata = parameters.get_nodata_value()

    x_res = orthom_obj.GetXresolution()
    y_res = orthom_obj.GetYresolution()
    x_res_geoid = geoidH_obj.GetXresolution()
    y_res_geoid = geoidH_obj.GetYresolution()

    orthom_prj = orthom_obj.GetProjection()
    geoid_prj = geoidH_obj.GetProjection()

    #check projection and resolution, and convert it if need
    #use orthometricH_file as base image
    if x_res != x_res_geoid or y_res != y_res_geoid or orthom_prj != geoid_prj:
        geoid_convertfile = io_function.get_name_by_adding_tail(
            geoidHfile, 'tran')
        if os.path.isfile(geoid_convertfile) is False:
            if RSImageProcess.transforms_raster_srs(
                    geoidHfile, orthom_prj, geoid_convertfile, abs(x_res),
                    abs(y_res)) is False:
                return False
        else:
            basic.outputlogMessage(geoid_convertfile + ' already exist')

    #sub geoidHfile base on the small one
    (ulx, uly, lrx,
     lry) = RSImageProcess.get_image_proj_extent(orthometricH_file)
    if ulx is False:
        return False
    geoid_convertfile_sub = io_function.get_name_by_adding_tail(
        geoid_convertfile, 'sub')
    if os.path.isfile(geoid_convertfile_sub) is False:
        result = RSImageProcess.subset_image_projwin(geoid_convertfile_sub,
                                                     geoid_convertfile, ulx,
                                                     uly, lrx, lry)
        if result is False:
            return False
    else:
        basic.outputlogMessage(geoid_convertfile_sub + ' already exist')

    ##caculate elliopsoidal height
    # orthometricH_data = img_pro.Read_Image_band_data_to_numpy_array_all_pixel(1,orthometricH_file)
    # img_pro = None
    # img_pro = RSImgProclass(syslog)
    # geoidH_data = img_pro.Read_Image_band_data_to_numpy_array_all_pixel(1,geoid_convertfile_sub)
    # img_pro = None
    # if orthometricH_data.shape != geoidH_data.shape:
    #     syslog.outputlogMessage("the shape of orthometricH_data and geoidH_data is different")
    #     return False
    #
    # nodata = parameters.get_nodata_value(syslog)
    # width  = orthom_obj.GetWidth()
    # height = orthom_obj.GetHeight()
    # orthometricH_data = orthometricH_data.astype(numpy.float32)
    # geoidH_data = geoidH_data.astype(numpy.float32)
    # elliopsoidalH = orthometricH_data + geoidH_data
    # elliopsoidalH = elliopsoidalH.reshape(height,width)
    #
    # RSImageProcess.save_numpy_2d_array_to_image_tif(output,elliopsoidalH,6,\
    #             orthom_obj.GetGeoTransform(),orthom_obj.GetProjection(),nodata,syslog)
    #
    # orthom_obj = None
    # geoidH_obj = None

    CommandString = 'gdal_calc.py  -A '+orthometricH_file + ' -B ' + geoid_convertfile_sub +\
      ' --NoDataValue='+str(Nodata)  +' --outfile='+output +  ' --calc="A+B"'
    if RSImageProcess.exec_commond_string_one_file(CommandString,
                                                   output) is False:
        return False
    else:
        basic.outputlogMessage(
            "converting orthometric Height to elliopsoidal Height is completed"
        )

    return True
Beispiel #16
0
def get_geoimage_range_geoid_height(outputfile, ref_image):
    #convert srs
    ref_img_obj = RSImageclass()
    if not ref_img_obj.open(ref_image):
        return False
    # x_res = ref_img_obj.GetXresolution()
    # y_res = ref_img_obj.GetYresolution()
    width = ref_img_obj.GetWidth()
    height = ref_img_obj.GetHeight()

    img_pro = RSImgProclass()
    ref_image_data = img_pro.Read_Image_band_data_to_numpy_array_all_pixel(
        1, ref_image)
    if ref_image_data is False:
        return False

    nodata = parameters.get_nodata_value()
    Image_array = ref_image_data.reshape(height, width)
    start_x = ref_img_obj.GetStartX()
    start_y = ref_img_obj.GetStartY()
    resolution_x = ref_img_obj.GetXresolution()
    resolution_y = ref_img_obj.GetYresolution()
    ref_img_WKT = ref_img_obj.GetProjection()
    # ref_img_WKT = RSImageProcess.get_raster_or_vector_srs_info_wkt(ref_image,syslog)

    (i, j) = numpy.where(Image_array != nodata)
    input_x = start_x + j * resolution_x
    input_y = start_y + i * resolution_y

    # srs_longlat_prj4 = '\'+proj=longlat +datum=WGS84 +no_defs\''
    # intput_proj4 = RSImage.wkt_to_proj4(ref_img_WKT,syslog)
    # intput_proj4 = RSImageProcess.get_raster_or_vector_srs_info_proj4(ref_image,syslog)
    # map_projection.convert_points_coordinate_proj4(input_x,input_y,intput_proj4,srs_longlat_prj4,syslog)

    srs_longlat_wkt = "GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563]],PRIMEM[\"Greenwich\",0],UNIT[\"degree\",0.01745329251994328]]"
    map_projection.convert_points_coordinate(input_x, input_y, ref_img_WKT,
                                             srs_longlat_wkt)

    tempsave_str = []
    save_point_txt_file = 'TXTgeoid_' + os.path.splitext(
        os.path.basename(ref_image))[0] + '.txt'
    if os.path.isfile(save_point_txt_file):
        file_object = open(save_point_txt_file, 'r')
        savepoints = file_object.readlines()
        for point in savepoints:
            tempsave_str.append(point)
        file_object.close()
        io_function.delete_file_or_dir(save_point_txt_file)
    file_object = open(save_point_txt_file, 'a')

    nsize = Image_array.size
    Image_array = Image_array.astype(numpy.float32)
    for index in range(0, nsize):
        lon_deg = input_x[index]
        lat_deg = input_y[index]
        if index < len(tempsave_str):
            temp_point = tempsave_str[index].split()
            value = float(temp_point[2])
        else:
            (LongitudeDeg, LongitudeMin, LongitudeSec) = degree_to_dms(lon_deg)
            (LatitudeDeg, LatitudeMin, LatitudeSec) = degree_to_dms(lat_deg)
            value = get_geoid_height(LatitudeDeg, LatitudeMin, LatitudeSec,
                                     LongitudeDeg, LongitudeMin, LongitudeSec,
                                     nodata)
            if value is False:
                break
        saved_point = ('%f  %f  %f' % (lon_deg, lat_deg, value))
        print saved_point
        # tempsave_str.append(saved_point)
        file_object.writelines(saved_point + '\n')
        file_object.flush()
        basic.outputlogMessage('Longitude=%f, Latitude=%f, geoid = %f' %
                               (lon_deg, lat_deg, value))
        # Image_array[index] = value
        Image_array[i[index], j[index]] = value
        print(i[index], j[index], Image_array[i[index], j[index]])

    file_object.close()
    if index != (nsize - 1):
        return False
    #save geoid height
    RSImageProcess.save_numpy_2d_array_to_image_tif(outputfile,Image_array,\
        6,ref_img_obj.GetGeoTransform(),ref_img_WKT,nodata)

    return True
    def compose_two_image(self, main_image, second_image, nodata):

        if io_function.is_file_exist(main_image) is False:
            return False
        if io_function.is_file_exist(second_image) is False:
            return False
        main_img = RSImageclass()
        if main_img.open(main_image) is False:
            return False
        width_main = main_img.GetWidth()
        height_main = main_img.GetHeight()
        bandcount_main = main_img.GetBandCount()

        sec_img = RSImageclass()
        if sec_img.open(second_image) is False:
            return False
        width_sec = sec_img.GetWidth()
        height_sec = sec_img.GetHeight()
        bandcount_sec = sec_img.GetBandCount()

        if width_main != width_sec or height_main != height_sec or bandcount_main != bandcount_sec:
            basic.outputlogMessage(
                'Error: The dimension of two composed images is different')
            return False
        if main_img.GetGDALDataType() != sec_img.GetGDALDataType(
        ) or main_img.GetGDALDataType() != 6:
            basic.outputlogMessage(
                'Error: The Data type of two composed imagaes is different or is not float'
            )
            return False

        outputfile = io_function.get_name_by_adding_tail(main_image, 'comp')
        imagenew = RSImageclass()
        width = width_main
        height = height_main
        if not imagenew.New(outputfile, width, height, bandcount_main,
                            main_img.GetGDALDataType()):
            return False
        for i in range(0, bandcount_main):
            bandindex = i + 1
            band_main_str = main_img.ReadbandData(bandindex, 0, 0, width,
                                                  height,
                                                  main_img.GetGDALDataType())
            band_sec_str = sec_img.ReadbandData(bandindex, 0, 0, width, height,
                                                sec_img.GetGDALDataType())

            band_main_data = struct.unpack('f' * width * height, band_main_str)
            band_main_numpy = numpy.asarray(band_main_data)

            band_sec_data = struct.unpack('f' * width * height, band_sec_str)
            band_sec_numpy = numpy.asarray(band_sec_data)

            compose_loc = numpy.where(
                (numpy.fabs(band_main_numpy - nodata) < 0.0001)
                & (numpy.fabs(band_sec_numpy - nodata) > 0.0001))
            band_main_numpy[compose_loc] = band_sec_numpy[compose_loc]
            basic.outputlogMessage('outputfortest2: compose_loc_num = %d' %
                                   numpy.array(compose_loc).size)

            templist = band_main_numpy.tolist()
            band_composed_str = struct.pack('%sf' % width * height, *templist)
            if imagenew.WritebandData(bandindex, 0, 0, width, height,
                                      band_composed_str,
                                      imagenew.GetGDALDataType()) is False:
                return False
            imagenew.SetBandNoDataValue(bandindex, nodata)

        imagenew.SetGeoTransform(main_img.GetGeoTransform())
        imagenew.SetProjection(main_img.GetProjection())

        main_img = None
        sec_img = None
        imagenew = None

        return outputfile
Beispiel #18
0
def calculate_terrain_offset(output, dem_file, image_file, exec_dir,
                             bkeepmidfile):
    if io_function.is_file_exist(
            image_file) is False or io_function.is_file_exist(
                dem_file, ) is False:
        return False
    exefile = os.path.join(exec_dir, 'geometry_pro')
    nodata = parameters.get_nodata_value()

    (centre_lat, centre_lon) = RSImage.get_image_latlon_centre(image_file)
    if centre_lat is False or centre_lon is False:
        return False

    image_obj = RSImageclass()
    if image_obj.open(image_file) is False:
        return False
    dem_obj = RSImageclass()
    if dem_obj.open(dem_file) is False:
        return False

    x_res = image_obj.GetXresolution()
    y_res = image_obj.GetYresolution()
    x_res_dem = dem_obj.GetXresolution()
    y_res_dem = dem_obj.GetYresolution()

    image_prj = image_obj.GetProjection()
    dem_prj = dem_obj.GetProjection()

    #check projection and resolution, and convert it if need
    #use orthometricH_file as base image
    dem_convertedfile = io_function.get_name_by_adding_tail(dem_file, 'tran')
    if x_res != x_res_dem or y_res != y_res_dem or image_prj != dem_prj:
        if os.path.isfile(dem_convertedfile) is False:
            if map_projection.transforms_raster_srs(
                    dem_file, image_prj, dem_convertedfile, abs(x_res),
                    abs(y_res)) is False:
                return False
    if os.path.isfile(dem_convertedfile):
        dem_file = dem_convertedfile

    #sub  dem file
    (ulx, uly, lrx, lry) = RSImage.get_image_proj_extent(image_file)
    if ulx is False:
        return False
    tail = os.path.splitext(os.path.basename(image_file))[0]
    dem_file_sub = io_function.get_name_by_adding_tail(dem_file, tail)
    if os.path.isfile(dem_file_sub) is False:
        if RSImageProcess.subset_image_projwin(dem_file_sub, dem_file, ulx,
                                               uly, lrx, lry) is False:
            return False

    #calculateing terrain contains a lot of I/O operations, the parallel computing will slow down it
    nblockwidth = 8000
    nblcckheight = 8000
    njobs = 1

    logfile = 'cal_terrain_offset_log.txt'

    CommandString = exefile \
                    + ' -i ' + image_file + ' -d ' + dem_file_sub \
                    + ' -o '  + output  + ' -n ' + str(nodata)\
                    + ' -w ' + str(nblockwidth) + ' -h ' + str(nblcckheight) + ' -j ' +str(njobs) \
                    + ' --centre_lat=' + str(centre_lat)  \
                    + ' --logfile=' + logfile

    basic.outputlogMessage(CommandString)
    (status, result) = commands.getstatusoutput(CommandString)
    basic.outputlogMessage(result)

    if bkeepmidfile is False:
        # if os.path.isfile(dem_convertedfile):
        #     io_function.delete_file_or_dir(dem_convertedfile)
        if os.path.isfile(dem_file_sub):
            io_function.delete_file_or_dir(dem_file_sub)

    if os.path.isfile(output):
        if os.path.getsize(output) > 0:
            return output
        else:
            basic.outputlogMessage('error: the size of file %s is 0' %
                                   os.path.basename(output))
            return False
    else:
        return False