Beispiel #1
0
 def fit(self, db: Dataset,
         epochs: int = 1000001,
         batch_size: int = 128,
         patience: int = 20,
         callbacks: list = []) -> History:
     history = {'loss': [],
                'val_loss': []}
     epoch = []
     for i in range(epochs):
         anchor, positive, negetive = self._get_batch(
             db.X_train, db.y_train, db.info['n_cls'], batch_size)
         loss = self.model.train_on_batch(
             [anchor, positive, negetive], anchor)
         history['loss'].append(loss)
         anchor, positive, negetive = self._get_batch(
             db.X_test, db.y_test, db.info['n_cls'], batch_size)
         val_loss = self.model.test_on_batch(
             [anchor, positive, negetive], anchor)
         history['val_loss'].append(val_loss)
         epoch.append(i)
         if not i % 100:
             print("Batch %d --> loss: %.5f - val_loss: %.5f" %
                   (i, loss, val_loss))
             if i and history['val_loss'][-101] <= val_loss:
                 patience -= 1
                 if not patience:
                     break
     return History(epoch=epoch, history=history)
Beispiel #2
0
    def fit_on_batch(self,
                     db: Dataset,
                     gen: BaseGenerator,
                     epochs: int = 1000000,
                     batch_size: int = 128,
                     patience: int = 100,
                     verbose: int = 2,
                     callbacks: list = []) -> History:
        history = {}
        for item in self.model.metrics_names:
            history.update({item: []})
            history.update({'val_' + item: []})

        def _print_report(ltype, metrics_value):
            i = 0
            for item in self.model.metrics_names:
                if ltype == 'train':
                    print("%s: %.5f - " % (item, metrics_value[i]), end='')
                elif ltype == 'test':
                    print("%s: %.5f - " % ('val_' + item, metrics_value[i]),
                          end='')
                i += 1

        def _update_history(ltype, metrics_value):
            i = 0
            for item in self.model.metrics_names:
                if ltype == 'train':
                    history[item].append(metrics_value[i])
                elif ltype == 'test':
                    history['val_' + item].append(metrics_value[i])
                i += 1

        epoch = []
        for i in range(epochs):
            X_data, y_data = gen.get_batch()
            metrics_value = self.model.train_on_batch(
                X_data, to_categorical(y_data, num_classes=db.info['n_cls']))
            _update_history('train', metrics_value)
            val_metrics_value = self.model.test_on_batch(
                db.X_test, db.Y_test())
            _update_history('test', val_metrics_value)
            epoch.append(i)
            if not i % 100:
                print("Batch %d --> " % i, end='')
                _print_report('train', metrics_value)
                _print_report('test', val_metrics_value)
                print('')
                if i and history['val_loss'][-101] <= val_metrics_value[0]:
                    patience -= 1
                    if not patience:
                        break
        return History(epoch=epoch, history=history)
Beispiel #3
0
    def fit(self,
            db: Dataset,
            epochs: int = 1000001,
            batch_size: int = 128,
            patience: int = 20) -> History:
        history = {}
        for item in self.model.metrics_names:
            history.update({item: []})
            history.update({'val_' + item: []})

        def _print_report(ltype, metrics_value):
            i = 0
            for item in self.model.metrics_names:
                if ltype == 'train':
                    print("%s: %.5f - " % (item, metrics_value[i]), end='')
                elif ltype == 'test':
                    print("%s: %.5f - " % ('val_' + item, metrics_value[i]),
                          end='')
                i += 1

        def _update_history(ltype, metrics_value):
            i = 0
            for item in self.model.metrics_names:
                if ltype == 'train':
                    history[item].append(metrics_value[i])
                elif ltype == 'test':
                    history['val_' + item].append(metrics_value[i])
                i += 1

        epoch = []
        for i in range(epochs):
            in_1, in_2, out = self._get_batch(db.X_train, db.y_train,
                                              db.info['n_cls'], batch_size)
            metrics_value = self.model.train_on_batch([in_1, in_2], out)
            _update_history('train', metrics_value)
            in_1, in_2, out = self._get_batch(db.X_test, db.y_test,
                                              db.info['n_cls'], batch_size)
            val_metrics_value = self.model.test_on_batch([in_1, in_2], out)
            _update_history('test', val_metrics_value)
            epoch.append(i)
            if not i % 100:
                print("Batch %d --> " % i, end='')
                _print_report('train', metrics_value)
                _print_report('test', val_metrics_value)
                print('')
                if i and history['val_loss'][-101] <= val_metrics_value[0]:
                    patience -= 1
                    if not patience:
                        break
        return History(epoch=epoch, history=history)
Beispiel #4
0
 def fit(self,
         db: Dataset,
         epochs: int = 1000,
         batch_size: int = 128,
         verbose: int = 2,
         callbacks: list = []) -> History:
     history = self.model.fit(db.X_train,
                              db.Y_train(),
                              validation_data=(db.X_test, db.Y_test()),
                              epochs=epochs,
                              batch_size=batch_size,
                              verbose=verbose,
                              callbacks=callbacks)
     return History(history.epoch, history.params, history.history)