Beispiel #1
0
    def readData1(self, root_data_dir, participant_index, *args, **kw):
        self.rawData, labelsList = self.diskDataToLiveData(root_data_dir)
        data2, jointsList, objectsList = self.convertToDict(
            self.rawData, 'testing', verbose=self.verbose)

        # extract a set of labels
        labels = list(set(labelsList))
        labels.sort()

        logging.info('')
        # convert text labels into numbers
        labelNumsList = None
        for n, k in enumerate(labelsList):
            res = [m for m, l in enumerate(labels) if l == k]
            if n == 0:
                labelNumsList = np.array(res)
            else:
                labelNumsList = np.vstack([labelNumsList, res])
        logging.info('shape of number labels:' + str(labelNumsList.shape))

        uu, tmp = utils.transformTimeSeriesToSeq(
            labelNumsList, self.paramsDict['windowSize'],
            self.paramsDict['windowOffset'], False, False)
        data2NumLabels = uu
        logging.info('windowed number labels shape:' +
                     str(data2NumLabels.shape))

        # now that labels are in windowed form it is time to
        # assign them a text label again that describes them
        # the rule here is if the window appertains to the same label,
        # that label is assigned otherwise it is labelled as transition
        data2Labels = []
        for j in data2NumLabels:
            numItems = list(set(j))
            if len(numItems) == 1:
                l = labels[int(numItems[0])]
                data2Labels.append(l)
            else:
                # Another way to do this would be to label it according to 75% majority
                # This would decrease the region size of the transition blocks
                # which are currently dependant on windowSize
                data2Labels.append('transition')

        logging.info('windowed data labels compressed:' +
                     str(len(data2Labels)))

        logging.info('')
        # create list of specific joints to be used

        jointsToUse = []
        objectDict = dict()
        handDict = dict()
        for j in self.paramsDict['includeParts']:
            if j == 'object':
                for k in objectsList:
                    if k != 'partner':
                        objectDict[k] = (len(jointsToUse))
                        jointsToUse.append(k)
            elif 'hand' in j:
                handDict[j] = (len(jointsToUse))
                jointsToUse.append(j)
            else:
                jointsToUse.append(j)

        combineObjects = len(objectDict) > 1

        combineHands = len(handDict) > 1

        logging.info(jointsToUse)
        logging.info(objectDict)
        logging.info(handDict)

        # concatenate data for all joints in a single vector
        logging.info('')
        dataVecAll = None
        for j in jointsToUse:
            if dataVecAll is None:
                dataVecAll = data2[j]
            else:
                dataVecAll = np.hstack([dataVecAll, data2[j]])
        itemsPerJoint = dataVecAll.shape[1] / len(jointsToUse)
        logging.info(dataVecAll.shape)
        logging.info(itemsPerJoint)
        self.itemsPerJoint = itemsPerJoint
        logging.info('')

        # it is now time to combine objects if multiple exist
        #
        self.featureSequence = ['object']
        logging.info('')
        combinedObjs = None
        if combineObjects:
            logging.info('Combining Objects')
            for j in range(len(data2Labels)):
                #         logging.info(data2Labels[j])
                if len(data2Labels[j].split('_')) > 2:
                    idxBase = objectDict[data2Labels[j].split('_')
                                         [2]] * itemsPerJoint
                else:
                    idxBase = objectDict[objectDict.keys()[0]] * itemsPerJoint

                if combinedObjs is None:
                    combinedObjs = dataVecAll[j,
                                              idxBase:idxBase + itemsPerJoint]
                else:
                    combinedObjs = np.vstack([
                        combinedObjs,
                        dataVecAll[j, idxBase:idxBase + itemsPerJoint]
                    ])
            logging.info(combinedObjs.shape)

        logging.info(dataVecAll.shape)

        logging.info('')
        # it is now time to combine hands if multiple exist
        combinedHands = None
        if combineHands and self.paramsDict['combineHands']:
            logging.info('Combining hands')
            self.handsCombined = True
            self.featureSequence.append('hand')
            for j in range(len(data2Labels)):
                if len(data2Labels[j].split('_')) > 2:
                    idxBase = handDict[data2Labels[j].split('_')[3] + data2Labels[j].split('_')[4].capitalize()] * \
                              itemsPerJoint
                else:
                    idxBase = handDict[handDict.keys()[0]] * itemsPerJoint

                if combinedHands is None:
                    combinedHands = dataVecAll[j,
                                               idxBase:idxBase + itemsPerJoint]
                else:
                    combinedHands = np.vstack([
                        combinedHands,
                        dataVecAll[j, idxBase:idxBase + itemsPerJoint]
                    ])
            logging.info(dataVecAll.shape)
            logging.info(combinedHands.shape)
        else:
            self.handsCombined = False

        dataVecReq = None

        if combinedHands is not None:
            dataVecReq = combinedHands

        if combinedObjs is not None:
            if dataVecReq is None:
                dataVecReq = combinedObjs
            else:
                dataVecReq = np.hstack([dataVecReq, combinedObjs])

        logging.info(jointsToUse)
        for j, item in enumerate(jointsToUse):
            if self.handsCombined:
                if item not in handDict and item not in objectDict:
                    self.featureSequence.append(item)
                    idxBase = j * itemsPerJoint

                    if dataVecReq is None:
                        dataVecReq = dataVecAll[:, idxBase:idxBase +
                                                itemsPerJoint]
                    else:
                        dataVecReq = np.hstack([
                            dataVecReq,
                            dataVecAll[:, idxBase:idxBase + itemsPerJoint]
                        ])
            else:
                if item not in objectDict:
                    self.featureSequence.append(item)
                    idxBase = j * itemsPerJoint

                    if dataVecReq is None:
                        dataVecReq = dataVecAll[:, idxBase:idxBase +
                                                itemsPerJoint]
                    else:
                        dataVecReq = np.hstack([
                            dataVecReq,
                            dataVecAll[:, idxBase:idxBase + itemsPerJoint]
                        ])

        logging.info(dataVecReq.shape)
        logging.info(len(data2Labels))
        logging.info('')
        self.dataVec = copy.deepcopy(dataVecReq)

        data2ShortLabels = []
        for j in data2Labels:
            splitLabel = j.split('_')
            slabel = ('_'.join(splitLabel[:2]))

            if splitLabel[0] == 'push' or splitLabel[0] == 'pull':
                if splitLabel[-1] == 'no':
                    add = splitLabel[-2]
                else:
                    add = splitLabel[-1]

                if add == 'left' and self.paramsDict['flip']:
                    if splitLabel[0] == 'push':
                        splitLabel[0] = 'pull'
                    else:
                        splitLabel[0] = 'push'
                    slabel = ('_'.join(splitLabel[:2]))

                if self.paramsDict['sepRL']:
                    slabel += '_' + add

            data2ShortLabels.append(slabel)

        self.data2Labels = copy.deepcopy(data2ShortLabels)

        if self.paramsDict['sepRL']:
            if 'pull_object' in self.paramsDict['actionsAllowedList']:
                self.paramsDict['actionsAllowedList'].index(
                    'pull_object') == 'pull_object_right'
                self.paramsDict['actionsAllowedList'].append(
                    'pull_object_left')

            if 'push_object' in self.paramsDict['actionsAllowedList']:
                self.paramsDict['actionsAllowedList'].index(
                    'push_object') == 'push_object_right'
                self.paramsDict['actionsAllowedList'].append(
                    'push_object_left')

        # remove labels which will not be trained
        listToDelete = []
        for n in reversed(range(len(data2Labels))):
            if len([j for j in self.paramsDict['actionsAllowedList'] if j in data2Labels[n]]) == 0 or \
                            'no' in data2Labels[n]:
                listToDelete.append(n)

        dataVecReq = np.delete(dataVecReq, listToDelete, axis=0)
        npdata2ShortLabels = np.asarray(data2ShortLabels)
        npdata2ShortLabels = np.delete(npdata2ShortLabels,
                                       listToDelete,
                                       axis=0)
        # find left hand push and pull and label as pull and push respectively
        data2ShortLabels = np.ndarray.tolist(npdata2ShortLabels)

        self.Y = dataVecReq
        self.L = data2ShortLabels
        # logging.info('\n'.join(data2Labels))
        logging.info(self.Y.shape)
        logging.info(len(self.L))

        # now that all joints are in the form of a window, time to create
        # all possible vectors to classify

        self.allDataDict = dict()
        self.allDataDict['Y'] = self.dataVec
        self.allDataDict['L'] = self.data2Labels

        listOfVectorsToClassify = self.listOfClassificationVectors(
            self.featureSequence, objectsList)
        for j in listOfVectorsToClassify:
            logging.info(j)
Beispiel #2
0
    def readData(self, root_data_dir, participant_index, *args, **kw):
        self.rawData, labelsList = self.diskDataToLiveData(root_data_dir)
        data2, jointsList, objectsList = self.convertToDict(
            self.rawData, 'testing', verbose=self.verbose)
        logging.info('unique labels' + str(set(labelsList)))
        # extract a set of labels
        labels = list(set(labelsList))
        labels.sort()

        logging.info('')
        # convert text labels into numbers
        labelNumsList = None
        for n, k in enumerate(labelsList):
            res = [m for m, l in enumerate(labels) if l == k]
            if n == 0:
                labelNumsList = np.array(res)
            else:
                labelNumsList = np.vstack([labelNumsList, res])
        logging.info('shape of number labels:' + str(labelNumsList.shape))

        uu, tmp = utils.transformTimeSeriesToSeq(
            labelNumsList, self.paramsDict['windowSize'],
            self.paramsDict['windowOffset'], False, False)
        data2NumLabels = uu
        logging.info('windowed number labels shape:' +
                     str(data2NumLabels.shape))

        # now that labels are in windowed form it is time to
        # assign them a text label again that describes them
        # the rule here is if the window appertains to the same label,
        # that label is assigned otherwise it is labelled as transition
        data2Labels = []
        for j in data2NumLabels:
            numItems = list(set(j))
            if len(numItems) == 1:
                l = labels[int(numItems[0])]
                data2Labels.append(l)
            else:
                # Another way to do this would be to label it according to 75% majority
                # This would decrease the region size of the transition blocks
                # which are currently dependant on windowSize
                data2Labels.append('transition')
        logging.info('after transition unique set ' + str(set(data2Labels)))
        logging.info('windowed data labels compressed: ' +
                     str(len(data2Labels)))

        logging.info('')
        # create list of specific joints to be used

        jointsToUse = []
        objectDict = dict()
        handDict = dict()
        for j in self.paramsDict['includeParts']:
            if j == 'object':
                for k in objectsList:
                    if k != 'partner':
                        objectDict[k] = (len(jointsToUse))
                        jointsToUse.append(k)
            elif 'hand' in j:
                handDict[j] = (len(jointsToUse))
                jointsToUse.append(j)
            else:
                jointsToUse.append(j)

        combineObjects = len(objectDict) > 1

        combineHands = len(handDict) > 1

        logging.info(jointsToUse)
        logging.info(objectDict)
        logging.info(handDict)

        # concatenate data for all joints in a single vector
        logging.info('')
        dataVecAll = None
        for j in jointsToUse:
            if dataVecAll is None:
                dataVecAll = data2[j]
            else:
                dataVecAll = np.hstack([dataVecAll, data2[j]])
        itemsPerJoint = dataVecAll.shape[1] / len(jointsToUse)
        logging.info(dataVecAll.shape)
        logging.info(itemsPerJoint)
        self.itemsPerJoint = itemsPerJoint
        logging.info('')
        # ------------------------------------------------------------------
        # it is now time to combine objects if multiple exist
        #

        logging.info('')
        self.featureSequence = []
        combinedObjs = dict()
        if combineObjects and 'object' in self.paramsDict['includeParts']:
            self.featureSequence.append('object')
            logging.info('Combining Objects')
            for n in objectDict:
                idxBase = objectDict[n] * itemsPerJoint
                combinedObjs[n] = dataVecAll[:,
                                             idxBase:idxBase + itemsPerJoint]

                logging.info(combinedObjs[n].shape)

        logging.info(dataVecAll.shape)

        logging.info('')
        # it is now time to combine hands if multiple exist
        combinedHands = dict()
        if combineHands and self.paramsDict['combineHands'] and \
           len([s for s in self.paramsDict['includeParts'] if 'hand' in s]) > 0:
            logging.info('Combining hands')
            self.handsCombined = True
            self.featureSequence.append('hand')
            for n in handDict:
                idxBase = handDict[n] * itemsPerJoint
                combinedHands[n] = dataVecAll[:,
                                              idxBase:idxBase + itemsPerJoint]

                logging.info(combinedHands[n].shape)
            logging.info(dataVecAll.shape)
        else:
            self.handsCombined = False

        logging.info(jointsToUse)
        otherJoints = None
        for j, item in enumerate(jointsToUse):
            if self.handsCombined:
                if item not in handDict and item not in objectDict:
                    self.featureSequence.append(item)
                    idxBase = j * itemsPerJoint

                    if otherJoints is None:
                        otherJoints = dataVecAll[:, idxBase:idxBase +
                                                 itemsPerJoint]
                    else:
                        otherJoints = np.hstack([
                            otherJoints,
                            dataVecAll[:, idxBase:idxBase + itemsPerJoint]
                        ])
            else:
                if item not in objectDict:
                    self.featureSequence.append(item)
                    idxBase = j * itemsPerJoint

                    if otherJoints is None:
                        otherJoints = dataVecAll[:, idxBase:idxBase +
                                                 itemsPerJoint]
                    else:
                        otherJoints = np.hstack([
                            otherJoints,
                            dataVecAll[:, idxBase:idxBase + itemsPerJoint]
                        ])
        if otherJoints is not None:
            logging.info(otherJoints.shape)

        self.listOfVectorsToClassify = []
        for j in self.featureSequence:
            if j == 'object':
                for k in objectsList:
                    if k != 'partner':
                        self.listOfVectorsToClassify.append([k])

            elif 'hand' in j:
                if self.handsCombined:
                    a = copy.deepcopy(self.listOfVectorsToClassify)
                    b = copy.deepcopy(self.listOfVectorsToClassify)
                    if len(self.listOfVectorsToClassify) > 0:
                        for l, m in enumerate(self.listOfVectorsToClassify):
                            a[l].append('handLeft')
                            b[l].append('handRight')
                            self.listOfVectorsToClassify = a + b
                    else:
                        self.listOfVectorsToClassify.append(['handLeft'])
                        self.listOfVectorsToClassify.append(['handRight'])

                else:
                    for l, m in enumerate(self.listOfVectorsToClassify):
                        self.listOfVectorsToClassify[l].append(j)

            else:
                for l, m in enumerate(self.listOfVectorsToClassify):
                    self.listOfVectorsToClassify[l].append(j)
        logging.info('Vectors to Classify:')
        for j in self.listOfVectorsToClassify:
            logging.info("\t" + str(j))

        dataVecReq = None
        objSection = None
        if combinedObjs:
            objSection = None
            for j in self.listOfVectorsToClassify:
                logging.info(str(j[0]))
                if objSection is None:
                    objSection = combinedObjs[j[0]]
                else:
                    objSection = np.vstack([objSection, combinedObjs[j[0]]])
            dataVecReq = objSection
            logging.info(str(objSection.shape))

        handsSection = None
        if combinedHands:
            for j in self.listOfVectorsToClassify:
                for l in j:
                    if 'hand' in l:
                        if handsSection is None:
                            handsSection = combinedHands[l]
                        else:
                            handsSection = np.vstack(
                                [handsSection, combinedHands[l]])
            if dataVecReq is None:
                dataVecReq = handsSection
            else:
                dataVecReq = np.hstack([dataVecReq, handsSection])
            logging.info(str(handsSection.shape))

        othersSection = None
        if otherJoints is not None:
            for j in self.listOfVectorsToClassify:
                logging.info(str(j[:]))
                if othersSection is None:
                    othersSection = otherJoints
                else:
                    othersSection = np.vstack([othersSection, otherJoints])

            if dataVecReq is None:
                dataVecReq = othersSection
            else:
                dataVecReq = np.hstack([dataVecReq, othersSection])

        logging.info(str(dataVecReq.shape))
        del handsSection, othersSection, objSection, combinedHands, combinedObjs, otherJoints

        # Also augment the labels list
        data2LabelsAugment = []
        for j in self.listOfVectorsToClassify:
            data2LabelsAugment.append([])

        for j in data2Labels:
            splitLabel = j.split('_')
            action = '_'.join(splitLabel[:2])

            if len(splitLabel) > 2:
                obj = splitLabel[2]
                hand = splitLabel[4]

                if combineHands:
                    handSubList = [
                        k for k in self.listOfVectorsToClassify
                        if 'hand' + hand.capitalize() in k
                    ]
                    if combineObjects:
                        vec = [f for f in handSubList if obj in f][0]
                    else:
                        vec = handSubList[0]
                else:
                    vec = [
                        f for f in self.listOfVectorsToClassify if obj in f
                    ][0]
                # logging.info(data2Labels.index(j), vec)

                # printStr = ''
                for n, k in enumerate(self.listOfVectorsToClassify):
                    if vec == k:
                        data2LabelsAugment[n].append(action)
                        # printStr += action + '\t'
                        # else:
                        data2LabelsAugment[n].append('idle')
                #         printStr += '\tidle'
                #     logging.info(data2LabelsAugment[n][-1],)
                # print
            else:
                obj = ''
                hand = ''
                printStr = ''
                for n, k in enumerate(self.listOfVectorsToClassify):
                    # printStr += action + '\t'
                    data2LabelsAugment[n].append(action)
        #             logging.info(data2LabelsAugment[n][-1],)
        #         print
        #     logging.info(action, obj, hand)
        #     logging.info('---------------------')
        # logging.info('before augment', set(data2Labels))
        data2Labels = []
        for j in data2LabelsAugment:
            data2Labels += j
        # logging.info('after augment', set(data2Labels)
        logging.info('labels ' + str(len(data2Labels)))
        logging.info('data ' + str(dataVecReq.shape))
        self.allDataDict = dict()
        self.allDataDict['Y'] = copy.deepcopy(dataVecReq)
        self.allDataDict['L'] = copy.deepcopy(data2Labels)

        # ---------------------------------------------------------------------------------

        data2ShortLabels = []
        for j in data2Labels:
            splitLabel = j.split('_')
            slabel = ('_'.join(splitLabel[:2]))

            if splitLabel[0] == 'push' or splitLabel[0] == 'pull':
                if splitLabel[-1] == 'no':
                    add = splitLabel[-2]
                else:
                    add = splitLabel[-1]

                if add == 'left' and self.paramsDict['flip']:
                    if splitLabel[0] == 'push':
                        splitLabel[0] = 'pull'
                    else:
                        splitLabel[0] = 'push'
                    slabel = ('_'.join(splitLabel[:2]))

                if self.paramsDict['sepRL']:
                    slabel += '_' + add

            data2ShortLabels.append(slabel)

        self.data2Labels = copy.deepcopy(data2ShortLabels)
        logging.info('shortLabels len ' + str(set(self.data2Labels)))

        if self.paramsDict['sepRL']:
            if 'pull_object' in self.paramsDict['actionsAllowedList']:
                self.paramsDict['actionsAllowedList'].index(
                    'pull_object') == 'pull_object_right'
                self.paramsDict['actionsAllowedList'].append(
                    'pull_object_left')

            if 'push_object' in self.paramsDict['actionsAllowedList']:
                self.paramsDict['actionsAllowedList'].index(
                    'push_object') == 'push_object_right'
                self.paramsDict['actionsAllowedList'].append(
                    'push_object_left')

        # remove labels which will not be trained
        logging.info('actions allowed: ' +
                     str(self.paramsDict['actionsAllowedList']))
        listToDelete = []
        for n in reversed(range(len(data2Labels))):
            if len([j for j in self.paramsDict['actionsAllowedList'] if j in data2Labels[n]]) == 0 or \
                            'no' in data2Labels[n]:
                listToDelete.append(n)

        dataVecReq = np.delete(dataVecReq, listToDelete, axis=0)
        npdata2ShortLabels = np.asarray(data2ShortLabels)
        npdata2ShortLabels = np.delete(npdata2ShortLabels,
                                       listToDelete,
                                       axis=0)
        # find left hand push and pull and label as pull and push respectively
        data2ShortLabels = np.ndarray.tolist(npdata2ShortLabels)

        self.Y = dataVecReq
        self.L = data2ShortLabels
        # logging.info('\n'.join(data2Labels))
        logging.info(self.Y.shape)
        logging.info(len(self.L))
Beispiel #3
0
    def convertToDict(self, rawData, mode, verbose):
        data = dict()
        firstPass = True
        jointsList = []
        objectsList = []

        # logging.info('*******************')
        # for j in self.paramsDict:
        #     logging.info(j, self.paramsDict[j]
        # logging.info('*******************')

        for t in rawData:
            # parse skeleton data which has 9 sections by (x,y,z)
            for i in range(self.numJoints):
                a = i * 4
                # if t[a] == 'shoulderCenter':
                #     t[a] = 'chest'

                if firstPass:
                    data[t[a]] = [None]
                    data[t[a]] = (np.array(
                        [float(t[a + 1]),
                         float(t[a + 2]),
                         float(t[a + 3])]))
                    jointsList.append(t[a])
                else:
                    arr = np.array(
                        [float(t[a + 1]),
                         float(t[a + 2]),
                         float(t[a + 3])])
                    if data[t[a]] is not None:
                        data[t[a]] = np.vstack((data[t[a]], arr))
                    else:
                        data[t[a]] = arr

            currIdx = (self.numJoints * 4 - 1)
            numObjs = (len(t) - currIdx) / 5

            for i in range(numObjs):
                a = currIdx + 1 + (i * 5)
                if t[a] in data:
                    arr = np.array(
                        [float(t[a + 1]),
                         float(t[a + 2]),
                         float(t[a + 3])])
                    if data[t[a]] is not None:
                        data[t[a]] = np.vstack((data[t[a]], arr))
                    else:
                        data[t[a]] = arr
                else:
                    data[t[a]] = [None]
                    data[t[a]] = np.array(
                        [float(t[a + 1]),
                         float(t[a + 2]),
                         float(t[a + 3])])
                    if mode == 'testing' or (mode != 'testing'
                                             and t[a + 4] == '1'):
                        objectsList.append(t[a])

            firstPass = False
        if verbose:
            logging.info('data has length = ' + str(len(data)) + ' joints')
            logging.info('each joint has an array of shape ' +
                         str(data['head'].shape))

        if self.paramsDict['filterData'] or 'vel' in self.paramsDict['components'] or \
                                            'acc' in self.paramsDict['components']:
            if verbose:
                logging.info('Filtering data with hamming window of size ' +
                             str(self.paramsDict['filterWindow']))
            for j in data.keys():
                t1 = utils.smooth1D(data[j][:, 0],
                                    self.paramsDict['filterWindow'])
                t2 = utils.smooth1D(data[j][:, 1],
                                    self.paramsDict['filterWindow'])
                t3 = utils.smooth1D(data[j][:, 2],
                                    self.paramsDict['filterWindow'])
                data[j] = np.hstack([t1[:, None], t2[:, None], t3[:, None]])

        if verbose:
            logging.info('data has length = ' + str(len(data)) + ' joints')
            logging.info('each joint has an array of shape ' +
                         str(data['head'].shape))
        # convert data and number labels into windows.
        # data is still in the form of a dictionary with the joints/objects as keys of the dict
        # Text labels contained in labels
        if verbose:
            logging.info('')
        noY = mode != 'testing'
        if mode == 'testing':
            offset = self.paramsDict['windowOffset']
        else:
            offset = 1

        data2 = dict()
        printExplanation = True
        for num, key in enumerate(data):
            data2[key] = None
            xx, yy = utils.transformTimeSeriesToSeq(
                data[key],
                timeWindow=self.paramsDict['windowSize'],
                offset=offset,
                normalised=self.paramsDict['normaliseWindow'],
                reduced=self.paramsDict['reduce'],
                noY=noY)

            if self.paramsDict['thresholdMovement'] or 'vel' in self.paramsDict['components'] or 'acc' in \
                    self.paramsDict['components']:
                winSize = xx.shape[1] / 3
                g = xx.size / winSize
                xxshape1 = xx.shape[0]
                xxshape2 = xx.shape[1]

                flatxx = xx.flatten()
                f = flatxx.reshape([g, winSize])
                xx = f.reshape([xxshape1, xxshape2])

                if self.paramsDict['thresholdMovement']:
                    if printExplanation and verbose:
                        logging.info('thresholding movement <' +
                                     str(self.paramsDict['moveThresh']))
                    ranges = np.ptp(f, axis=1)
                    a = ranges < self.paramsDict['moveThresh']
                    b = ranges > -self.paramsDict['moveThresh']
                    res = list(np.where(np.logical_and(a, b))[0])
                    if self.paramsDict['normaliseWindow']:
                        f[res] = 0
                    else:
                        for ll in res:
                            f[ll] = f[ll][0]

                if 'vel' in self.paramsDict['components']:
                    if printExplanation and verbose:
                        logging.info('Adding velocity to the feature vector')
                    xxvel = np.diff(f)
                    xxvel = xxvel.reshape([xxshape1, xxshape2 - 3])
                    xx = np.hstack([xx, xxvel])

                if 'acc' in self.paramsDict['components']:
                    if printExplanation and verbose:
                        logging.info(
                            'Adding acceleration to the feature vector')
                    xxacc = np.diff(f, n=2)
                    xxacc = xxacc.reshape([xxshape1, xxshape2 - 6])
                    xx = np.hstack([xx, xxacc])

            data2[key] = xx
            printExplanation = False

        if verbose:
            logging.info('data has length = ' + str(len(data2)) + ' joints')
            logging.info('each joint has an array of shape ' +
                         str(data2['head'].shape))

        return data2, jointsList, objectsList
Beispiel #4
0
    def readData(self, root_data_dir, participant_index, *args, **kw):
        self.rawData, labelsList = self.diskDataToLiveData(root_data_dir)
        data2, jointsList, objectsList = self.convertToDict(self.rawData, 'testing', verbose=self.verbose)
        logging.info('unique labels' + str(set(labelsList)))
        # extract a set of labels
        labels = list(set(labelsList))
        labels.sort()

        logging.info('')
        # convert text labels into numbers
        labelNumsList = None
        for n, k in enumerate(labelsList):
            res = [m for m, l in enumerate(labels) if l == k]
            if n == 0:
                labelNumsList = np.array(res)
            else:
                labelNumsList = np.vstack([labelNumsList, res])
        logging.info('shape of number labels:' +str(labelNumsList.shape))

        uu, tmp = utils.transformTimeSeriesToSeq(labelNumsList, self.paramsDict['windowSize'],
                                                 self.paramsDict['windowOffset'], False, False)
        data2NumLabels = uu
        logging.info('windowed number labels shape:' + str(data2NumLabels.shape))

        # now that labels are in windowed form it is time to
        # assign them a text label again that describes them
        # the rule here is if the window appertains to the same label,
        # that label is assigned otherwise it is labelled as transition
        data2Labels = []
        for j in data2NumLabels:
            numItems = list(set(j))
            if len(numItems) == 1:
                l = labels[int(numItems[0])]
                data2Labels.append(l)
            else:
                # Another way to do this would be to label it according to 75% majority
                # This would decrease the region size of the transition blocks
                # which are currently dependant on windowSize
                data2Labels.append('transition')
        logging.info('after transition unique set ' + str(set(data2Labels)))
        logging.info('windowed data labels compressed: ' + str(len(data2Labels)))

        logging.info('')
        # create list of specific joints to be used

        jointsToUse = []
        objectDict = dict()
        handDict = dict()
        for j in self.paramsDict['includeParts']:
            if j == 'object':
                for k in objectsList:
                    if k != 'partner':
                        objectDict[k] = (len(jointsToUse))
                        jointsToUse.append(k)
            elif 'hand' in j:
                handDict[j] = (len(jointsToUse))
                jointsToUse.append(j)
            else:
                jointsToUse.append(j)

        combineObjects = len(objectDict) > 1

        combineHands = len(handDict) > 1

        logging.info(jointsToUse)
        logging.info(objectDict)
        logging.info(handDict)

        # concatenate data for all joints in a single vector
        logging.info('')
        dataVecAll = None
        for j in jointsToUse:
            if dataVecAll is None:
                dataVecAll = data2[j]
            else:
                dataVecAll = np.hstack([dataVecAll, data2[j]])
        itemsPerJoint = dataVecAll.shape[1] / len(jointsToUse)
        logging.info(dataVecAll.shape)
        logging.info(itemsPerJoint)
        self.itemsPerJoint = itemsPerJoint
        logging.info('')
        # ------------------------------------------------------------------
        # it is now time to combine objects if multiple exist
        #

        logging.info('')
        self.featureSequence = []
        combinedObjs = dict()
        if combineObjects and 'object' in self.paramsDict['includeParts']:
            self.featureSequence.append('object')
            logging.info('Combining Objects')
            for n in objectDict:
                idxBase = objectDict[n] * itemsPerJoint
                combinedObjs[n] = dataVecAll[:, idxBase:idxBase + itemsPerJoint]

                logging.info(combinedObjs[n].shape)

        logging.info(dataVecAll.shape)

        logging.info('')
        # it is now time to combine hands if multiple exist
        combinedHands = dict()
        if combineHands and self.paramsDict['combineHands'] and \
           len([s for s in self.paramsDict['includeParts'] if 'hand' in s]) > 0:
            logging.info('Combining hands')
            self.handsCombined = True
            self.featureSequence.append('hand')
            for n in handDict:
                idxBase = handDict[n] * itemsPerJoint
                combinedHands[n] = dataVecAll[:, idxBase:idxBase + itemsPerJoint]

                logging.info(combinedHands[n].shape)
            logging.info(dataVecAll.shape)
        else:
            self.handsCombined = False

        logging.info(jointsToUse)
        otherJoints = None
        for j, item in enumerate(jointsToUse):
            if self.handsCombined:
                if item not in handDict and item not in objectDict:
                    self.featureSequence.append(item)
                    idxBase = j * itemsPerJoint

                    if otherJoints is None:
                        otherJoints = dataVecAll[:, idxBase:idxBase + itemsPerJoint]
                    else:
                        otherJoints = np.hstack([otherJoints, dataVecAll[:, idxBase:idxBase + itemsPerJoint]])
            else:
                if item not in objectDict:
                    self.featureSequence.append(item)
                    idxBase = j * itemsPerJoint

                    if otherJoints is None:
                        otherJoints = dataVecAll[:, idxBase:idxBase + itemsPerJoint]
                    else:
                        otherJoints = np.hstack([otherJoints, dataVecAll[:, idxBase:idxBase + itemsPerJoint]])
        if otherJoints is not None:
            logging.info(otherJoints.shape)

        self.listOfVectorsToClassify = []
        for j in self.featureSequence:
            if j == 'object':
                for k in objectsList:
                    if k != 'partner':
                        self.listOfVectorsToClassify.append([k])

            elif 'hand' in j:
                if self.handsCombined:
                    a = copy.deepcopy(self.listOfVectorsToClassify)
                    b = copy.deepcopy(self.listOfVectorsToClassify)
                    if len(self.listOfVectorsToClassify) > 0:
                        for l, m in enumerate(self.listOfVectorsToClassify):
                            a[l].append('handLeft')
                            b[l].append('handRight')
                            self.listOfVectorsToClassify = a + b
                    else:
                        self.listOfVectorsToClassify.append(['handLeft'])
                        self.listOfVectorsToClassify.append(['handRight'])

                else:
                    for l, m in enumerate(self.listOfVectorsToClassify):
                        self.listOfVectorsToClassify[l].append(j)

            else:
                for l, m in enumerate(self.listOfVectorsToClassify):
                    self.listOfVectorsToClassify[l].append(j)
        logging.info('Vectors to Classify:')
        for j in self.listOfVectorsToClassify:
            logging.info("\t" + str(j))

        dataVecReq = None
        objSection = None
        if combinedObjs:
            objSection = None
            for j in self.listOfVectorsToClassify:
                logging.info(str(j[0]))
                if objSection is None:
                    objSection = combinedObjs[j[0]]
                else:
                    objSection = np.vstack([objSection, combinedObjs[j[0]]])
            dataVecReq = objSection
            logging.info(str(objSection.shape))

        handsSection = None
        if combinedHands:
            for j in self.listOfVectorsToClassify:
                for l in j:
                    if 'hand' in l:
                        if handsSection is None:
                            handsSection = combinedHands[l]
                        else:
                            handsSection = np.vstack([handsSection, combinedHands[l]])
            if dataVecReq is None:
                dataVecReq = handsSection
            else:
                dataVecReq = np.hstack([dataVecReq, handsSection])
            logging.info(str(handsSection.shape))

        othersSection = None
        if otherJoints is not None:
            for j in self.listOfVectorsToClassify:
                logging.info(str(j[:]))
                if othersSection is None:
                    othersSection = otherJoints
                else:
                    othersSection = np.vstack([othersSection, otherJoints])

            if dataVecReq is None:
                dataVecReq = othersSection
            else:
                dataVecReq = np.hstack([dataVecReq, othersSection])

        logging.info(str(dataVecReq.shape))
        del handsSection, othersSection, objSection, combinedHands, combinedObjs, otherJoints

        # Also augment the labels list
        data2LabelsAugment = []
        for j in self.listOfVectorsToClassify:
            data2LabelsAugment.append([])

        for j in data2Labels:
            splitLabel = j.split('_')
            action = '_'.join(splitLabel[:2])

            if len(splitLabel) > 2:
                obj = splitLabel[2]
                hand = splitLabel[4]

                if combineHands:
                    handSubList = [k for k in self.listOfVectorsToClassify if 'hand' + hand.capitalize() in k]
                    if combineObjects:
                        vec = [f for f in handSubList if obj in f][0]
                    else:
                        vec = handSubList[0]
                else:
                    vec = [f for f in self.listOfVectorsToClassify if obj in f][0]
                # logging.info(data2Labels.index(j), vec)

                # printStr = ''
                for n, k in enumerate(self.listOfVectorsToClassify):
                    if vec == k:
                        data2LabelsAugment[n].append(action)
                        # printStr += action + '\t'
                    # else:
                        data2LabelsAugment[n].append('idle')
                #         printStr += '\tidle'
                #     logging.info(data2LabelsAugment[n][-1],)
                # print
            else:
                obj = ''
                hand = ''
                printStr = ''
                for n, k in enumerate(self.listOfVectorsToClassify):
                    # printStr += action + '\t'
                    data2LabelsAugment[n].append(action)
        #             logging.info(data2LabelsAugment[n][-1],)
        #         print
        #     logging.info(action, obj, hand)
        #     logging.info('---------------------')
        # logging.info('before augment', set(data2Labels))
        data2Labels = []
        for j in data2LabelsAugment:
            data2Labels += j
        # logging.info('after augment', set(data2Labels)
        logging.info('labels ' + str(len(data2Labels)))
        logging.info('data ' + str(dataVecReq.shape))
        self.allDataDict = dict()
        self.allDataDict['Y'] = copy.deepcopy(dataVecReq)
        self.allDataDict['L'] = copy.deepcopy(data2Labels)

        # ---------------------------------------------------------------------------------

        data2ShortLabels = []
        for j in data2Labels:
            splitLabel = j.split('_')
            slabel = ('_'.join(splitLabel[:2]))

            if splitLabel[0] == 'push' or splitLabel[0] == 'pull':
                if splitLabel[-1] == 'no':
                    add = splitLabel[-2]
                else:
                    add = splitLabel[-1]

                if add == 'left' and self.paramsDict['flip']:
                    if splitLabel[0] == 'push':
                        splitLabel[0] = 'pull'
                    else:
                        splitLabel[0] = 'push'
                    slabel = ('_'.join(splitLabel[:2]))

                if self.paramsDict['sepRL']:
                    slabel += '_' + add

            data2ShortLabels.append(slabel)

        self.data2Labels = copy.deepcopy(data2ShortLabels)
        logging.info('shortLabels len ' + str(set(self.data2Labels)))

        if self.paramsDict['sepRL']:
            if 'pull_object' in self.paramsDict['actionsAllowedList']:
                self.paramsDict['actionsAllowedList'].index('pull_object') == 'pull_object_right'
                self.paramsDict['actionsAllowedList'].append('pull_object_left')

            if 'push_object' in self.paramsDict['actionsAllowedList']:
                self.paramsDict['actionsAllowedList'].index('push_object') == 'push_object_right'
                self.paramsDict['actionsAllowedList'].append('push_object_left')

        # remove labels which will not be trained
        logging.info('actions allowed: ' + str(self.paramsDict['actionsAllowedList']))
        listToDelete = []
        for n in reversed(range(len(data2Labels))):
            if len([j for j in self.paramsDict['actionsAllowedList'] if j in data2Labels[n]]) == 0 or \
                            'no' in data2Labels[n]:
                listToDelete.append(n)

        dataVecReq = np.delete(dataVecReq, listToDelete, axis=0)
        npdata2ShortLabels = np.asarray(data2ShortLabels)
        npdata2ShortLabels = np.delete(npdata2ShortLabels, listToDelete, axis=0)
        # find left hand push and pull and label as pull and push respectively
        data2ShortLabels = np.ndarray.tolist(npdata2ShortLabels)

        self.Y = dataVecReq
        self.L = data2ShortLabels
        # logging.info('\n'.join(data2Labels))
        logging.info(self.Y.shape)
        logging.info(len(self.L))
Beispiel #5
0
    def readData1(self, root_data_dir, participant_index, *args, **kw):
        self.rawData, labelsList = self.diskDataToLiveData(root_data_dir)
        data2, jointsList, objectsList = self.convertToDict(self.rawData, 'testing', verbose=self.verbose)

        # extract a set of labels
        labels = list(set(labelsList))
        labels.sort()

        logging.info('')
        # convert text labels into numbers 
        labelNumsList = None
        for n, k in enumerate(labelsList):
            res = [m for m, l in enumerate(labels) if l == k]
            if n == 0:
                labelNumsList = np.array(res)
            else:
                labelNumsList = np.vstack([labelNumsList, res])
        logging.info('shape of number labels:' + str(labelNumsList.shape))

        uu, tmp = utils.transformTimeSeriesToSeq(labelNumsList, self.paramsDict['windowSize'],
                                                 self.paramsDict['windowOffset'], False, False)
        data2NumLabels = uu
        logging.info('windowed number labels shape:' + str(data2NumLabels.shape))

        # now that labels are in windowed form it is time to
        # assign them a text label again that describes them
        # the rule here is if the window appertains to the same label,
        # that label is assigned otherwise it is labelled as transition
        data2Labels = []
        for j in data2NumLabels:
            numItems = list(set(j))
            if len(numItems) == 1:
                l = labels[int(numItems[0])]
                data2Labels.append(l)
            else:
                # Another way to do this would be to label it according to 75% majority
                # This would decrease the region size of the transition blocks
                # which are currently dependant on windowSize
                data2Labels.append('transition')

        logging.info('windowed data labels compressed:' + str(len(data2Labels)))

        logging.info('')
        # create list of specific joints to be used

        jointsToUse = []
        objectDict = dict()
        handDict = dict()
        for j in self.paramsDict['includeParts']:
            if j == 'object':
                for k in objectsList:
                    if k != 'partner':
                        objectDict[k] = (len(jointsToUse))
                        jointsToUse.append(k)
            elif 'hand' in j:
                handDict[j] = (len(jointsToUse))
                jointsToUse.append(j)
            else:
                jointsToUse.append(j)

        combineObjects = len(objectDict) > 1

        combineHands = len(handDict) > 1

        logging.info(jointsToUse)
        logging.info(objectDict)
        logging.info(handDict)

        # concatenate data for all joints in a single vector
        logging.info('')
        dataVecAll = None
        for j in jointsToUse:
            if dataVecAll is None:
                dataVecAll = data2[j]
            else:
                dataVecAll = np.hstack([dataVecAll, data2[j]])
        itemsPerJoint = dataVecAll.shape[1] / len(jointsToUse)
        logging.info(dataVecAll.shape)
        logging.info(itemsPerJoint)
        self.itemsPerJoint = itemsPerJoint
        logging.info('')

        # it is now time to combine objects if multiple exist
        #
        self.featureSequence = ['object']
        logging.info('')
        combinedObjs = None
        if combineObjects:
            logging.info('Combining Objects')
            for j in range(len(data2Labels)):
                #         logging.info(data2Labels[j])
                if len(data2Labels[j].split('_')) > 2:
                    idxBase = objectDict[data2Labels[j].split('_')[2]] * itemsPerJoint
                else:
                    idxBase = objectDict[objectDict.keys()[0]] * itemsPerJoint

                if combinedObjs is None:
                    combinedObjs = dataVecAll[j, idxBase:idxBase + itemsPerJoint]
                else:
                    combinedObjs = np.vstack([combinedObjs, dataVecAll[j, idxBase:idxBase + itemsPerJoint]])
            logging.info(combinedObjs.shape)

        logging.info(dataVecAll.shape)

        logging.info('')
        # it is now time to combine hands if multiple exist
        combinedHands = None
        if combineHands and self.paramsDict['combineHands']:
            logging.info('Combining hands')
            self.handsCombined = True
            self.featureSequence.append('hand')
            for j in range(len(data2Labels)):
                if len(data2Labels[j].split('_')) > 2:
                    idxBase = handDict[data2Labels[j].split('_')[3] + data2Labels[j].split('_')[4].capitalize()] * \
                              itemsPerJoint
                else:
                    idxBase = handDict[handDict.keys()[0]] * itemsPerJoint

                if combinedHands is None:
                    combinedHands = dataVecAll[j, idxBase:idxBase + itemsPerJoint]
                else:
                    combinedHands = np.vstack([combinedHands, dataVecAll[j, idxBase:idxBase + itemsPerJoint]])
            logging.info(dataVecAll.shape)
            logging.info(combinedHands.shape)
        else:
            self.handsCombined = False

        dataVecReq = None

        if combinedHands is not None:
            dataVecReq = combinedHands

        if combinedObjs is not None:
            if dataVecReq is None:
                dataVecReq = combinedObjs
            else:
                dataVecReq = np.hstack([dataVecReq, combinedObjs])

        logging.info(jointsToUse)
        for j, item in enumerate(jointsToUse):
            if self.handsCombined:
                if item not in handDict and item not in objectDict:
                    self.featureSequence.append(item)
                    idxBase = j * itemsPerJoint

                    if dataVecReq is None:
                        dataVecReq = dataVecAll[:, idxBase:idxBase + itemsPerJoint]
                    else:
                        dataVecReq = np.hstack([dataVecReq, dataVecAll[:, idxBase:idxBase + itemsPerJoint]])
            else:
                if item not in objectDict:
                    self.featureSequence.append(item)
                    idxBase = j * itemsPerJoint

                    if dataVecReq is None:
                        dataVecReq = dataVecAll[:, idxBase:idxBase + itemsPerJoint]
                    else:
                        dataVecReq = np.hstack([dataVecReq, dataVecAll[:, idxBase:idxBase + itemsPerJoint]])

        logging.info(dataVecReq.shape)
        logging.info(len(data2Labels))
        logging.info('')
        self.dataVec = copy.deepcopy(dataVecReq)

        data2ShortLabels = []
        for j in data2Labels:
            splitLabel = j.split('_')
            slabel = ('_'.join(splitLabel[:2]))

            if splitLabel[0] == 'push' or splitLabel[0] == 'pull':
                if splitLabel[-1] == 'no':
                    add = splitLabel[-2]
                else:
                    add = splitLabel[-1]

                if add == 'left' and self.paramsDict['flip']:
                    if splitLabel[0] == 'push':
                        splitLabel[0] = 'pull'
                    else:
                        splitLabel[0] = 'push'
                    slabel = ('_'.join(splitLabel[:2]))

                if self.paramsDict['sepRL']:
                    slabel += '_' + add

            data2ShortLabels.append(slabel)

        self.data2Labels = copy.deepcopy(data2ShortLabels)

        if self.paramsDict['sepRL']:
            if 'pull_object' in self.paramsDict['actionsAllowedList']:
                self.paramsDict['actionsAllowedList'].index('pull_object') == 'pull_object_right'
                self.paramsDict['actionsAllowedList'].append('pull_object_left')

            if 'push_object' in self.paramsDict['actionsAllowedList']:
                self.paramsDict['actionsAllowedList'].index('push_object') == 'push_object_right'
                self.paramsDict['actionsAllowedList'].append('push_object_left')

        # remove labels which will not be trained
        listToDelete = []
        for n in reversed(range(len(data2Labels))):
            if len([j for j in self.paramsDict['actionsAllowedList'] if j in data2Labels[n]]) == 0 or \
                            'no' in data2Labels[n]:
                listToDelete.append(n)

        dataVecReq = np.delete(dataVecReq, listToDelete, axis=0)
        npdata2ShortLabels = np.asarray(data2ShortLabels)
        npdata2ShortLabels = np.delete(npdata2ShortLabels, listToDelete, axis=0)
        # find left hand push and pull and label as pull and push respectively
        data2ShortLabels = np.ndarray.tolist(npdata2ShortLabels)

        self.Y = dataVecReq
        self.L = data2ShortLabels
        # logging.info('\n'.join(data2Labels))
        logging.info(self.Y.shape)
        logging.info(len(self.L))

        # now that all joints are in the form of a window, time to create
        # all possible vectors to classify

        self.allDataDict = dict()
        self.allDataDict['Y'] = self.dataVec
        self.allDataDict['L'] = self.data2Labels

        listOfVectorsToClassify = self.listOfClassificationVectors(self.featureSequence, objectsList)
        for j in listOfVectorsToClassify:
            logging.info(j)
Beispiel #6
0
    def convertToDict(self, rawData, mode, verbose):
        data = dict()
        firstPass = True
        jointsList = []
        objectsList = []

        # logging.info('*******************')
        # for j in self.paramsDict:
        #     logging.info(j, self.paramsDict[j]
        # logging.info('*******************')

        for t in rawData:
            # parse skeleton data which has 9 sections by (x,y,z)
            for i in range(self.numJoints):
                a = i * 4
                # if t[a] == 'shoulderCenter':
                #     t[a] = 'chest'

                if firstPass:
                    data[t[a]] = [None]
                    data[t[a]] = (np.array([float(t[a + 1]), float(t[a + 2]), float(t[a + 3])]))
                    jointsList.append(t[a])
                else:
                    arr = np.array([float(t[a + 1]), float(t[a + 2]), float(t[a + 3])])
                    if data[t[a]] is not None:
                        data[t[a]] = np.vstack((data[t[a]], arr))
                    else:
                        data[t[a]] = arr

            currIdx = (self.numJoints * 4 - 1)
            numObjs = (len(t) - currIdx) / 5

            for i in range(numObjs):
                a = currIdx + 1 + (i * 5)
                if t[a] in data:
                    arr = np.array([float(t[a + 1]), float(t[a + 2]), float(t[a + 3])])
                    if data[t[a]] is not None:
                        data[t[a]] = np.vstack((data[t[a]], arr))
                    else:
                        data[t[a]] = arr
                else:
                    data[t[a]] = [None]
                    data[t[a]] = np.array([float(t[a + 1]), float(t[a + 2]), float(t[a + 3])])
                    if mode == 'testing' or (mode != 'testing' and t[a+4] == '1'):
                        objectsList.append(t[a])

            firstPass = False
        if verbose:
            logging.info('data has length = ' + str(len(data)) + ' joints')
            logging.info('each joint has an array of shape ' + str(data['head'].shape))

        if self.paramsDict['filterData'] or 'vel' in self.paramsDict['components'] or \
                                            'acc' in self.paramsDict['components']:
            if verbose:
                logging.info('Filtering data with hamming window of size ' + str(self.paramsDict['filterWindow']))
            for j in data.keys():
                t1 = utils.smooth1D(data[j][:, 0], self.paramsDict['filterWindow'])
                t2 = utils.smooth1D(data[j][:, 1], self.paramsDict['filterWindow'])
                t3 = utils.smooth1D(data[j][:, 2], self.paramsDict['filterWindow'])
                data[j] = np.hstack([t1[:, None], t2[:, None], t3[:, None]])

        if verbose:
            logging.info('data has length = ' + str(len(data)) + ' joints')
            logging.info('each joint has an array of shape ' + str(data['head'].shape))
        # convert data and number labels into windows.
        # data is still in the form of a dictionary with the joints/objects as keys of the dict
        # Text labels contained in labels
        if verbose:
            logging.info('')
        noY = mode != 'testing'
        if mode == 'testing':
            offset = self.paramsDict['windowOffset']
        else:
            offset = 1

        data2 = dict()
        printExplanation = True
        for num, key in enumerate(data):
            data2[key] = None
            xx, yy = utils.transformTimeSeriesToSeq(data[key], timeWindow=self.paramsDict['windowSize'],
                                                    offset=offset,
                                                    normalised=self.paramsDict['normaliseWindow'],
                                                    reduced=self.paramsDict['reduce'], noY=noY)

            if self.paramsDict['thresholdMovement'] or 'vel' in self.paramsDict['components'] or 'acc' in \
                    self.paramsDict['components']:
                winSize = xx.shape[1] / 3
                g = xx.size / winSize
                xxshape1 = xx.shape[0]
                xxshape2 = xx.shape[1]

                flatxx = xx.flatten()
                f = flatxx.reshape([g, winSize])
                xx = f.reshape([xxshape1, xxshape2])

                if self.paramsDict['thresholdMovement']:
                    if printExplanation and verbose:
                        logging.info('thresholding movement <' + str(self.paramsDict['moveThresh']))
                    ranges = np.ptp(f, axis=1)
                    a = ranges < self.paramsDict['moveThresh']
                    b = ranges > -self.paramsDict['moveThresh']
                    res = list(np.where(np.logical_and(a, b))[0])
                    if self.paramsDict['normaliseWindow']:
                        f[res] = 0
                    else:
                        for ll in res:
                            f[ll] = f[ll][0]

                if 'vel' in self.paramsDict['components']:
                    if printExplanation and verbose:
                        logging.info('Adding velocity to the feature vector')
                    xxvel = np.diff(f)
                    xxvel = xxvel.reshape([xxshape1, xxshape2 - 3])
                    xx = np.hstack([xx, xxvel])

                if 'acc' in self.paramsDict['components']:
                    if printExplanation and verbose:
                        logging.info('Adding acceleration to the feature vector')
                    xxacc = np.diff(f, n=2)
                    xxacc = xxacc.reshape([xxshape1, xxshape2 - 6])
                    xx = np.hstack([xx, xxacc])

            data2[key] = xx
            printExplanation = False

        if verbose:
            logging.info('data has length = ' + str(len(data2)) + ' joints')
            logging.info('each joint has an array of shape ' + str(data2['head'].shape))

        return data2, jointsList, objectsList
# #----------- Train a standard model
# m1=SAM.SAM_Core.LFM()
# m1.store(observed={'Y':Y1[0:Ntr,:]}, inputs=X1[0:Ntr,:], Q=None, kernel=None, num_inducing=num_inducing)
# m1.learn()
# ret = m1.visualise()
# y_pred_standard = m1.pattern_completion(X1[Ntr:,:])[0]
# pb.figure()
# pb.plot(X1[Ntr:,:],Y1[Ntr:,:], 'x-')
# pb.plot(X1[Ntr:,:],y_pred_standard, 'ro-')
# pb.legend(('True','Pred'))
# pb.title('Standard GP')
# # ---------------------------------------

# Create transformed data (autoregressive dataset)
ws = 10  # Windowsize
xx, yy = autoregressive.transformTimeSeriesToSeq(Y1, ws)

# uu,tmp = transformTimeSeriesToSeq(U1, ws)
# Test the above: np.sin(uu) - xx

# uu = yy**2 -2*yy + 5 + np.random.randn(*yy.shape) * 0.005
U1 = Y1**2 - 2 * Y1 + 5 + np.random.randn(*Y1.shape) * 0.005
uu, tmp = autoregressive.transformTimeSeriesToSeq(U1, ws)

Xtr = xx[0:Ntr, :]
Xts = xx[Ntr:, :]
Ytr = yy[0:Ntr, :]
Yts = yy[Ntr:, :]
Utr = uu[0:Ntr, :]
Uts = uu[Ntr:, :]