Beispiel #1
0
    def __init__(self, world_map,occupancy_map, pos_init, pos_goal, max_speed, max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)
Beispiel #2
0
    def __init__(self, pos_init, pos_goal, max_speed, max_omega):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface()
        time.sleep(0.2)

        self.max_speed = max_speed
        self.max_omega = max_omega
        self.prev_lin_vel = 0.0
        self.prev_ang_vel = 0.0
        self.pos_init = pos_init
        self.pos_goal = pos_goal

        #self.joy = xbox.Joystick()         #Initialize joystick

        self.state = [pos_init[0], pos_init[1], 0.0]

        #Kalman initialization
        self.kalman_filter = KalmanFilter(dim_x=3, dim_z=3)
        self.kalman_filter.F = np.array([[1, 0, 0], [0, 1, 0],
                                         [0, 0, 1]])  # State Transition Matrix
        self.kalman_filter.H = np.array([[1, 0, 0], [0, 1, 0],
                                         [0, 0, 1]])  # Measurement function
        self.kalman_filter.P = np.array([[0, 0, 0], [0, 0, 0],
                                         [0, 0, 0]])  # covariance matrix

        self.kalman_filter.R = np.array([[0.035, 0, 0], [0, 0.035, 0],
                                         [0, 0, 0.001]])  # state uncertainty
        self.kalman_filter.Q = np.array([[0.005, 0, 0], [0, 0.005, 0],
                                         [0, 0, 0.008]])  # process uncertainty

        self.kalman_filter.x = np.array([self.state]).T
Beispiel #3
0
class RobotControl(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS

        # Uncomment as completed
        #self.kalman_filter = KalmanFilter(world_map)
        #self.diff_drive_controller = DiffDriveController(max_speed, max_omega)

    def process_measurements(self):
        """ 
        YOUR CODE HERE
        This function is called at 60Hz
        """
        meas = self.ros_interface.get_measurements()
        imu_meas = self.ros_interface.get_imu()

        self.ros_interface.command_velocity(0, 0)

        return
Beispiel #4
0
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        self.pos_goal = pos_goal

        # YOUR CODE AFTER THIS
        #-------------------------------------------#
        self.time = rospy.get_time()
        self.controlOut = (0.0, 0.0, False)
        self.count_noMeasurement = 0

        #-------------------------------------------#
        self.markers = world_map
        self.idx_target_marker = 0

        # Calculate the optimal path
        # From pos_init to pos_goal
        self.path_2D = dijkstras(occupancy_map, x_spacing, y_spacing, pos_init,
                                 pos_goal)
        self.idx_path = 0
        self.size_path = self.path_2D.shape[0]
        print "path.shape[0]", self.size_path
        # Generate the 3D path (include "theta")
        self.path = np.zeros((self.size_path, 3))
        theta = 0.0
        for idx in range(self.size_path - 1):
            delta = self.path_2D[(idx + 1), :] - self.path_2D[idx, :]
            theta = atan2(delta[1], delta[0])
            if theta > np.pi:
                theta -= np.pi * 2
            elif theta < -np.pi:
                theta += np.pi * 2
            self.path[idx, :] = np.concatenate(
                (self.path_2D[idx, :], np.array([theta])), axis=1)
        self.path[self.size_path - 1, 0:2] = self.path_2D[self.size_path - 1,
                                                          0:2]
        self.path[self.size_path - 1, 2] = pos_goal[2]  # theta
        #
        self.path[0, 2] = pos_init[2]  # theta
        print "3D path:"
        print self.path

        # Uncomment as completed
        # Kalman filter
        self.kalman_filter = KalmanFilter(world_map)
        self.kalman_filter.mu_est = pos_init  # 3*pos_init # For test

        # Differential drive
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)
        self.wayPointFollowing = wayPointFollowing(max_speed, max_omega)

        #
        self.task_done = False
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        Inputs: (all loaded from the parameter YAML file)
        world_map - a P by 4 numpy array specifying the location, orientation,
            and identification of all the markers/AprilTags in the world. The
            format of each row is (x,y,theta,id) with x,y giving 2D position,
            theta giving orientation, and id being an integer specifying the
            unique identifier of the tag.
        occupancy_map - an N by M numpy array of boolean values (represented as
            integers of either 0 or 1). This represents the parts of the map
            that have obstacles. It is mapped to metric coordinates via
            x_spacing and y_spacing
        pos_init - a 3 by 1 array specifying the initial position of the robot,
            formatted as usual as (x,y,theta)
        pos_goal - a 3 by 1 array specifying the final position of the robot,
            also formatted as (x,y,theta)
        max_speed - a parameter specifying the maximum forward speed the robot
            can go (i.e. maximum control signal for v)
        max_omega - a parameter specifying the maximum angular speed the robot
            can go (i.e. maximum control signal for omega)
        x_spacing - a parameter specifying the spacing between adjacent columns
            of occupancy_map
        y_spacing - a parameter specifying the spacing between adjacent rows
            of occupancy_map
        t_cam_to_body - numpy transformation between the camera and the robot
            (not used in simulation)
        """

        # TODO for student: Comment this when running on the robot
        #self.robot_sim = RobotSim(world_map, occupancy_map, pos_init, pos_goal,
        #	                            max_speed, max_omega, x_spacing, y_spacing)
        # TODO for student: Use this when transferring code to robot
        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS

        # speed control variables
        self.v = 0.1  # allows persistent cmds through detection misses
        self.omega = -0.1  # allows persistent cmds through detection misses
        self.last_detect_time = rospy.get_time()  #TODO on bot only
        self.missed_vision_debounce = 1

        self.start_time = 0

        # generate the path assuming we know our start location, goal, and environment
        self.path = dijkstras(occupancy_map, x_spacing, y_spacing, pos_init,
                              pos_goal)
        self.path_idx = 0
        self.mission_complete = False
        self.carrot_distance = 0.22

        # Uncomment as completed
        self.kalman_filter = KalmanFilter(world_map)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)
Beispiel #6
0
class RobotControl(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        self.kalman_filter = KalmanFilter(world_map)
        print("INITSTATE", self.kalman_filter.state)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)
        self.vel = 0
        self.omega = 0
        self.curInd = 0

        self.path = dijkstras(occupancy_map, x_spacing, y_spacing, pos_init,
                              pos_goal)
        print(self.path)
        self.curGoal = self.path[0]
        self.done = False

    def process_measurements(self):
        """ 
        This function is called at 60Hz
        """
        meas = self.ros_interface.get_measurements()
        print("Mesurements", meas)
        imu_meas = self.ros_interface.get_imu()
        print(imu_meas)
        updatedPosition = self.kalman_filter.step_filter(
            self.vel, self.omega, imu_meas, meas)
        print(np.linalg.norm(self.curGoal - updatedPosition[0:1]))
        if ((np.abs(self.curGoal[0] - updatedPosition[0]) > 0.1)
                or (np.abs(self.curGoal[1] - updatedPosition[1]) > 0.1)):
            (v, omega, done) = self.diff_drive_controller.compute_vel(
                updatedPosition, self.curGoal)
            self.vel = v
            self.omega = omega
            print("commanded vel:", v, omega)
            self.ros_interface.command_velocity(v, omega)
        else:
            print("updating")
            self.curInd = self.curInd + 1
            if self.curInd < len(self.path):
                self.curGoal = self.path[self.curInd]
            else:
                self.done = True

        updatedPosition.shape = (3, 1)

        return
    def __init__(self, world_map,occupancy_map, pos_init, pos_goal, max_speed, max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS
        
        # Uncomment as completed
        #self.kalman_filter = KalmanFilter(world_map)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS
        self.markers = world_map
        self.vel = np.array([0., 0.])
        self.imu_meas = np.array([])
        self.meas = []
    def __init__(self, pos_init, pos_goal, max_speed, max_omega, x_spacing,
                 y_spacing, t_cam_to_body, min_lin_x, max_lin_x,
                 rotate_fast_value, linear_k, k, min_linear_vel):
        """
        Initialize the class
        """
        self.min_lin_x = min_lin_x
        self.max_lin_x = max_lin_x
        self.rotate_fast_value = rotate_fast_value
        self.linear_k = linear_k
        self.k = k
        self.min_linear_vel = min_linear_vel

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)
Beispiel #10
0
    def __init__(self, world_map,occupancy_map, pos_init, pos_goal, max_speed, max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS
        
        # Uncomment as completed
        self.markers = world_map
        self.vel = np.array([0, 0])
        self.imu_meas = np.array([])
        self.meas = []
        
        # TODO for student: Use this when transferring code to robot
        # Handles all the ROS related items
        #self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS
        
        # Uncomment as completed
        self.goals = dijkstras(occupancy_map, x_spacing, y_spacing, pos_init, pos_goal)
        # self.total_goals = self.goals.shape[0]
        self.cur_goal = 2
        self.end_goal = self.goals.shape[0] - 1
        self.kalman_filter = KalmanFilter(world_map)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)
class RobotControl(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS
        self.markers = world_map
        self.vel = np.array([0., 0.])
        self.imu_meas = np.array([])
        self.meas = []
        # self.max_speed = max_speed
        # self.max_omega = max_omega
        # self.goals    = dijkstras(occupancy_map, x_spacing, y_spacing, pos_init, pos_goal)
        # self.total_goals = self.goals.shape[0]
        # self.cur_goal    = 2
        # self.end_goal    = self.goals.shape[0] - 1

        # Uncomment as completed
        #self.kalman_filter = KalmanFilter(world_map)
        #self.diff_drive_controller = DiffDriveController(max_speed, max_omega)

    def process_measurements(self):
        """ 
        YOUR CODE HERE
        This function is called at 60Hz
        """
        meas = self.ros_interface.get_measurements()
        imu_meas = self.ros_interface.get_imu()
        self.meas = meas
        self.imu_meas = imu_meas

        #  for computing motor gain
        v = 0.3
        w = 0.
        self.ros_interface.command_velocity(v, w)

        return
class RobotControl(object):
    """
    Robot interface class. In charge of getting sensor measurements (ROS subscribers),
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)

    def process_measurements(self):
        """ 
        Basic code to run autonomously
        """
        # Check samples from https://github.com/markwsilliman/turtlebot/blob/master/goforward_and_avoid_obstacle.py

        sonar_meas = self.ros_interface.get_range()
        imu_meas = self.ros_interface.get_imu()

        if (sonar_meas == None):
            return
        elif (sonar_meas <= 30):
            pose = np.array([0, 0, math.pi / 4])  # emulate
            goal = np.array([0, 0])
        else:
            pose = np.array([0, 0, 0])
            goal = np.array([1, 0])

        vel = self.diff_drive_controller.compute_vel(pose, goal)
        self.vel = vel[0:2]
        self.ros_interface.command_velocity(vel[0], vel[1])
        rospy.loginfo_throttle(5, "robot_control velocity:" + str(self.vel) +
                               " sonar:" +
                               str(sonar_meas))  #+" imu:"+str(imu_meas))
        #rospy.loginfo("robot_control velocity:"+ str(self.vel)+" sonar:"+str(sonar_meas))#+" imu:"+str(imu_meas))
        return
Beispiel #13
0
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        self.kalman_filter = KalmanFilter(world_map)
        print("INITSTATE", self.kalman_filter.state)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)
        self.vel = 0
        self.omega = 0
        self.curInd = 0

        self.path = dijkstras(occupancy_map, x_spacing, y_spacing, pos_init,
                              pos_goal)
        print(self.path)
        self.curGoal = self.path[0]
        self.done = False
class RobotControl(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map,occupancy_map, pos_init, pos_goal, max_speed, max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS
        
        # Uncomment as completed
        #self.kalman_filter = KalmanFilter(world_map)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)

    def process_measurements(self):
        """ 
        YOUR CODE HERE
        This function is called at 60Hz
        """
        meas = self.ros_interface.get_measurements()
        imu_meas = self.ros_interface.get_imu()
        #print imu_meas
        #self.ros_interface.command_velocity(0., -8.)        
        if meas and meas != None:
            state=np.array([meas[0][0],meas[0][1],meas[0][2]])
            vw=self.diff_drive_controller.compute_vel(state,np.array([[0,0]]))
            print vw
            while vw[2]:
                self.ros_interface.command_velocity(0,0)
            self.ros_interface.command_velocity(vw[0],vw[1])
Beispiel #15
0
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        Inputs: (all loaded from the parameter YAML file)
        world_map - a P by 4 numpy array specifying the location, orientation,
            and identification of all the markers/AprilTags in the world. The
            format of each row is (x,y,theta,id) with x,y giving 2D position,
            theta giving orientation, and id being an integer specifying the
            unique identifier of the tag.
        occupancy_map - an N by M numpy array of boolean values (represented as
            integers of either 0 or 1). This represents the parts of the map
            that have obstacles. It is mapped to metric coordinates via
            x_spacing and y_spacing
        pos_init - a 3 by 1 array specifying the initial position of the robot,
            formatted as usual as (x,y,theta)
        pos_goal - a 3 by 1 array specifying the final position of the robot,
            also formatted as (x,y,theta)
        max_speed - a parameter specifying the maximum forward speed the robot
            can go (i.e. maximum control signal for v)
        max_omega - a parameter specifying the maximum angular speed the robot
            can go (i.e. maximum control signal for omega)
        x_spacing - a parameter specifying the spacing between adjacent columns
            of occupancy_map
        y_spacing - a parameter specifying the spacing between adjacent rows
            of occupancy_map
        t_cam_to_body - numpy transformation between the camera and the robot
            (not used in simulation)
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        self.kalman_filter = KalmanFilter(world_map)
        self.prev_v = 0
        self.est_pose = np.array([[0], [0], [0]])
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)
        self.prev_imu_meas = np.array([[0], [0], [0], [0], [0]])
Beispiel #16
0
    def __init__(self, markers, occupancy_map, pos_init, pos_goal, max_speed,
                 min_speed, max_omega, x_spacing, y_spacing, t_cam_to_body,
                 mode):
        """
        Initialize the class
        """
        # plan a path around obstacles using dijkstra's algorithm
        print('Planning path...')
        path = findShortestPath(occupancy_map,
                                x_spacing,
                                y_spacing,
                                pos_init[0:2],
                                pos_goal[0:2],
                                dilate=2)
        print('Done!')
        self.path_manager = PathManager(path)
        self.kalman_filter = KalmanFilter(markers, pos_init)
        self.diff_drive_controller = DiffDriveController(
            max_speed, min_speed, max_omega)

        if 'HARDWARE' in mode:
            # Handles all the ROS related items
            self.ros_interface = ROSInterface(t_cam_to_body)

        elif 'SIMULATE' in mode:
            self.robot_sim = RobotSim(markers, occupancy_map, pos_init,
                                      pos_goal, max_speed, max_omega,
                                      x_spacing, y_spacing,
                                      self.path_manager.path, mode)

        self.user_control = UserControl()
        self.vel = 0  # save velocity to use for kalman filter
        self.goal = self.path_manager.getNextWaypoint()  # get first waypoint

        # for logging postion data to csv file
        self.stateSaved = []
        self.tagsSaved = []
        self.waypoints = []
class AmclAuxLocalization(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, camera_frame_id, base_frame_id, odom_frame_id, map_frame_id, ns_tag_detector, tag_pose_id, pos_init):
        """
        Initialize the class
        """
        # Handles all the ROS related items
        self.ros_interface = ROSInterface(camera_frame_id, base_frame_id, odom_frame_id, map_frame_id, ns_tag_detector)
        self.time = rospy.get_time()
        # YOUR CODE AFTER THIS
        #-------------------------------------------#
        self.markers = tag_pose_id
        self.idx_target_marker = 0
        #-------------------------------------------#
        # Kalman filter
        self.kalman_filter = KalmanFilter(tag_pose_id)
        self.kalman_filter.mu_est = pos_init # 3*pos_init # For test


    def process_measurements(self):
        """
        YOUR CODE HERE
        This function is called at 10Hz
        """
        # tag_measurement = self.ros_interface.get_measurements()
        # tag_measurement = self.ros_interface.get_measurements_tf()
        tag_measurement = self.ros_interface.get_measurements_tf_directMethod()
        # amcl_pose = self.ros_interface.get_amcl_pose()

        print '-----------------'
        print 'tag:'
        print tag_measurement

        #----------------------------------------#
        # self.time = rospy.get_time()
        # print "self.time",self.time

        # Kalman filter
        # self.kalman_filter.step_filter(self.controlOut[0], (-1)*imu_meas, tag_measurement, rospy.get_time())
        self.kalman_filter.step_filter_by_amcl(self.ros_interface, tag_measurement, rospy.get_time())
        """
        print "After--"
        print "mu_est",self.kalman_filter.mu_est
        print "angle_est =", (self.kalman_filter.mu_est[2,0]*180.0/np.pi), "deg"
        """
        #
        return
Beispiel #18
0
    def __init__(self, world_map,occupancy_map, pos_init, pos_goal, max_speed, max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS
        self.markers   = world_map
        self.vel       = np.array([0.,0.])
        self.imu_meas  = np.array([]) 
        self.meas      = []
        self.max_speed = max_speed
        self.max_omega = max_omega
        # self.goals    = dijkstras(occupancy_map, x_spacing, y_spacing, pos_init, pos_goal)
        # self.total_goals = self.goals.shape[0]
        # self.cur_goal    = 2
        # self.end_goal    = self.goals.shape[0] - 1

        # Uncomment as completed
        #self.kalman_filter = KalmanFilter(world_map)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)
class RobotControl(object):
    """
    Robot interface
    """
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        self.time_init = -1.0

    def process_measurements(self):
        """ 
        This function is called at 60Hz
        """

        # set init time, and start motor
        #if 0 == 1:
        if self.time_init == -1.0:
            print "set init time"
            self.time_init = rospy.get_time()
        self.time_measurement = rospy.get_time()
        # stop motor when 1 second has passed
        diff_time = (self.time_measurement - self.time_init)
        #print("init: {}, measurement: {}, diff: {}".format(self.time_init, self.time_measurement, diff_time))
        if diff_time >= 1:
            print "stop speed"
            self.ros_interface.command_velocity(0, 0)
        else:
            print "set speed"
            self.ros_interface.command_velocity(0.3, 0)

        return
 def __init__(self, camera_frame_id, base_frame_id, odom_frame_id, map_frame_id, ns_tag_detector, tag_pose_id, pos_init):
     """
     Initialize the class
     """
     # Handles all the ROS related items
     self.ros_interface = ROSInterface(camera_frame_id, base_frame_id, odom_frame_id, map_frame_id, ns_tag_detector)
     self.time = rospy.get_time()
     # YOUR CODE AFTER THIS
     #-------------------------------------------#
     self.markers = tag_pose_id
     self.idx_target_marker = 0
     #-------------------------------------------#
     # Kalman filter
     self.kalman_filter = KalmanFilter(tag_pose_id)
     self.kalman_filter.mu_est = pos_init # 3*pos_init # For test
class RobotControl(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS

        # Uncomment as completed
        #self.kalman_filter = KalmanFilter(world_map)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)

    def process_measurements(self):
        """ 
        YOUR CODE HERE
        This function is called at 60Hz
        """
        meas = self.ros_interface.get_measurements()
        imu_meas = self.ros_interface.get_imu()
        #print(meas)

        done = False
        #print("time = " + str(self.robot_sim.last_meas_time))
        if meas is not None and meas != []:
            print "meas = " + str(meas[0][0:3])
            #print type(meas)
            state = -np.array(meas[0][0:3])
            goal = np.array([0, 0])
            print "state = " + str(state)
            #print type(state)
            #print goal
            #print type(goal)
            v, omega, done = self.diff_drive_controller.compute_vel(
                state, goal)
            #print done
            #self.robot_sim.command_velocity(v, omega)
            self.ros_interface.command_velocity(v, omega)
        else:
            #print "No measurement"
            #self.robot_sim.command_velocity(0, 0)
            v = 0
            omega = 0
            self.ros_interface.command_velocity(v, omega)
        print "v = " + str(v)
        print "omega = " + str(omega)

        return
Beispiel #22
0
class RobotControl(object):
    """
    Robot interface class. In charge of getting sensor measurements (ROS subscribers),
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed, max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """
        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

    def publish_action(self, speed, turn):
        self.ros_interface.command_velocity(speed, turn)

    def apply_avoidance_rules(self, distance_from_center, angle):
        p_angle = util.proportional_rotation(angle)
        action = "None"
        if self.inside_too_close_box(distance_from_center):
            # dangeorous distance, too close to turn, just try to go back
            action = "Back"
            rospy.loginfo("{}:{:.2f} {:.2f} dist:{:.2f}".format(action, angle, p_angle, distance_from_center))
            self.react_to_inside_too_close_box(p_angle)

        elif util.is_forward_left(angle):
            # obstacle to left, go right
            action = "go forward right"
            self.publish_action(default_speed, p_angle)
    
        elif util.is_forward_right(angle):
            # obstacle to right, go left
            action = "go forward left"
            self.publish_action(default_speed, p_angle)

        elif util.is_backwards_left(angle):
            action = "obstacle backwards left"

        elif util.is_backwards_right(angle):
            action = "obstacle backwards right"

        else:
            action = "unknown"

        #rospy.loginfo("{}:{:.2f} {:.2f} dist:{:.2f}".format(action, angle, p_angle, distance_from_center))

    
    def react_to_inside_too_close_box(self,angle):
        # go back and turn 180 degrees
        self.publish_action(-default_speed*2, 0)
        rate = rospy.Rate(avoid_check_rate) 
        rate.sleep()
        if util.is_forward_right(angle):
            sign = -1        
        else:
            sign = 1
        z = math.pi*1.6*sign
        rospy.loginfo('Back angle:'+str(angle)+' new angle:'+str(z))
        self.publish_action(0, z) # around 5 rad/s
        rate.sleep()
 
    def inside_too_close_box(self, distance_from_center):
        forward_box_length, forward_box_width = self.forward_box()
        return distance_from_center < forward_box_width
        
    def get_closest_obstacle(self, scan):
        # returns closest point to obstacle inside a vehicle's 'forward box' 
        # forward box is a rectangle ahead of the vehicle that if there is an obstacle
        # inside it it's necessary to do an action in order to avoid it
        forward_box_length, forward_box_width = self.forward_box()

        is_inside    = False
        min_distance = max_distance
        min_i = 0
        min_angle = 0

        for i, distance in enumerate(scan.ranges):
            angle = scan.angle_min + i * scan.angle_increment
            if util.is_within_range(angle) and util.is_valid_distance(distance):
                #print i, distance, to_degrees(angle), angle
                if distance < min_distance:
                    if point_is_inside_box(i, distance, scan, forward_box_length, forward_box_width, util.to_degrees(angle)):
                        is_inside = True
                        min_distance = distance
                        min_i = i
                        min_angle = angle
    
        #angle = angle_from_scan(min_i, scan)
        #angle_degrees = angle*180/math.pi
        #print min_i, angle_degrees, min_distance

        return is_inside, min_distance, min_angle

    def forward_box(self):
        # returns the Vehicle 'forward box' 
        # to do: in future versions forward box should depend on vehicle's speed
        #        more speed -> larger forward box
        length = Behaviour.body_width*look_ahead_factor
        width  = clearance_safety_factor*Behaviour.body_width/2
        return length, width

    def check_action():
        pass

    def process_measurements(self):
        """ 
        Basic code to run autonomously
        """

        scan = self.ros_interface.get_scan()
        if(scan == None):
            return

        action = "None"
        angular_z = 0
        linear_x = 0.3

        is_inside, distance_from_center, angle = self.get_closest_obstacle(scan)

        # only do something if obstacle is inside forward box
        if is_inside:
            #print 'point inside ', distance_from_center, angle
            self.apply_avoidance_rules(distance_from_center, angle)
        else:
            self.publish_action(linear_x, angular_z)	

        return
class RobotControl(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        Inputs: (all loaded from the parameter YAML file)
        world_map - a P by 4 numpy array specifying the location, orientation,
            and identification of all the markers/AprilTags in the world. The
            format of each row is (x,y,theta,id) with x,y giving 2D position,
            theta giving orientation, and id being an integer specifying the
            unique identifier of the tag.
        occupancy_map - an N by M numpy array of boolean values (represented as
            integers of either 0 or 1). This represents the parts of the map
            that have obstacles. It is mapped to metric coordinates via
            x_spacing and y_spacing
        pos_init - a 3 by 1 array specifying the initial position of the robot,
            formatted as usual as (x,y,theta)
        pos_goal - a 3 by 1 array specifying the final position of the robot,
            also formatted as (x,y,theta)
        max_speed - a parameter specifying the maximum forward speed the robot
            can go (i.e. maximum control signal for v)
        max_omega - a parameter specifying the maximum angular speed the robot
            can go (i.e. maximum control signal for omega)
        x_spacing - a parameter specifying the spacing between adjacent columns
            of occupancy_map
        y_spacing - a parameter specifying the spacing between adjacent rows
            of occupancy_map
        t_cam_to_body - numpy transformation between the camera and the robot
            (not used in simulation)
        """

        # TODO for student: Comment this when running on the robot
        #self.robot_sim = RobotSim(world_map, occupancy_map, pos_init, pos_goal,
        #	                            max_speed, max_omega, x_spacing, y_spacing)
        # TODO for student: Use this when transferring code to robot
        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS

        # speed control variables
        self.v = 0.1  # allows persistent cmds through detection misses
        self.omega = -0.1  # allows persistent cmds through detection misses
        self.last_detect_time = rospy.get_time()  #TODO on bot only
        self.missed_vision_debounce = 1

        self.start_time = 0

        # generate the path assuming we know our start location, goal, and environment
        self.path = dijkstras(occupancy_map, x_spacing, y_spacing, pos_init,
                              pos_goal)
        self.path_idx = 0
        self.mission_complete = False
        self.carrot_distance = 0.22

        # Uncomment as completed
        self.kalman_filter = KalmanFilter(world_map)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)

    def process_measurements(self):
        """
        YOUR CODE HERE
        Main loop of the robot - where all measurements, control, and esimtaiton
        are done. This function is called at 60Hz
        """

        print(' ')

        # TODO for student: Comment this when running on the robot
        #meas = self.robot_sim.get_measurements()
        #imu_meas = self.robot_sim.get_imu()

        # TODO for student: Use this when transferring code to robot
        meas = self.ros_interface.get_measurements()
        imu_meas = self.ros_interface.get_imu()

        # meas is the position of the robot with respect to the AprilTags
        # print(meas)

        # now that we have the measurements, update the predicted state
        self.kalman_filter.step_filter(self.v, imu_meas, meas)
        # print(self.kalman_filter.x_t)

        # TODO remove on bot, shows predicted state on simulator
        #self.robot_sim.set_est_state(self.kalman_filter.x_t)

        # pull the next path point from the list
        cur_goal = self.getCarrot()

        # cur_goal = self.path[self.path_idx]
        # TODO test to just go to a goal
        # cur_goal[0] = 0.43
        # cur_goal[1] = 2

        # calculate the control commands need to reach next path point
        #print('')
        #print('current goal:')
        #print(cur_goal)
        #print('current state:')
        #print(self.kalman_filter.x_t)

        control_cmd = self.diff_drive_controller.compute_vel(
            self.kalman_filter.x_t, cur_goal)
        self.v = control_cmd[0]
        self.omega = control_cmd[1]

        #print('control command:')
        # print(control_cmd)

        if self.mission_complete:
            self.v = 0
            self.omega = 0

        #print(control_cmd)
        if control_cmd[2]:
            if len(self.path) > (self.path_idx + 1):
                self.path_idx = self.path_idx + 1
                print('next goal')
            else:
                self.mission_complete = True

        #TODO calibration test on bot only for linear velocity
        '''
        if self.start_time - 0 < 0.0001:
            self.start_time = rospy.get_time()

        if(rospy.get_time() - self.start_time > 4):
            self.v = 0
            self.omega = 0
        else:
            self.v = 0.15
            self.omega = 0
        '''

        #TODO on bot only
        self.ros_interface.command_velocity(self.v, self.omega)

        #TODO for simulation
        #self.robot_sim.command_velocity(self.v,self.omega)

        return

    def getCarrot(self):
        '''
        getCarrot - generates an artificial goal location along a path out 
        infront of the robot.
        path - the set of points which make up the waypoints in the path
        position - the current position of the robot
        '''
        path = self.path
        idx = self.path_idx
        pos = self.kalman_filter.x_t

        # if the current line segment ends in the goal point, set that to the goal
        if self.path_idx + 1 == len(self.path):
            return self.path[(len(self.path) - 1)]
        else:
            # find the point on the current line closest to the robot
            # calculate current line's slope and intercept
            pt1 = self.path[self.path_idx]
            pt2 = self.path[self.path_idx + 1]
            x_diff = pt2[0] - pt1[0]
            y_diff = pt2[1] - pt1[1]
            vert = abs(x_diff) < 0.001

            # using the current line's slope and intercept find the point on that
            # line closest to the robots current point
            # assumes all lines are either veritcal or horizontal
            x_bot = pos[0][0]
            y_bot = pos[1][0]
            if vert:
                x_norm = pt2[0]
                y_norm = y_bot
            else:
                x_norm = x_bot
                y_norm = pt2[1]

            # if the normal point is past the end point of this segment inc path idx
            # assumes all lines are either vertical or horizontal
            inc = False
            if vert:
                if (y_diff > 0 and y_norm > pt2[1]) or (y_diff < 0
                                                        and y_norm < pt2[1]):
                    inc = True
            else:
                if (x_diff > 0 and x_norm > pt2[0]) or (x_diff < 0
                                                        and x_norm < pt2[0]):
                    inc = True

            if (inc):
                self.path_idx = self.path_idx + 1
                print('increment path index')

            # find a point L distance infront of the normal point on this line
            # assumes all lines are either vertical or horizontal
            if vert:
                x_goal = pt2[0]
                if y_diff > 0:
                    y_goal = y_bot + self.carrot_distance
                else:
                    y_goal = y_bot - self.carrot_distance
            else:
                y_goal = pt2[1]
                if x_diff > 0:
                    x_goal = x_bot + self.carrot_distance
                else:
                    x_goal = x_bot - self.carrot_distance

            goal = np.array([x_goal, y_goal])

            #print(goal)

            return goal
Beispiel #24
0
class RobotControl(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        Inputs: (all loaded from the parameter YAML file)
        world_map - a P by 4 numpy array specifying the location, orientation,
            and identification of all the markers/AprilTags in the world. The
            format of each row is (x,y,theta,id) with x,y giving 2D position,
            theta giving orientation, and id being an integer specifying the
            unique identifier of the tag.
        occupancy_map - an N by M numpy array of boolean values (represented as
            integers of either 0 or 1). This represents the parts of the map
            that have obstacles. It is mapped to metric coordinates via
            x_spacing and y_spacing
        pos_init - a 3 by 1 array specifying the initial position of the robot,
            formatted as usual as (x,y,theta)
        pos_goal - a 3 by 1 array specifying the final position of the robot,
            also formatted as (x,y,theta)
        max_speed - a parameter specifying the maximum forward speed the robot
            can go (i.e. maximum control signal for v)
        max_omega - a parameter specifying the maximum angular speed the robot
            can go (i.e. maximum control signal for omega)
        x_spacing - a parameter specifying the spacing between adjacent columns
            of occupancy_map
        y_spacing - a parameter specifying the spacing between adjacent rows
            of occupancy_map
        t_cam_to_body - numpy transformation between the camera and the robot
            (not used in simulation)
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        self.kalman_filter = KalmanFilter(world_map)
        self.prev_v = 0
        self.est_pose = np.array([[0], [0], [0]])
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)
        self.prev_imu_meas = np.array([[0], [0], [0], [0], [0]])

    def process_measurements(self, waypoint):
        """ 
        waypoint is a 1D list [x,y] containing the next waypoint the rover needs to go
        YOUR CODE HERE
        Main loop of the robot - where all measurements, control, and esimtaiton
        are done. This function is called at 60Hz
        """

        #This gives the xy location and the orientation of the tag in the rover frame
        #The orientation is zero when the rover faces directly at the tag
        meas = self.ros_interface.get_measurements()

        self.est_pose = self.kalman_filter.step_filter(self.prev_v,
                                                       self.prev_imu_meas,
                                                       meas)

        state = [self.est_pose[0, 0], self.est_pose[1, 0], self.est_pose[2, 0]]
        goal = [waypoint[0], waypoint[1]]
        controls = self.diff_drive_controller.compute_vel(state, goal)

        self.ros_interface.command_velocity(controls[0], controls[1])
        self.prev_v = controls[0]
        imu_meas = self.ros_interface.get_imu()
        if imu_meas != None:
            imu_meas[3, 0] = -imu_meas[
                3, 0]  #clockwise angular vel is positive from IMU

        self.prev_imu_meas = imu_meas

        return controls[2]
Beispiel #25
0
class RobotControl(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map,occupancy_map, pos_init, pos_goal, max_speed, max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS
        self.markers   = world_map
        self.vel       = np.array([0.,0.])
        self.imu_meas  = np.array([]) 
        self.meas      = []
        self.max_speed = max_speed
        self.max_omega = max_omega
        # self.goals    = dijkstras(occupancy_map, x_spacing, y_spacing, pos_init, pos_goal)
        # self.total_goals = self.goals.shape[0]
        # self.cur_goal    = 2
        # self.end_goal    = self.goals.shape[0] - 1

        # Uncomment as completed
        #self.kalman_filter = KalmanFilter(world_map)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)

    def process_measurements(self):
        """ 
        YOUR CODE HERE
        This function is called at 60Hz
        """
        meas          = self.ros_interface.get_measurements()
        imu_meas      = self.ros_interface.get_imu()
        self.meas     = meas
        self.imu_meas = imu_meas
        
        # unit test for following april tag
        if (meas  != None and meas):
            cur_meas = meas[0]
            # print(cur_meas)
            tag_robot_pose = cur_meas[:3]
            # print(self.tag_pos(cur_meas[3]))
            tag_world_pose = np.float32(self.tag_pos(cur_meas[3]))
            # print(tag_world_pose)
            # print(tag_robot_pose)
            state    = self.robot_pos(tag_world_pose,tag_robot_pose)
            goal     = tag_world_pose
            v,w,done = self.diff_drive_controller.compute_vel(state,goal)
            if done:
                v = 0.01
                w = 0.
            vel = (v,w)
            self.vel  = vel[:2]
            self.done = done
        else:
            v = 0.
            w = 0.
        self.ros_interface.command_velocity(v,w)

        return


    def tag_pos(self, marker_id):
        # print(marker_id)
        # print(self.markers)
        for i in range(len(self.markers)):
            marker_i = np.copy(self.markers[i])
            if int(float(marker_i[3])) == marker_id:
                return marker_i[:3]
        return None


    def robot_pos(self, w_pos, r_pos):
        H_W = np.array([[np.cos(w_pos[2]), -np.sin(w_pos[2]), w_pos[0]],
                        [np.sin(w_pos[2]),  np.cos(w_pos[2]), w_pos[1]],
                        [0., 0., 1.]])
        H_R = np.array([[np.cos(r_pos[2]), -np.sin(r_pos[2]), r_pos[0]],
                        [np.sin(r_pos[2]),  np.cos(r_pos[2]), r_pos[1]],
                        [0., 0., 1.]])
        # print(np.linalg.inv(H_R))
        w_r = np.dot(H_W, np.linalg.inv(H_R))
        
        return np.array([[w_r[0,2]],[w_r[1,2]],[np.arctan2(w_r[1,0],w_r[0,0])]])
class RobotControl(object):
    """
    Robot interface class. In charge of getting sensor measurements (ROS subscribers),
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, pos_init, pos_goal, max_speed, max_omega, x_spacing,
                 y_spacing, t_cam_to_body, min_lin_x, max_lin_x,
                 rotate_fast_value, linear_k, k, min_linear_vel):
        """
        Initialize the class
        """
        self.min_lin_x = min_lin_x
        self.max_lin_x = max_lin_x
        self.rotate_fast_value = rotate_fast_value
        self.linear_k = linear_k
        self.k = k
        self.min_linear_vel = min_linear_vel

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

    def to_degrees(self, rad):
        angle_degrees = rad * 180 / math.pi
        return angle_degrees

    def is_valid_distance(self, d):
        """ 
        Discard Inf distances
        """
        if (np.isnan(d) or np.isinf(d)):
            return False
        else:
            return True

    def is_within_range(self, i):
        """ 
        Only consider -90 to 90 degrees
        """
        #return -math.pi/4 < i < math.pi/4
        return math.pi / 2 < abs(i)  # LIDAR rotated backwards

    def process_measurements(self):
        """ 
        Basic code to run autonomously
        """
        # Check samples from https://github.com/markwsilliman/turtlebot/blob/master/goforward_and_avoid_obstacle.py

        scan = self.ros_interface.get_scan()

        linear = 0
        rotational = 0
        rcount = 0
        hack = False
        msg = ""

        if (scan == None):
            return

        rcount = 0
        for i, real_dist in enumerate(scan.ranges):
            angle = scan.angle_min + i * scan.angle_increment
            denom = 1. + real_dist * real_dist
            if self.is_within_range(angle) and self.is_valid_distance(
                    real_dist):
                linear += math.sin(angle) / denom * 1.
                rotational += math.cos(angle) / denom * 1.
                rcount += 1
                #print "%.5f"%self.to_degrees(angle)+"degrees x:%.5f"%real_dist+" x:%.2f"%linear+" z:%.2f"%rotational

        try:
            linear /= rcount
            rotational /= rcount
        except Exception as e:
            pass
        """
	if (linear > self.k):
        	linear = self.k
        elif (linear < -self.k):
        	linear = -self.k
        """

        linear_x = linear
        angular_z = rotational

        linear_x = linear  # check this

        print "linear_x:%.5f" % linear_x + " angular_z:%.1f" % self.to_degrees(
            angular_z) + "(%.2f)" % angular_z + " " + msg

        #self.ros_interface.command_velocity(linear_x, angular_z)
        return
Beispiel #27
0
class RobotControl(object):
    """Class used to interface with the rover. Gets sensor measurements
    through ROS subscribers, and transforms them into the 2D plane,
    and publishes velocity commands.

    """
    def __init__(self, markers, occupancy_map, pos_init, pos_goal, max_speed,
                 min_speed, max_omega, x_spacing, y_spacing, t_cam_to_body,
                 mode):
        """
        Initialize the class
        """
        # plan a path around obstacles using dijkstra's algorithm
        print('Planning path...')
        path = findShortestPath(occupancy_map,
                                x_spacing,
                                y_spacing,
                                pos_init[0:2],
                                pos_goal[0:2],
                                dilate=2)
        print('Done!')
        self.path_manager = PathManager(path)
        self.kalman_filter = KalmanFilter(markers, pos_init)
        self.diff_drive_controller = DiffDriveController(
            max_speed, min_speed, max_omega)

        if 'HARDWARE' in mode:
            # Handles all the ROS related items
            self.ros_interface = ROSInterface(t_cam_to_body)

        elif 'SIMULATE' in mode:
            self.robot_sim = RobotSim(markers, occupancy_map, pos_init,
                                      pos_goal, max_speed, max_omega,
                                      x_spacing, y_spacing,
                                      self.path_manager.path, mode)

        self.user_control = UserControl()
        self.vel = 0  # save velocity to use for kalman filter
        self.goal = self.path_manager.getNextWaypoint()  # get first waypoint

        # for logging postion data to csv file
        self.stateSaved = []
        self.tagsSaved = []
        self.waypoints = []

    def process_measurements(self):
        """Main loop of the robot - where all measurements, control, and
        estimation are done.

        """
        v, omega, wayptReached = self.user_control.compute_vel()
        self.robot_sim.command_velocity(v, omega)
        return

        #meas = None # for testing purposes
        #imu_meas = None # for testing purpose
        #pdb.set_trace()
        if (imu_meas is None) and (meas is None):
            pass
        else:
            state = self.kalman_filter.step_filter(self.vel, imu_meas, meas)
            if 'SIMULATE' in mode:
                self.robot_sim.set_est_state(state)

            #print("X = {} cm, Y = {} cm, Theta = {} deg".format(100*state[0],100*state[1],state[2]*180/np.pi))

            # save the estimated state and tag statuses for offline animation
            self.stateSaved.append(state)
            self.waypoints.append(self.path_manager.getActiveWaypointsPos())
            if meas is None:
                self.tagsSaved.append(None)
            else:
                meas = np.array(meas)
                tagIDs = [int(i) for i in meas[:, 3]]
                self.tagsSaved.append(tagIDs)

            v, omega, wayptReached = self.diff_drive_controller.compute_vel(
                state, self.goal.pos)
            self.vel = v

            if wayptReached:
                self.goal = self.path_manager.getNextWaypoint()
                self.diff_drive_controller.done = False  # reset diff controller status

            if self.goal is None:
                print('Goal has been reached!')
                np.savez('savedState.npz',
                         stateSaved=self.stateSaved,
                         tagsSaved=self.tagsSaved,
                         waypoints=self.waypoints)
                print('Position data saved!')
                if 'HARDWARE' in mode:
                    self.ros_interface.command_velocity(0, 0)
                elif 'SIMULATE' in mode:

                    self.robot_sim.command_velocity(0, 0)
                    self.robot_sim.done = True
                return
            else:
                if 'HARDWARE' in mode:
                    self.ros_interface.command_velocity(self.vel, omega)
                elif 'SIMULATE' in mode:
                    self.robot_sim.command_velocity(self.vel, omega)
        return

    def myhook():
        print "shutdown time!"
Beispiel #28
0
class RobotControl(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map,occupancy_map, pos_init, pos_goal, max_speed, max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS
        
        # Uncomment as completed
        self.markers = world_map
        self.vel = np.array([0, 0])
        self.imu_meas = np.array([])
        self.meas = []
        
        # TODO for student: Use this when transferring code to robot
        # Handles all the ROS related items
        #self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS
        
        # Uncomment as completed
        self.goals = dijkstras(occupancy_map, x_spacing, y_spacing, pos_init, pos_goal)
        # self.total_goals = self.goals.shape[0]
        self.cur_goal = 2
        self.end_goal = self.goals.shape[0] - 1
        self.kalman_filter = KalmanFilter(world_map)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)

    def process_measurements(self):
        """ 
        YOUR CODE HERE
        This function is called at 60Hz
        """
        meas = self.ros_interface.get_measurements()
        self.meas = meas;
        print 'tag output'
        print meas
        # imu_meas: measurment comig from the imu
        imu_meas = self.ros_interface.get_imu()
        self.imu_meas = imu_meas
        print 'imu measurement'
        print imu_meas
        pose = self.kalman_filter.step_filter(self.vel, self.imu_meas, np.asarray(self.meas))
        

        # Code to follow AprilTags
        '''
        if(meas != None and meas):
            cur_meas = meas[0]
            tag_robot_pose = cur_meas[0:3]
            tag_world_pose = self.tag_pos(cur_meas[3])
            state = self.robot_pos(tag_world_pose, tag_robot_pose)
            goal = tag_world_pose
            vel = self.diff_drive_controller.compute_vel(state, goal)        
            self.vel = vel[0:2];
            print vel
            if(not vel[2]):
                self.ros_interface.command_velocity(vel[0], vel[1])
            else:
                vel = (0.01, 0.1) 
                self.vel = vel
                self.ros_interface.command_velocity(vel[0], vel[1])
        '''


        # Code to move autonomously
        goal = self.goals[self.cur_goal]
        print 'pose'
        print pose
        print 'goal'
        print goal
        vel = self.diff_drive_controller.compute_vel(pose, goal)        
        self.vel = vel[0:2];
        print 'speed'
        print vel
        if(not vel[2]):
            self.ros_interface.command_velocity(vel[0], vel[1])
        else:
            vel = (0, 0) 
            if self.cur_goal < self.end_goal:
                self.cur_goal = self.cur_goal + 1
            self.ros_interface.command_velocity(vel[0], vel[1])
            self.vel = vel
        return

    def tag_pos(self, marker_id):
        for i in range(len(self.markers)):
            marker_i = np.copy(self.markers[i])
            if marker_i[3] == marker_id:
                return marker_i[0:3]
        return None

    def robot_pos(self, w_pos, r_pos):
        H_W = np.array([[math.cos(w_pos[2]), -math.sin(w_pos[2]), w_pos[0]],
                        [math.sin(w_pos[2]), math.cos(w_pos[2]), w_pos[1]],
                        [0, 0, 1]])
        H_R = np.array([[math.cos(r_pos[2]), -math.sin(r_pos[2]), r_pos[0]],
                        [math.sin(r_pos[2]), math.cos(r_pos[2]), r_pos[1]],
                        [0, 0, 1]])
        w_r = H_W.dot(inv(H_R))
        robot_pose =  np.array([[w_r[0,2]], [w_r[1,2]], [math.atan2(w_r[1,0], w_r[0, 0])]])
        return robot_pose
Beispiel #29
0
class RobotControl(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        self.pos_goal = pos_goal

        # YOUR CODE AFTER THIS
        #-------------------------------------------#
        self.time = rospy.get_time()
        self.controlOut = (0.0, 0.0, False)
        self.count_noMeasurement = 0

        #-------------------------------------------#
        self.markers = world_map
        self.idx_target_marker = 0

        # Calculate the optimal path
        # From pos_init to pos_goal
        self.path_2D = dijkstras(occupancy_map, x_spacing, y_spacing, pos_init,
                                 pos_goal)
        self.idx_path = 0
        self.size_path = self.path_2D.shape[0]
        print "path.shape[0]", self.size_path
        # Generate the 3D path (include "theta")
        self.path = np.zeros((self.size_path, 3))
        theta = 0.0
        for idx in range(self.size_path - 1):
            delta = self.path_2D[(idx + 1), :] - self.path_2D[idx, :]
            theta = atan2(delta[1], delta[0])
            if theta > np.pi:
                theta -= np.pi * 2
            elif theta < -np.pi:
                theta += np.pi * 2
            self.path[idx, :] = np.concatenate(
                (self.path_2D[idx, :], np.array([theta])), axis=1)
        self.path[self.size_path - 1, 0:2] = self.path_2D[self.size_path - 1,
                                                          0:2]
        self.path[self.size_path - 1, 2] = pos_goal[2]  # theta
        #
        self.path[0, 2] = pos_init[2]  # theta
        print "3D path:"
        print self.path

        # Uncomment as completed
        # Kalman filter
        self.kalman_filter = KalmanFilter(world_map)
        self.kalman_filter.mu_est = pos_init  # 3*pos_init # For test

        # Differential drive
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)
        self.wayPointFollowing = wayPointFollowing(max_speed, max_omega)

        #
        self.task_done = False

    def process_measurements(self):
        """
        YOUR CODE HERE
        This function is called at 60Hz
        """
        meas = self.ros_interface.get_measurements()
        imu_meas = self.ros_interface.get_imu()

        # print 'meas',meas
        print 'imu_meas', imu_meas
        """
        # Control the robot to track the tag
        if (meas is None) or (meas == []):
            # stop
            # self.ros_interface.command_velocity(0.0,0.0)
            #
            if self.count_noMeasurement > 30:
                # Actually the ros_interface will stop the motor itself if we don't keep sending new commands
                self.ros_interface.command_velocity(0.0,0.0)
            else:
                # Keep the old command
                self.ros_interface.command_velocity(self.controlOut[0],self.controlOut[1])
                self.count_noMeasurement += 1
        else:
            print 'meas',meas
            self.count_noMeasurement = 0
            # Thew differential drive controller that lead the robot to the tag
            self.controlOut = self.diff_drive_controller.compute_vel((-1)*np.array(meas[0][0:3]),np.array([0.0,0.0,0.0]))
            self.ros_interface.command_velocity(self.controlOut[0],self.controlOut[1])

        (v,omega,done) = (self.controlOut[0], self.controlOut[1],False )
        """
        """
        if (rospy.get_time() - self.time) < 1.0:
            self.ros_interface.command_velocity(0.0, 3.0)
            # Linear velocity = 0.3 m/s, Angular velocity = 0.5 rad/s
        else:
            self.ros_interface.command_velocity(0.0,0.0)
        """
        """
        (v,omega,done) = (0.0, 0.0, False)
        self.ros_interface.command_velocity(v, omega)
        """
        """
        # Directly move to the goal position
        if self.controlOut[2]: # done
            self.ros_interface.command_velocity(0.0, 0.0)
        else:
            self.controlOut = self.wayPointFollowing.compute_vel(self.kalman_filter.mu_est, self.pos_goal )
            # self.controlOut = self.diff_drive_controller.compute_vel(self.kalman_filter.mu_est, self.pos_goal )
            if self.controlOut[2]: # done
                self.ros_interface.command_velocity(0.0, 0.0)
            else:
                self.ros_interface.command_velocity(self.controlOut[0], self.controlOut[1])
        """
        """
        #----------------------------------------#
        # Switch the targets (way-point of the optimal path) and do the position control
        # if self.controlOut[2] and self.idx_path == self.size_path-1: # all done
        if self.idx_path == self.size_path-1 and self.controlOut[0] < 0.05 and self.controlOut[1] < 0.1 : # all done
            self.ros_interface.command_velocity(0.0, 0.0)
        else:
            self.controlOut = self.diff_drive_controller.compute_vel(self.kalman_filter.mu_est, self.path[self.idx_path,:] )
            self.ros_interface.command_velocity(self.controlOut[0], self.controlOut[1])
            if self.controlOut[2] and self.idx_path < self.size_path-1: # way-point done
                self.idx_path += 1
        #----------------------------------------#
        """

        #----------------------------------------#
        print "self.idx_path", self.idx_path
        # Switch the targets (way-point of the optimal path) and do the position control
        # way-point following (no reducing speeed when reach a way-point)
        # if self.controlOut[2] and self.idx_path == self.size_path-1: # all done
        if self.task_done:  # all done
            self.ros_interface.command_velocity(0.0, 0.0)
        elif self.idx_path == self.size_path - 1:  # The last one
            # Change the threshold
            self.diff_drive_controller.threshold = 0.02  # 3 cm
            # Using diff_drive_controller to reach the goal position with right direction
            self.controlOut = self.diff_drive_controller.compute_vel(
                self.kalman_filter.mu_est, self.path[self.idx_path, :])
            # if self.controlOut[0] < 0.05 and self.controlOut[1] < 0.1 : # all done
            if self.controlOut[2]:  # all done
                self.ros_interface.command_velocity(0.0, 0.0)
                self.task_done = True  # all done
            else:
                self.ros_interface.command_velocity(self.controlOut[0],
                                                    self.controlOut[1])
        else:
            # The way-points, using wayPointFollowing to trace the trajectory without pausing

            if self.idx_path == self.size_path - 2:  # The last 2nd one
                self.controlOut = self.diff_drive_controller.compute_vel(
                    self.kalman_filter.mu_est, self.path[self.idx_path, :])
            else:
                self.controlOut = self.wayPointFollowing.compute_vel(
                    self.kalman_filter.mu_est, self.path[self.idx_path, :])

            # self.controlOut = self.wayPointFollowing.compute_vel(self.kalman_filter.mu_est, self.path[self.idx_path,:] )
            self.ros_interface.command_velocity(self.controlOut[0],
                                                self.controlOut[1])
            if self.controlOut[
                    2] and self.idx_path < self.size_path - 1:  # way-point done
                self.idx_path += 1
        #----------------------------------------#
        # self.time = rospy.get_time()
        # print "self.time",self.time

        # Kalman filter
        self.kalman_filter.step_filter(self.controlOut[0], (-1) * imu_meas,
                                       meas, rospy.get_time())
        print "mu_est", self.kalman_filter.mu_est

        return
Beispiel #30
0
class RobotControl(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

        # YOUR CODE AFTER THIS

        # Uncomment as completed
        #self.kalman_filter = KalmanFilter(world_map)
        self.diff_drive_controller = DiffDriveController(max_speed, max_omega)

    def process_measurements(self):
        """ 
        YOUR CODE HERE
        This function is called at 60Hz
        """
        meas = self.ros_interface.get_measurements(
        )  #type list (matriz de 1x3 meas[0][2], posicion del tag [[x, y, z, id]])
        imu_meas = self.ros_interface.get_imu()

        if meas != None:
            # convert meas into a np array
            measu = meas[0]

            # IMPORTANTE USAR ***MEASU*** Y NO MEAS!!!

            #print measurements, python 2 btw...
            print("*******")
            print("Tag: "),
            print(measu[3])
            measu3f = np.round(measu, 3)
            print("Measurements: "),
            print(measu3f[:3])

            #print state
            state = np.array([0.0, 0.0, 0.0])
            print("State: "),
            print(state)

            goal = np.array([measu[0], -measu[1], measu[2]])

            vw = self.diff_drive_controller.compute_vel(state, goal)

            #print comanded velocity
            vw3f = np.round(vw, 3)
            print("Computed command vel: "),
            print(vw3f[:2])

            if vw[2] == False:
                self.ros_interface.command_velocity(vw[0], vw[1])
            if vw[2] == True:
                print("*****The robot arrived its destination*****")
        else:
            #self.ros_interface.command_velocity(0, 0)
            return
class RobotControl(object):
    """
    Robot interface class. In charge of getting sensor measurements (ROS subscribers),
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, world_map, occupancy_map, pos_init, pos_goal, max_speed,
                 max_omega, x_spacing, y_spacing, t_cam_to_body):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface(t_cam_to_body)

    def to_degrees(self, rad):
        angle_degrees = rad * 180 / math.pi
        return angle_degrees

    def is_valid_distance(self, d):
        """ 
        Discard Inf distances
        """
        if (np.isnan(d) or np.isinf(d)):
            return False
        else:
            return True

    def is_within_range(self, i):
        """ 
        Only consider -90 to 90 degrees
        """
        #return -math.pi/4 < i < math.pi/4
        return math.pi / 2 < abs(i)  # LIDAR rotated backwards

    def process_measurements(self):
        """ 
        Basic code to run autonomously
        """
        # Check samples from https://github.com/Arkapravo/laser_obstacle_avoidance_pr2/blob/master/src/obstacle_avoidance_pr2.cpp

        scan = self.ros_interface.get_scan()

        angular_z = 0
        linear_x = 0
        k = 0.4  # 0.3
        min_linear = 0.09
        rotate_fast_value = 1.  # 5.8 # rad/s
        linear_k = 0.15
        go_forward = 0.5  # default value
        action = "None"
        if (scan == None):
            return

        #print "i:%.5f"%angle+"(%.5f"%self.to_degrees(angle)+"degrees) x:%.5f"%real_dist+" x:%.2f"%linear+" z:%.2f"%rotational

        min_range = scan.ranges[0]
        min_range_angle = 0
        min_angle = 0
        for j in range(0, 360):  #increment by one degree
            real_dist = scan.ranges[j]
            angle = scan.angle_min + j * scan.angle_increment
            if self.is_within_range(angle) and self.is_valid_distance(
                    real_dist):
                if (real_dist < min_range):
                    min_range = real_dist
                    min_angle = angle
                    min_range_angle = j / 2

#print "minimum range is [%.3f]"%min_range+" at an angle of [%.3f]"%min_range_angle
        if (
                min_range <= 0.5
        ):  # min_range<=0.5 gave box pushing like behaviour, min_range<=1.2 gave obstacle avoidance
            if (min_range_angle < 90):
                angular_z = rotate_fast_value
                linear_x = 0
                action = "left "
            else:
                angular_z = -rotate_fast_value
                linear_x = 0
                action = "right"
        else:
            angular_z = 0
            linear_x = go_forward
            action = "straight"

        print "action:" + action + " min distance[%.2f]" % min_range + " angle [%.2f]" % min_range_angle + " (%.1f)" % angle + " min angle %.1f" % min_angle

        self.ros_interface.command_velocity(linear_x, angular_z)
        return
Beispiel #32
0
class RobotControl(object):
    """
    Class used to interface with the rover. Gets sensor measurements through ROS subscribers,
    and transforms them into the 2D plane, and publishes velocity commands.
    """
    def __init__(self, pos_init, pos_goal, max_speed, max_omega):
        """
        Initialize the class
        """

        # Handles all the ROS related items
        self.ros_interface = ROSInterface()
        time.sleep(0.2)

        self.max_speed = max_speed
        self.max_omega = max_omega
        self.prev_lin_vel = 0.0
        self.prev_ang_vel = 0.0
        self.pos_init = pos_init
        self.pos_goal = pos_goal

        #self.joy = xbox.Joystick()         #Initialize joystick

        self.state = [pos_init[0], pos_init[1], 0.0]

        #Kalman initialization
        self.kalman_filter = KalmanFilter(dim_x=3, dim_z=3)
        self.kalman_filter.F = np.array([[1, 0, 0], [0, 1, 0],
                                         [0, 0, 1]])  # State Transition Matrix
        self.kalman_filter.H = np.array([[1, 0, 0], [0, 1, 0],
                                         [0, 0, 1]])  # Measurement function
        self.kalman_filter.P = np.array([[0, 0, 0], [0, 0, 0],
                                         [0, 0, 0]])  # covariance matrix

        self.kalman_filter.R = np.array([[0.035, 0, 0], [0, 0.035, 0],
                                         [0, 0, 0.001]])  # state uncertainty
        self.kalman_filter.Q = np.array([[0.005, 0, 0], [0, 0.005, 0],
                                         [0, 0, 0.008]])  # process uncertainty

        self.kalman_filter.x = np.array([self.state]).T
        #Uncomment as completed
        #self.diff_drive_controller = DiffDriveController(max_speed, max_omega)

    def KalmanUpdate(self):
        self.kalman_filter.predict()  #For the P matrix prediction

        self.kalman_filter.x = np.array([self.state]).T

        self.kalman_filter.update(np.array(
            [MeasState[2:5]]).T)  #MeasState[2:5] are the sensor data

        updated_state = [
            self.kalman_filter.x[0][0], self.kalman_filter.x[1][0],
            self.kalman_filter.x[2][0]
        ]
        return updated_state

    def control(self):

        global ang_vel_rep_left, ang_vel_rep_right, period, baseAngle, baseMagValue, baseAccValue, MeasState
        global loop_ctr, AccList
        distances = self.ros_interface.get_distances()
        imu_meas = self.ros_interface.get_imu()

        #imu measurements
        MagValue = imu_meas[3:6]
        AccValue = [
            imu_meas[0] - baseAccValue[0], imu_meas[1] - baseAccValue[1]
        ]

        #Skip acceleration noise
        if abs(AccValue[0]) < 0.15:
            AccValue[0] = 0.0

        if abs(AccValue[1]) < 0.15:
            AccValue[1] = 0.0

        Angle = -(math.atan2(MagValue[1], MagValue[0]) - baseAngle)

        #print([MagValue[0], MagValue[1]])

        #State estimation from measurements
        MeasState[0] = (self.prev_lin_vel + AccValue[0] * period) * math.cos(
            self.state[2])  #x #Velocity
        MeasState[1] = (self.prev_lin_vel + AccValue[0] * period) * math.sin(
            self.state[2])  #y

        MeasState[2] = self.state[0] + MeasState[
            0] * period  #Position mhpws 8elei self.state anti gia measstate?
        MeasState[3] = self.state[1] + MeasState[1] * period
        MeasState[4] = Angle

        #Predict next state
        self.state[0] = self.state[0] + self.prev_lin_vel * period * math.cos(
            self.state[2])  # x
        self.state[1] = self.state[1] + self.prev_lin_vel * period * math.sin(
            self.state[2])  # y
        self.state[2] = self.state[2] + self.prev_ang_vel * period  # theta

        #self.state[2] = Angle

        #Updated state, sensor fusion
        self.state = self.KalmanUpdate()
        #self.state[2] = (self.KalmanUpdate())[2]

        #Angle between -pi and pi
        if self.state[2] > math.pi:
            self.state[2] -= 2 * math.pi
        elif self.state[2] < -math.pi:
            self.state[2] += 2 * math.pi

        print(self.state[0], self.state[1], self.state[2] * 180 / math.pi)

        #Repultion fields from sensors
        ang_vel_rep_left = max(0.0,
                               (self.max_omega / 2 - 1.0 * distances[0]) * 3.0)
        ang_vel_rep_right = -max(
            0.0, (self.max_omega / 2 - 1.0 * distances[2]) * 3.0)

        angle_from_goal = math.atan2(self.pos_goal[1] - self.state[1],
                                     self.pos_goal[0] - self.state[0])

        #Attraction field
        if abs(angle_from_goal - self.state[2]) < 0.1:
            ang_vel_attr = 0
        else:
            ang_vel_attr = 2.3 * (angle_from_goal - self.state[2])
            ang_vel_attr = np.sign(ang_vel_attr) * min(
                0.7, abs(ang_vel_attr))  #angle_vel between -0.7 and 0.7

        #print(ang_vel_attr)
        lin_vel = min(self.max_speed, 5 * (distances[1] - 0.16))

        #Linear velocity not below 0.1 m/s
        if lin_vel > 0:
            lin_vel = max(lin_vel, 0.1)
        else:
            lin_vel = min(lin_vel, -0.1)

        lin_vel = max(lin_vel, -self.max_speed)
        ang_vel = ang_vel_attr + ang_vel_rep_right + ang_vel_rep_left

        self.ros_interface.command_velocity(lin_vel, ang_vel)

        self.prev_lin_vel = lin_vel
        self.prev_ang_vel = ang_vel
        return

    def PerformSquare(self):
        global baseAngle, MeasState, square_angles, square_index, timer

        imu_meas = self.ros_interface.get_imu()

        #imu measurements
        MagValue = imu_meas[3:5]
        Angle = -(math.atan2(MagValue[1], MagValue[0]) - baseAngle)
        self.state[2] = Angle

        if self.state[2] > math.pi:  #angle between -pi and pi
            self.state[2] -= 2 * math.pi
        elif self.state[2] < -math.pi:
            self.state[2] += 2 * math.pi

        if (square_index == 2) and (self.state[2] < 0):
            self.state[2] += 2 * math.pi

        print(self.state[2] * 180 / math.pi)

        if timer > 3:
            timer = -1
            square_index += 1

        angle_from_goal = square_angles[square_index]

        #Attraction field
        if abs(angle_from_goal - self.state[2]) < 0.06:
            ang_vel_attr = 0
        else:
            ang_vel_attr = 2.5 * (angle_from_goal - self.state[2])
            ang_vel_attr = np.sign(ang_vel_attr) * min(
                1.5, abs(ang_vel_attr))  #angle_vel between -1.2 and 1.2

        self.ros_interface.command_velocity(0.2, ang_vel_attr)
        return