from SignalModel import Signal import matplotlib.pyplot as plt from WtProcess import SWTP from SpatialCorrelationThresholdALG import SpCoThALG from ThSearchAlgorithm import ThSearchAlgorithm from ThresholdSelect import ThSelect if __name__ == '__main__': s = Signal(1024) od1 = s.createSin(50, 60, 4) od2 = s.createPulse(50, 60, 4) od3 = s.createSpikes(4) ods = [od1, od2, od3] dnames = ['Sine', 'Pulse', 'Spike'] sfp1pds = [] sfp2pds = [] for od in ods: swt = SWTP(od) coeffs = swt.swtdec(delevel=4) spta2 = SpCoThALG(coeffs) sfp1gcvs = [] sfp2gcvs = [] P = spta2.spcoCors() spta2.BTHassitIndex(1, pk=0.1, pa=4, mode='srmse') for k in range(1, 100): sfp2gcv = spta2.BTHspcothfwp2(k/10) sfp2gcvs.append(sfp2gcv) x=[x/10 for x in range(1, 100)] plt.figure() plt.plot(x, sfp2gcvs) plt.show()
from SignalModel import Signal from LayerSelect import LayerSelect import matplotlib.pyplot as plt import numpy as np import math as mt from BlockThMethod import BlockThMethod from ThresholdSelect import ThSelect from BestThEstimation import BestThEstimate from ThSearchAlgorithm import ThSearchAlgorithm from WtProcess import DWTP from DenoiseResult import DenoiseRsult if __name__ == '__main__': s = Signal(4000) od1 = s.createSin(200, 60, 10) od2 = s.createPulse(200, 60, 10) od3 = s.createSpikes(10) ods = [od1, od2, od3] dnames = ['Sine', 'Pulse', 'Spike'] gthss = [] srmthss = [] srmthss2 = [] thsmatrix = [gthss, gthss, srmthss, srmthss2] thmname = ['sth', 'hth', 'srm', 'srm'] thfname = ['soft', 'hard', 'thf3', 'thf3wp'] spds = [] hpds = [] thf3pds = [] thf3wppds = [] pdsmatrix = [spds, hpds, thf3pds, thf3wppds] dl = 5
from SignalModel import Signal import matplotlib.pyplot as plt from WtProcess import SWTP from SpatialCorrelationThresholdALG import SpCoThALG from ThSearchAlgorithm import ThSearchAlgorithm from ThresholdSelect import ThSelect from DenoiseResult import DenoiseRsult if __name__ == '__main__': s = Signal(1024) od1 = s.createSin(50, 60, 4) od2 = s.createPulse(50, 60, 4) od3 = s.createSpikes(4) ods = [od1, od2, od3] dnames = ['Sine', 'Pulse', 'Spike'] sf1pds = [] sf2pds = [] sfp1pds = [] sfp2pds = [] for od in ods: swt = SWTP(od) coeffs = swt.swtdec(wtname='sym6', delevel=4) spta = SpCoThALG(coeffs) nce1s = spta.spcoThf1() nce2s = spta.spcoThf2() sf1pd = swt.swtrec(nce1s, wtname='sym6') sf2pd = swt.swtrec(nce2s, wtname='sym6') sf1pds.append(sf1pd) sf2pds.append(sf2pd)
from SignalModel import Signal import matplotlib.pyplot as plt from DenoiseResult import DenoiseRsult s = Signal(1000) td1 = s.createSin(50, 60, 0) od1 = s.createSin(50, 60, 4) td2 = s.createPulse(50, 60, 0) od2 = s.createPulse(50, 60, 4) td3 = s.createSpikes(0) od3 = s.createSpikes(4) x = [x for x in range(1000)] plt.figure() plt.subplot(3, 2, 1) plt.plot(x, td1) plt.title("True sine signal") plt.subplot(3, 2, 2) plt.plot(x, od1) plt.title("Noisy sine signal") plt.subplot(3, 2, 3) plt.plot(x, td2) plt.title("True pulse signal") plt.subplot(3, 2, 4) plt.plot(x, od2) plt.title("Noisy pulse signal") plt.subplot(3, 2, 5) plt.plot(x, td3) plt.title("True spike signal") plt.subplot(3, 2, 6) plt.plot(x, od3)