Beispiel #1
0
        def func(widths):
            blu_width, ora_width, red_width, nir_width, seed = widths
            t_exp = self.t_exp
            if mode != "C":
                # BLU
                blu_center = seed - ora_width / 2 - blu_width / 2
                blu_signal = self.signal(blu_center, blu_width, t_exp)

                # ORA
                ora_center = seed
                ora_signal = self.signal(ora_center, ora_width, t_exp)

                # RED
                red_center = seed + ora_width / 2 + red_width / 2
                red_signal = self.signal(red_center, red_width, t_exp)

                # NIR
                nir_center = seed + ora_width / 2 + red_width + nir_width / 2
                nir_signal = self.signal(nir_center, nir_width, t_exp)
            else:
                # BLU
                blu_center = seed - red_width / 2 - ora_width - blu_width / 2
                blu_signal = self.signal(blu_center, blu_width, t_exp)

                # ORA
                ora_center = seed - red_width / 2 - ora_width / 2
                ora_signal = self.signal(ora_center, ora_width, t_exp)

                # RED
                red_center = seed
                red_signal = self.signal(red_center, red_width, t_exp)

                # NIR
                nir_center = seed + red_width / 2 + nir_width / 2
                nir_signal = self.signal(nir_center, nir_width, t_exp)

            snr_diff_blu = self.snr_target - snr(blu_signal * self.coca.G)
            snr_diff_ora = self.snr_target - snr(ora_signal * self.coca.G)
            snr_diff_red = self.snr_target - snr(red_signal * self.coca.G)
            snr_diff_nir = self.snr_target - snr(nir_signal * self.coca.G)

            print(
                f"BLU snr = {snr(blu_signal * self.coca.G):.1f} width = {widths[0]:.1f}"
            )
            print(
                f"ORA snr = {snr(ora_signal * self.coca.G):.1f} width = {widths[1]:.1f}"
            )
            print(
                f"RED snr = {snr(red_signal * self.coca.G):.1f} width = {widths[2]:.1f}"
            )
            print(
                f"NIR snr = {snr(nir_signal * self.coca.G):.1f} width = {widths[3]:.1f}"
            )
            print(f"total bandwidth = {np.sum(widths[:4]):.1f}")

            widths_delta = (1100 - 400) - np.sum(widths[:4])
            return np.max([
                snr_diff_blu, snr_diff_ora, snr_diff_red, snr_diff_nir
            ]) + widths_delta**2
Beispiel #2
0
        def func(widths):
            blu_width, ora_width, red_width, nir_width = widths

            # BLU
            edge = seed - ora_width / 2
            i = quad(self.integrand,
                     edge - blu_width,
                     edge,
                     args=(n, self.alpha))[0]
            blu_signal = self.coca.A_Omega / self.coca.G * self.t_exp * i / (
                const.h * const.c * self.coca.r_h**2) * 1e-9

            # ORA
            i = quad(self.integrand,
                     seed - ora_width / 2,
                     seed + ora_width / 2,
                     args=(n, self.alpha))[0]
            ora_signal = self.coca.A_Omega / self.coca.G * self.t_exp * i / (
                const.h * const.c * self.coca.r_h**2) * 1e-9

            # RED
            edge = seed + ora_width / 2
            i = quad(self.integrand,
                     edge,
                     edge + red_width,
                     args=(n, self.alpha))[0]
            red_signal = self.coca.A_Omega / self.coca.G * self.t_exp * i / (
                const.h * const.c * self.coca.r_h**2) * 1e-9

            # NIR
            edge = seed + ora_width / 2 + red_width
            i = quad(self.integrand,
                     edge,
                     edge + nir_width,
                     args=(n, self.alpha))[0]
            nir_signal = self.coca.A_Omega / self.coca.G * self.t_exp * i / (
                const.h * const.c * self.coca.r_h**2) * 1e-9

            snr_diff_blu = self.snr_target - snr(blu_signal * self.coca.G)
            snr_diff_ora = self.snr_target - snr(ora_signal * self.coca.G)
            snr_diff_red = self.snr_target - snr(red_signal * self.coca.G)
            snr_diff_nir = self.snr_target - snr(nir_signal * self.coca.G)

            print(
                f"BLU snr = {snr(blu_signal * self.coca.G):.1f} width = {widths[0]:.1f}"
            )
            print(
                f"ORA snr = {snr(ora_signal * self.coca.G):.1f} width = {widths[1]:.1f}"
            )
            print(
                f"RED snr = {snr(red_signal * self.coca.G):.1f} width = {widths[2]:.1f}"
            )
            print(
                f"NIR snr = {snr(nir_signal * self.coca.G):.1f} width = {widths[3]:.1f}"
            )

            return snr_diff_blu + snr_diff_ora + snr_diff_red + snr_diff_nir
Beispiel #3
0
def plot_snr(r_h=1, mode="A", ice=False, alpha=0):
    t_exps = np.linspace(0.22, 15, 10) / 1000
    relative_velocities = [10, 30, 80]
    CoCa = Camera()
    CoCa.r_h = r_h
    df = pd.read_csv("data/texp.csv")
    t10 = interp1d(df.alpha, df["texp10"], fill_value="extrapolate")
    df = pd.read_csv(f"data/filters_{mode}.csv")
    colors = [BLUE, ORANGE, RED, BLACK]
    centers = df.centers
    widths = df.widths
    for filter_center, filter_width, color in zip(centers, widths, colors):
        snrs = []
        for t_exp in t_exps:
            i = quad(integrand, filter_center - filter_width / 2, filter_center + filter_width / 2,
                     args=(alpha, ice))[0]
            signal = CoCa.A_Omega / CoCa.G * t_exp * i / (const.h * const.c * CoCa.r_h ** 2) * 1e-9
            snrs.append(snr(signal * CoCa.G))
        print(snrs)
        t_func = interp1d(snrs,t_exps, fill_value="extrapolate", kind="quadratic")
        snr_cont = np.linspace(0, 180, 100)
        plt.plot(snr_cont, t_func(snr_cont)*1000, color=color, ls="-")

    plt.ylabel("t_exp [ms]")
    plt.xlabel("SNR")
    plt.savefig(f"plots/snr_vs_t_{r_h}au_{mode}_ice={ice}_{alpha}deg.pdf")
    plt.show()
Beispiel #4
0
 def func(width):
     i = quad(integrand_low,
              filter_center - width / 2,
              filter_center + width / 2,
              args=(N, alpha))[0]
     signal = coca.A_Omega / coca.G * coca.t_exp * i / (
         const.h * const.c * coca.r_h**2) * 1e-9
     return snr(signal * coca.G) - 100
Beispiel #5
0
def plot_snr(r_h=1, mode="A", ice=False):
    relative_velocities = [10, 30, 80]
    CoCa = Camera()
    CoCa.r_h = r_h
    phase_angles = np.arange(0, 90, 10)
    df = pd.read_csv("data/texp.csv")
    t10 = interp1d(df.alpha, df["texp10"], fill_value="extrapolate")
    df = pd.read_csv(f"data/filters_{mode}.csv")
    colors = [BLUE, ORANGE, RED, BLACK]
    centers = df.centers
    widths = df.widths
    for v, ls in zip(relative_velocities, ["-", "-.", "--"]):
        print(f"calculating for v = {v} km/s")
        for filter_center, filter_width, color in zip(centers, widths, colors):
            snrs = []
            t_exp = t10(11) / 1000 / (v / 10)
            i = quad(integrand,
                     filter_center - filter_width / 2,
                     filter_center + filter_width / 2,
                     args=(11, ice))[0]
            signal = CoCa.A_Omega / CoCa.G * t_exp * i / (const.h * const.c *
                                                          CoCa.r_h**2) * 1e-9
            print(
                f"v = {v}, center = {filter_center:.2f}, SNR = {snr(signal * CoCa.G):.2f}"
            )
            for alpha in phase_angles:
                t_exp = t10(alpha) / 1000 / (v / 10)
                i = quad(integrand,
                         filter_center - filter_width / 2,
                         filter_center + filter_width / 2,
                         args=(alpha, ice))[0]
                signal = CoCa.A_Omega / CoCa.G * t_exp * i / (
                    const.h * const.c * CoCa.r_h**2) * 1e-9
                snrs.append(snr(signal * CoCa.G))
            snrs_func = interp1d(phase_angles,
                                 snrs,
                                 fill_value="extrapolate",
                                 kind="quadratic")
            phase_angles_cont = np.linspace(0, 90, 200)
            plt.plot(phase_angles_cont,
                     snrs_func(phase_angles_cont),
                     color=color,
                     ls=ls)
    l1 = lines.Line2D([], [], color='black', ls="-")
    l2 = lines.Line2D([], [], color='black', ls="-.")
    l3 = lines.Line2D([], [], color='black', ls="--")
    plt.legend(handles=[l1, l2, l3],
               labels=["v = 10 km/s", "v = 30 km/s", "v = 80 km/s"],
               fancybox=True,
               framealpha=1,
               shadow=True,
               borderpad=1)
    plt.xlabel("phase angle [°]")
    plt.ylabel("SNR")
    plt.savefig(f"plots/snrs_{r_h}au_{mode}_ice={ice}_new_new.pdf")
    plt.show()
 def func(t_exp):
     i = quad(integrand, filter_center - filter_width / 2, filter_center + filter_width / 2,
              args=(N, alpha))[0]
     signal = CoCa.A_Omega / CoCa.G * t_exp * i / (const.h * const.c * CoCa.r_h ** 2) * 1e-9
     return snr(signal * CoCa.G) - 100
Beispiel #7
0
    def run(self, mode="A"):
        def func(widths):
            blu_width, ora_width, red_width, nir_width, seed = widths
            t_exp = self.t_exp
            if mode != "C":
                # BLU
                blu_center = seed - ora_width / 2 - blu_width / 2
                blu_signal = self.signal(blu_center, blu_width, t_exp)

                # ORA
                ora_center = seed
                ora_signal = self.signal(ora_center, ora_width, t_exp)

                # RED
                red_center = seed + ora_width / 2 + red_width / 2
                red_signal = self.signal(red_center, red_width, t_exp)

                # NIR
                nir_center = seed + ora_width / 2 + red_width + nir_width / 2
                nir_signal = self.signal(nir_center, nir_width, t_exp)
            else:
                # BLU
                blu_center = seed - red_width / 2 - ora_width - blu_width / 2
                blu_signal = self.signal(blu_center, blu_width, t_exp)

                # ORA
                ora_center = seed - red_width / 2 - ora_width / 2
                ora_signal = self.signal(ora_center, ora_width, t_exp)

                # RED
                red_center = seed
                red_signal = self.signal(red_center, red_width, t_exp)

                # NIR
                nir_center = seed + red_width / 2 + nir_width / 2
                nir_signal = self.signal(nir_center, nir_width, t_exp)

            snr_diff_blu = self.snr_target - snr(blu_signal * self.coca.G)
            snr_diff_ora = self.snr_target - snr(ora_signal * self.coca.G)
            snr_diff_red = self.snr_target - snr(red_signal * self.coca.G)
            snr_diff_nir = self.snr_target - snr(nir_signal * self.coca.G)

            print(
                f"BLU snr = {snr(blu_signal * self.coca.G):.1f} width = {widths[0]:.1f}"
            )
            print(
                f"ORA snr = {snr(ora_signal * self.coca.G):.1f} width = {widths[1]:.1f}"
            )
            print(
                f"RED snr = {snr(red_signal * self.coca.G):.1f} width = {widths[2]:.1f}"
            )
            print(
                f"NIR snr = {snr(nir_signal * self.coca.G):.1f} width = {widths[3]:.1f}"
            )
            print(f"total bandwidth = {np.sum(widths[:4]):.1f}")

            widths_delta = (1100 - 400) - np.sum(widths[:4])
            return np.max([
                snr_diff_blu, snr_diff_ora, snr_diff_red, snr_diff_nir
            ]) + widths_delta**2

        if mode == "A":
            bounds = ((0, 250), (0, 250), (0, 250), (0, 250), (650, 651))
            seed = 650
        elif mode == "B":
            bounds = ((0, 250), (0, 250), (0, 250), (0, 250), (500, 650))
            seed = 650
        else:
            bounds = ((0, 250), (0, 250), (0, 250), (0, 250), (650, 650.1))
            seed = 650
        sol = minimize(func, (150, 100, 100, 150, seed), bounds=bounds)

        blu_width = sol.x[0]
        ora_width = sol.x[1]
        red_width = sol.x[2]
        nir_width = sol.x[3]
        seed = sol.x[4]

        if mode != "C":
            blu_center = seed - ora_width / 2 - blu_width / 2
            ora_center = seed
            red_center = seed + ora_width / 2 + red_width / 2
            nir_center = seed + ora_width / 2 + red_width + nir_width / 2
        else:
            blu_center = seed - red_width / 2 - ora_width - blu_width / 2
            ora_center = seed - red_width / 2 - ora_width / 2
            red_center = seed
            nir_center = seed + red_width / 2 + nir_width / 2

        print(f"BLUE: center = {blu_center:4.2f}, width = {blu_width:4.2f}")
        print(f"ORA: center = {ora_center:4.2f}, width = {ora_width:4.2f}")
        print(f"RED: center = {red_center:4.2f}, width = {red_width:4.2f}")
        print(f"NIR: center = {nir_center:4.2f}, width = {nir_width:4.2f}")
        print(f"t_exp = {self.t_exp * 1000:.2f} ms")

        centers = [blu_center, ora_center, red_center, nir_center]
        widths = [blu_width, ora_width, red_width, nir_width]

        d = {"centers": centers, "widths": widths}
        df = pd.DataFrame(data=d)
        df.to_csv(f"data/filters_{mode}.csv", index=False)

        return
        phase_angles = np.arange(1, 90, 10)
        snrs = np.zeros((len(phase_angles), 4))
        k = 0
        df = pd.read_csv("data/texp.csv")
        t = interp1d(df.alpha, df["texp10"], fill_value="extrapolate")
        for alpha in phase_angles:
            t_exp = t(alpha) / (self.v / 10) / 1000
            j = 0
            for c, w in zip(centers, widths):
                i = quad(integrand, c - w / 2, c + w / 2, args=(alpha))[0]
                signal = coca.A_Omega / coca.G * t_exp * i / (
                    const.h * const.c * coca.r_h**2) * 1e-9
                snrs[k, j] = snr(signal * coca.G)
                j += 1
            k += 1
        plt.plot(phase_angles, snrs[:, 0], label="BLU", color=BLUE)
        plt.plot(phase_angles, snrs[:, 1], label="ORA", color=ORANGE)
        plt.plot(phase_angles, snrs[:, 2], label="RED", color=RED)
        plt.plot(phase_angles, snrs[:, 3], label="NIR", color=BLACK)
        plt.legend()
        plt.title(rf"$v$={self.v} km/s")
        plt.ylabel("SNR [-]")
        plt.xlabel(r"$\alpha$ [°]")
        plt.savefig("plots/snrs.pdf")
        plt.show()
Beispiel #8
0
 def func(width):
     i = quad(integrand, filter_center - width / 2, filter_center + width / 2, args=(alpha))[
         0]
     signal = coca.A_Omega / coca.G * coca.t_exp * i / (const.h * const.c * coca.r_h ** 2) * 1e-9
     print(f"snr: {snr(signal * coca.G):4.2f}")
     return 60 - snr(signal * coca.G)