Beispiel #1
0
def plot(
    self,
    skew_axis=None,
    fig=None,
    ax=None,
    lam_name="",
    is_show_fig=False,
    save_path=None,
    win_title=None,
):
    """Plots skew angle

    Parameters
    ----------
    self : Skew
        a Skew object

    """

    angle_list, z_list = self.comp_pattern()

    plot_2D(
        [z_list],
        [[a * 180 / pi for a in angle_list]],
        xlabel="Axial direction [m]",
        ylabel=lam_name + " skew angle [°]",
        type_plot="curve_point",
        fig=fig,
        ax=ax,
        is_show_fig=is_show_fig,
        save_path=save_path,
        win_title=win_title,
        **dict_2D,
    )
Beispiel #2
0
def plot(
    self,
    fig=None,
    ax=None,
    lam_name="",
    is_show_fig=False,
    save_path=None,
    win_title=None,
):
    """Plots skew angle

    Parameters
    ----------
    self : Skew
        a Skew object

    """

    angle_list, z_list = self.comp_pattern()

    legend_list = ["Skew pattern"]
    y_list = [[a * 180 / pi for a in angle_list]]
    linestyle_list = ["solid"]

    LamSlotMag = import_class("pyleecan.Classes", "LamSlotMag")
    LamHole = import_class("pyleecan.Classes", "LamHole")

    if isinstance(self.parent, (LamSlotMag, LamHole)):
        legend_list.append("Rotor d-axis")
        y_list.append([0 for z in z_list])
        linestyle_list.append("dashed")

    plot_2D(
        [z_list],
        y_list,
        xlabel="Axial direction from Non Drive End to Drive End [m]",
        ylabel=lam_name + " skew angle [°]",
        type_plot="curve_point",
        fig=fig,
        ax=ax,
        is_show_fig=is_show_fig,
        save_path=save_path,
        win_title=win_title,
        legend_list=legend_list,
        linestyle_list=linestyle_list,
        **dict_2D,
    )
Beispiel #3
0
def plot_2D_Data(
    self,
    *arg_list,
    axis_data=None,
    radius=None,
    is_norm=False,
    unit="SI",
    component_list=None,
    data_list=[],
    legend_list=[],
    color_list=None,
    curve_colors=None,
    phase_colors=None,
    linestyles=None,
    linewidth_list=[2],
    save_path=None,
    x_min=None,
    x_max=None,
    y_min=None,
    y_max=None,
    is_logscale_x=False,
    is_logscale_y=False,
    is_disp_title=True,
    is_grid=True,
    is_auto_ticks=True,
    is_auto_range=False,
    fig=None,
    ax=None,
    barwidth=100,
    type_plot=None,
    fund_harm_dict=None,
    is_show_fig=None,
    win_title=None,
    thresh=0.02,
    font_name="arial",
    font_size_title=12,
    font_size_label=10,
    font_size_legend=8,
    scale_units="x",
    scale=None,
    width=0.005,
):
    """Plots a field as a function of time

    Parameters
    ----------
    self : Output
        an Output object
    Data_str : str
        name of the Data Object to plot (e.g. "mag.Br")
    *arg_list : list of str
        arguments to specify which axes to plot
    radius : float
        radius used for quiver plot
    is_norm : bool
        boolean indicating if the field must be normalized
    unit : str
        unit in which to plot the field
    data_list : list
        list of Data objects to compare
    component_list : list
        list of component names to plot in separate figures
    legend_list : list
        list of legends to use for each Data object (including reference one) instead of data.name
    color_list : list
        list of colors to use for each Data object
    save_path : str
        full path of the png file where the figure is saved if save_path is not None
    x_min : float
        minimum value for the x-axis
    x_max : float
        maximum value for the x-axis
    y_min : float
        minimum value for the y-axis
    y_max : float
        maximum value for the y-axis
    is_logscale_x : bool
        boolean indicating if the x-axis must be set in logarithmic scale
    is_logscale_y : bool
        boolean indicating if the y-axis must be set in logarithmic scale
    is_disp_title : bool
        boolean indicating if the title must be displayed
    is_grid : bool
        boolean indicating if the grid must be displayed
    is_auto_ticks : bool
        in fft, adjust ticks to freqs (deactivate if too close)
    is_auto_range : bool
        in fft, display up to 1% of max
    fig : Matplotlib.figure.Figure
        existing figure to use if None create a new one
    ax : Matplotlib.axes.Axes object
        ax on which to plot the data
    barwidth : float
        barwidth scaling factor, only if type_plot = "bargraph"
    type_plot : str
        type of 2D graph : "curve", "bargraph", "barchart" or "quiver"
    fund_harm_dict : dict
        Dict containing axis name as key and frequency/order/wavenumber of fundamental harmonic as value to display fundamental harmonic in red in the fft
    is_show_fig : bool
        True to show figure after plot
    thresh : float
        threshold for automatic fft ticks
    scale_units : str
        arrow lenght scale factor reference {'width', 'height', 'dots', 'pouces', 'x', 'y', 'xy'}
    scale : float
        arrow length factor
    width : float
        arrow width factor
    """

    # Special case of quiver plot
    if type_plot == "quiver":
        result = self.get_xyz_along(arg_list,
                                    axis_data=axis_data,
                                    unit=unit,
                                    is_norm=is_norm)
        if "x" in result and "y" in result:
            Xdatas = column_stack((result["x"], result["y"]))
        else:
            if radius is None:
                radius = 1
            phi = result["angle"]
            rphi = column_stack((array([radius] * len(phi)), phi))
            Xdatas = rphiz_to_xyz(rphi)
        Ydatas = column_stack((result["comp_x"], result["comp_y"]))
        # Normalize Ydatas
        # Ydatas = Ydatas / (np_max(Ydatas) * 0.001 * radius)
        plot_2D(
            [Xdatas],
            [Ydatas],
            color_list=color_list,
            linestyle_list=linestyles,
            linewidth_list=linewidth_list,
            title=self.name.capitalize() + " quiver plot",
            legend_list=[self.name],
            xlabel="[m]",
            ylabel="[m]",
            fig=fig,
            ax=ax,
            type_plot="quiver",
            save_path=save_path,
            is_show_fig=is_show_fig,
            win_title=win_title,
            font_name=font_name,
            font_size_title=font_size_title,
            font_size_label=font_size_label,
            font_size_legend=font_size_legend,
            is_grid=False,
            scale_units=scale_units,
            scale=scale,
            width=width,
        )

    else:

        # Call the plot on each component
        if component_list is None:  # default: extract all components
            component_list = self.components.keys()
        for i, comp in enumerate(component_list):
            # (fig, axes, patch_leg, label_leg) = init_fig(None, shape="rectangle")

            if save_path is not None and len(component_list) > 1:
                save_path_comp = (save_path.split(".")[0] + "_" + comp + "." +
                                  save_path.split(".")[1])
            else:
                save_path_comp = save_path

            self.components[comp].plot_2D_Data(
                arg_list,
                axis_data=axis_data,
                is_norm=is_norm,
                unit=unit,
                data_list=[dat.components[comp] for dat in data_list],
                legend_list=legend_list,
                color_list=color_list,
                save_path=save_path_comp,
                x_min=x_min,
                x_max=x_max,
                y_min=y_min,
                y_max=y_max,
                is_logscale_x=is_logscale_x,
                is_logscale_y=is_logscale_y,
                is_disp_title=is_disp_title,
                is_grid=is_grid,
                is_auto_ticks=is_auto_ticks,
                is_auto_range=is_auto_range,
                fig=fig,
                ax=ax,
                barwidth=barwidth,
                type_plot=type_plot,
                fund_harm_dict=fund_harm_dict,
                is_show_fig=is_show_fig,
                thresh=thresh,
                font_name=font_name,
                font_size_title=font_size_title,
                font_size_label=font_size_label,
                font_size_legend=font_size_legend,
            )
Beispiel #4
0
def plot_2D_Data(
    self,
    *arg_list,
    axis_data=None,
    is_norm=False,
    unit="SI",
    data_list=[],
    legend_list=[],
    color_list=None,
    curve_colors=None,
    phase_colors=None,
    linestyles=None,
    linewidth_list=[2],
    save_path=None,
    x_min=None,
    x_max=None,
    y_min=None,
    y_max=None,
    is_logscale_x=False,
    is_logscale_y=False,
    is_disp_title=True,
    is_grid=True,
    is_auto_ticks=True,
    is_auto_range=True,
    fig=None,
    ax=None,
    barwidth=100,
    type_plot=None,
    fund_harm_dict=None,
    is_show_fig=None,
    win_title=None,
    thresh=None,
    font_name="arial",
    font_size_title=12,
    font_size_label=10,
    font_size_legend=8,
):
    """Plots a field as a function of time

    Parameters
    ----------
    data : Data
        a Data object
    *arg_list : list of str
        arguments to specify which axes to plot
    is_norm : bool
        boolean indicating if the field must be normalized
    unit : str
        unit in which to plot the field
    data_list : list
        list of Data objects to compare
    legend_list : list
        list of legends to use for each Data object (including reference one) instead of data.name
    color_list : list
        list of colors to use for each Data object
    save_path : str
        full path including folder, name and extension of the file to save if save_path is not None
    x_min : float
        minimum value for the x-axis
    x_max : float
        maximum value for the x-axis
    y_min : float
        minimum value for the y-axis
    y_max : float
        maximum value for the y-axis
    is_logscale_x : bool
        boolean indicating if the x-axis must be set in logarithmic scale
    is_logscale_y : bool
        boolean indicating if the y-axis must be set in logarithmic scale
    is_disp_title : bool
        boolean indicating if the title must be displayed
    is_grid : bool
        boolean indicating if the grid must be displayed
    is_auto_ticks : bool
        in fft, adjust ticks to freqs (deactivate if too close)
    is_auto_range : bool
        in fft, display up to 1% of max
    fig : Matplotlib.figure.Figure
        existing figure to use if None create a new one
    ax : Matplotlib.axes.Axes object
        ax on which to plot the data
    barwidth : float
        barwidth scaling factor, only if type_plot = "bargraph"
    type_plot : str
        type of 2D graph : "curve", "bargraph", "barchart" or "quiver"
    fund_harm_dict : dict
        Dict containing axis name as key and frequency/order/wavenumber of fundamental harmonic as value to display fundamental harmonic in red in the fft
    is_show_fig : bool
        True to show figure after plot
    win_title : str
        Title of the plot window
    thresh : float
        threshold for automatic fft ticks
    """

    # Extract arg_list it the function called from another script with *arg_list
    if len(arg_list) == 1 and type(arg_list[0]) == tuple:
        arg_list = arg_list[0]

    if color_list == []:
        color_list = COLORS

    # Set unit
    if unit == "SI":
        unit = self.unit

    # Detect if is fft, build first title part and ylabel
    is_fft = False
    if any("wavenumber" in s for s in arg_list) or any("freqs" in s
                                                       for s in arg_list):
        is_fft = True
        if "dB" in unit:
            unit_str = ("[" + unit + " re. " +
                        str(self.normalizations["ref"]) + self.unit + "]")
        else:
            unit_str = "[" + unit + "]"
        if self.symbol == "Magnitude":
            ylabel = "Magnitude " + r"$[" + unit + "]$"
        else:
            ylabel = r"$|\widehat{" + self.symbol + "}|$ " + unit_str
        if data_list == []:
            title1 = "FFT of " + self.name.lower() + " "
        else:
            title1 = "Comparison of " + self.name.lower() + " FFT "
    else:
        if data_list == []:
            # title = data.name.capitalize() + " for " + ', '.join(arg_list_str)
            title1 = self.name.capitalize() + " "
        else:
            # title = data.name.capitalize() + " for " + ', '.join(arg_list_str)
            title1 = "Comparison of " + self.name.lower() + " "
        if is_norm:
            ylabel = (r"$\frac{" + self.symbol + "}{" + self.symbol +
                      "_0}\, [" + unit + "]$")
        else:
            if self.symbol == "Magnitude":
                ylabel = "Magnitude " + r"$[" + unit + "]$"
            else:
                ylabel = r"$" + self.symbol + "\, [" + unit + "]$"

    # Extract field and axes
    Xdatas = []
    Ydatas = []
    data_list2 = [self] + data_list
    for i, d in enumerate(data_list2):
        if is_fft:
            result = d.get_magnitude_along(arg_list,
                                           axis_data=axis_data,
                                           unit=unit,
                                           is_norm=is_norm)
            if i == 0:
                axes_list = result.pop("axes_list")
                axes_dict_other = result.pop("axes_dict_other")
                result_0 = result
            Ydatas.append(result.pop(d.symbol))
            Xdatas.append(result[list(result)[0]])
        else:
            result = d.get_along(arg_list,
                                 axis_data=axis_data,
                                 unit=unit,
                                 is_norm=is_norm)
            if i == 0:
                axes_list = result.pop("axes_list")
                axes_dict_other = result.pop("axes_dict_other")
                result_0 = result
            Ydatas.append(result.pop(d.symbol))
            Xdatas.append(result[list(result)[0]])

    # Find main axis as the axis with the most values
    # main_axis = axes_list[0]  # max(axes_list, key=lambda x: x.values.size)

    # Build xlabel and title parts 2 and 3
    title2 = ""
    title3 = " for "
    for axis in axes_list:
        # Title part 2
        if axis.unit in norm_dict:
            name = norm_dict[axis.unit].split(" [")[0]
        elif axis.name in axes_dict:
            name = axes_dict[axis.name]
        else:
            name = axis.name
        if (axis.extension in [
                "whole",
                "interval",
                "oneperiod",
                "antiperiod",
                "smallestperiod",
                "axis_data",
        ] and len(axis.values) > 1):
            title2 = "over " + name.lower()
            if axis.unit == "SI":
                unit = unit_dict[axis.name]
                xlabel = name.capitalize() + " [" + unit + "]"
                main_axis_name = name
            elif axis.unit in norm_dict:
                xlabel = norm_dict[axis.unit]
                if axis.unit == "Hz":
                    main_axis_name = "frequency"
                else:
                    main_axis_name = axis.unit
            else:
                unit = axis.unit
                xlabel = name.capitalize() + " [" + unit + "]"
                main_axis_name = name
            if (axis.name == "angle" and axis.unit == "°"
                    and round(np_max(axis.values) / 6) % 5 == 0):
                xticks = [i * round(np_max(axis.values) / 6) for i in range(7)]
            else:
                xticks = None
        else:
            if axis.unit == "SI":
                unit = unit_dict[axis.name]
            elif axis.unit in norm_dict:
                unit = norm_dict[axis.unit]
            else:
                unit = axis.unit

            axis_str = array2string(result_0[axis.name],
                                    formatter={
                                        "float_kind": "{:.3g}".format
                                    }).replace(" ", ", ")
            if len(result_0[axis.name]) == 1:
                axis_str = axis_str.strip("[]")

            title3 += name + "=" + axis_str.rstrip(", ") + " [" + unit + "], "

    # Title part 4 containing axes that are here but not involved in requested axes
    title4 = ""
    for axis_name in axes_dict_other:
        title4 += (axis_name + "=" + array2string(
            axes_dict_other[axis_name][0],
            formatter={
                "float_kind": "{:.3g}".format
            },
        ).replace(" ", ", ") + " [" + axes_dict_other[axis_name][1] + "], ")

    if title3 == " for " and title4 == "":
        title3 = ""

    # Concatenate all title parts
    title = title1 + title2 + title3 + title4

    # Remove last coma due to title3 or title4
    title = title.rstrip(", ")

    # Remove dimless and quotes
    title = title.replace("[]", "")
    title = title.replace("'", "")

    # Detect how many curves are overlaid, build legend and color lists
    if legend_list == [] and data_list != []:
        legend_list = ["[" + d.name + "] " for d in data_list2]
    elif legend_list == []:
        legend_list = ["" for d in data_list2]
    else:
        legend_list = ["[" + leg + "] " for leg in legend_list]
    legends = []
    # Prepare colors
    if curve_colors is None:
        curve_colors = COLORS
    linestyle_list = linestyles
    for i, d in enumerate(data_list2):
        is_overlay = False
        for axis in axes_list:
            if axis.extension == "list":
                is_overlay = True
                if phase_colors is None:
                    phase_colors = COLORS
                    if linestyles is None:
                        linestyles = ["dashed"]
                n_curves = len(axis.values)
                if axis.unit == "SI":
                    unit = unit_dict[axis.name]
                elif axis.unit in norm_dict:
                    unit = norm_dict[axis.unit]
                else:
                    unit = axis.unit
                if len(d.axes[axis.index].get_values()) > 1:
                    legends += [
                        legend_list[i] + axis.name + "=" +
                        axis.values.tolist()[j] + " " + unit if isinstance(
                            axis.values.tolist()[j], str) else legend_list[i] +
                        axis.name + "=" + "%.3g" % axis.values.tolist()[j] +
                        " " + unit for j in range(n_curves)
                    ]
                else:
                    legends += [legend_list[i]]

        if not is_overlay:
            legends += [legend_list[i]]

    # Split Ydatas if the plot overlays several curves
    if is_overlay:
        Ydata = []
        for d in Ydatas:
            if d.ndim != 1:
                axis_index = where(array(d.shape) == n_curves)[0]
                if axis_index.size > 1:
                    print("WARNING, several axes with same dimensions")
                Ydata += split(d, n_curves, axis=axis_index[0])
            else:
                Ydata += [d]
        Ydatas = [squeeze(d) for d in Ydata]
        Xdata = []
        for i in range(len(data_list2)):
            Xdata += [Xdatas[i] for x in range(n_curves)]
        Xdatas = Xdata

    # Call generic plot function
    if is_fft:

        if thresh is None:
            if self.normalizations is not None and "ref" in self.normalizations.keys(
            ):
                thresh = self.normalizations["ref"]
            else:
                thresh = 0.02

        freqs = Xdatas[0]
        indices = [
            ind for ind, y in enumerate(Ydatas[0])
            if abs(y) > abs(thresh * np_max(Ydatas[0]))
        ]
        xticks = unique(insert(0, 0, freqs[indices]))

        if is_auto_range:
            if len(xticks) > 0:
                x_min = -xticks[-1] * 0.1
                x_max = xticks[-1] * 1.1

        if not is_auto_ticks:
            xticks = None

        # Force bargraph for fft if type_graph not specified
        if type_plot is None:
            type_plot = "bargraph"

        # Option to draw fundamental harmonic in red
        if not fund_harm_dict:
            fund_harm = None
        else:
            # Activate the option only if main axis is in dict and only one Data is plotted
            if main_axis_name in fund_harm_dict and len(Ydatas) == 1:
                fund_harm = fund_harm_dict[main_axis_name]
            else:
                # Deactivate the option
                fund_harm = None

        plot_2D(
            Xdatas,
            Ydatas,
            legend_list=legends,
            color_list=color_list,
            linestyle_list=linestyle_list,
            linewidth_list=linewidth_list,
            fig=fig,
            ax=ax,
            title=title,
            xlabel=xlabel,
            ylabel=ylabel,
            type_plot=type_plot,
            x_min=x_min,
            x_max=x_max,
            y_min=y_min,
            y_max=y_max,
            is_logscale_x=is_logscale_x,
            is_logscale_y=is_logscale_y,
            is_disp_title=is_disp_title,
            is_grid=is_grid,
            xticks=xticks,
            save_path=save_path,
            barwidth=barwidth,
            fund_harm=fund_harm,
            is_show_fig=is_show_fig,
            win_title=win_title,
            font_name=font_name,
            font_size_title=font_size_title,
            font_size_label=font_size_label,
            font_size_legend=font_size_legend,
        )

    else:

        # Force curve plot if type_plot not specified
        if type_plot is None:
            type_plot = "curve"

        plot_2D(
            Xdatas,
            Ydatas,
            legend_list=legends,
            color_list=color_list,
            fig=fig,
            ax=ax,
            title=title,
            xlabel=xlabel,
            ylabel=ylabel,
            type_plot=type_plot,
            x_min=x_min,
            x_max=x_max,
            y_min=y_min,
            y_max=y_max,
            is_logscale_x=is_logscale_x,
            is_logscale_y=is_logscale_y,
            is_disp_title=is_disp_title,
            is_grid=is_grid,
            xticks=xticks,
            barwidth=barwidth,
            linestyle_list=linestyle_list,
            linewidth_list=linewidth_list,
            save_path=save_path,
            is_show_fig=is_show_fig,
            win_title=win_title,
            font_name=font_name,
            font_size_title=font_size_title,
            font_size_label=font_size_label,
            font_size_legend=font_size_legend,
        )
Beispiel #5
0
def plot_multi(
    self,
    x_symbol,
    y_symbol,
    c_symbol=None,
    cmap=None,
    plot_type="point",
    idx=None,
    ax=None,
    title=None,
    is_show_fig=True,
    save_path=None,
    win_title=None,
):
    """
    Plot data from a DataKeeper for a given parameter from a ParamExplorer

    x_symbol: str
        ParamExplorer or DataKeeper symbol
    y_symbol: str
        ParamExplorer or DataKeeper symbol
    c_symbol: str
        optional symbol to set the plot colors
    cmap: colormap
        optional colormap
    plot_type: str
        scatter or plot to chose plot type
    idx: slice
        To plot only some data
    ax: matplotlib.pyplot.Axe
        To put the plot in a specific ax
    title: str
        Figure or subfigure title according to ax
    is_show_fig : bool
        True to show figure after plot
    save_path : str
        full path of the png file where the figure is saved if save_path is not None

    Returns
    -------
    fig or ax

    Raises
    ------
    PlotError
    """

    if idx is None:
        idx = slice(None)

    if plot_type not in ["point", "curve"]:
        raise PlotError("Unknown plot_type {}.".format(plot_type))

    # get data and labels
    x_values, x_label = _get_symbol_data_(self, x_symbol, idx)
    y_values, y_label = _get_symbol_data_(self, y_symbol, idx)

    if c_symbol is None:
        colors = COLORS[0]
    else:
        # get the color data
        c_values, _ = _get_symbol_data_(self, c_symbol, idx)
        colors = c_values[:, np.newaxis]

    # add legend
    if c_symbol is not None:
        legends = [c_symbol]
    else:
        legends = []

    if cmap is None:
        cmap = COLORMAP

    # call plot_2D function
    plot_2D(
        Xdatas=[x_values],
        Ydatas=[y_values],
        xlabel=x_label,
        ylabel=y_label,
        color_list=[colors],
        legend_list=legends,
        title=title,
        type_plot=plot_type,
        save_path=save_path,
        is_show_fig=is_show_fig,
        win_title=win_title,
        font_name=FONT_NAME,
        font_size_title=FONT_SIZE_TITLE,
        font_size_label=FONT_SIZE_LABEL,
        font_size_legend=FONT_SIZE_LEGEND,
    )