def __init__(self, s_start, s_goal, N, heuristic_type): self.s_start, self.s_goal = s_start, s_goal self.heuristic_type = heuristic_type self.Env = env.Env2() self.u_set = self.Env.motions # feasible input set self.obs = self.Env.obs # position of obstacles self.N = N # number of expand nodes each iteration self.visited = [] # order of visited nodes in planning self.path = [] # path of each iteration self.h_table = {} # h_value table
def __init__(self, s_start, s_goal, heuristic_type): self.s_start = s_start self.s_goal = s_goal self.heuristic_type = heuristic_type self.Env = env.Env2() # class Env self.u_set = self.Env.motions # feasible input set self.obs = self.Env.obs # position of obstacles self.OPEN = [] # priority queue / OPEN set self.CLOSED = [] # CLOSED set / VISITED order self.PARENT = dict() # recorded parent self.g = dict() # cost to come
def __init__(self, s_start, s_goal, heuristic_type): self.s_start = s_start self.s_goal = s_goal self.heuristic_type = heuristic_type self.Env = env.Env2() # class Env self.u_set = self.Env.motions # feasible input set self.obs = self.Env.obs # position of obstacles self.OPEN_fore = [] # OPEN set for forward searching self.OPEN_back = [] # OPEN set for backward searching self.CLOSED_fore = [] # CLOSED set for forward self.CLOSED_back = [] # CLOSED set for backward self.PARENT_fore = dict() # recorded parent for forward self.PARENT_back = dict() # recorded parent for backward self.g_fore = dict() # cost to come for forward self.g_back = dict() # cost to come for backward
def __init__(self, xI, xG): self.xI, self.xG = xI, xG self.env = env.Env2() self.obs = self.env.obs_map()