Beispiel #1
0
    def test_parametric_block(self):
        M1 = discretize.TensorMesh([np.ones(10)], "C")
        block = maps.ParametricBlock(M1)
        self.assertTrue(
            block.test(
                m=np.hstack([np.random.rand(2), np.r_[M1.x0,
                                                      2 * M1.hx.min()]])))

        M2 = discretize.TensorMesh([np.ones(10), np.ones(20)], "CC")
        block = maps.ParametricBlock(M2)
        self.assertTrue(
            block.test(m=np.hstack([
                np.random.rand(2),
                np.r_[M2.x0[0], 2 * M2.hx.min()],
                np.r_[M2.x0[1], 4 * M2.hy.min()],
            ])))

        M3 = discretize.TensorMesh(
            [np.ones(10), np.ones(20), np.ones(30)], "CCC")
        block = maps.ParametricBlock(M3)
        self.assertTrue(
            block.test(m=np.hstack([
                np.random.rand(2),
                np.r_[M3.x0[0], 2 * M3.hx.min()],
                np.r_[M3.x0[1], 4 * M3.hy.min()],
                np.r_[M3.x0[2], 5 * M3.hz.min()],
            ])))
Beispiel #2
0
 def test_ParametricBlock2D(self):
     mesh = discretize.TensorMesh([np.ones(30), np.ones(20)],
                                  x0=np.array([-15, -5]))
     mapping = maps.ParametricBlock(mesh)
     # val_background,val_block, block_x0, block_dx, block_y0, block_dy
     m = np.r_[-2.0, 1.0, -5, 10, 5, 4]
     self.assertTrue(mapping.test(m))
Beispiel #3
0
dx, dy, dz = 25.0, 40.0, 30.0  # dimensions in x,y,z

# Define surface topography
[xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy)
zz = -3 * np.exp((xx**2 + yy**2) / 60**2) + 45.0
topo = np.c_[mkvc(xx), mkvc(yy), mkvc(zz)]

# Set active cells and define unit values
air_value = 0.0
ind_active = surface2ind_topo(mesh, topo)
active_map = maps.InjectActiveCells(mesh, ind_active, air_value)

# Define the model on subsurface cells
model = np.r_[background_value, block_value, xc, dx, yc, dy, zc, dz]
parametric_map = maps.ParametricBlock(mesh,
                                      indActive=ind_active,
                                      epsilon=1e-10,
                                      p=5.0)

# Define a single mapping from model to mesh
model_map = active_map * parametric_map

# Plot
fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(111)
ind_slice = int(mesh.hy.size / 2)
mesh.plotSlice(model_map * model, normal="Y", ax=ax, ind=ind_slice, grid=True)
ax.set_title("Model slice at y = {} m".format(mesh.x0[1] +
                                              np.sum(mesh.hy[0:ind_slice])))
plt.show()

#############################################
Beispiel #4
0
def run(
    plotIt=True,
    survey_type="dipole-dipole",
    rho_background=1e3,
    rho_block=1e2,
    block_x0=100,
    block_dx=10,
    block_y0=-10,
    block_dy=5,
):

    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0.0, 200.0
    ymin, ymax = 0.0, 0.0
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = DCutils.gen_DCIPsurvey(endl,
                                    survey_type=survey_type,
                                    dim=2,
                                    a=10,
                                    b=10,
                                    n=10)
    survey = IO.from_ambn_locations_to_survey(
        survey.locations_a,
        survey.locations_b,
        survey.locations_m,
        survey.locations_n,
        survey_type,
        data_dc_type="volt",
    )

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    # Flat topography
    actind = utils.surface2ind_topo(
        mesh, np.c_[mesh.vectorCCx, mesh.vectorCCx * 0.0])
    survey.drape_electrodes_on_topography(mesh, actind, option="top")
    # Use Exponential Map: m = log(rho)
    actmap = maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    parametric_block = maps.ParametricBlock(mesh, slopeFact=1e2)
    mapping = maps.ExpMap(mesh) * parametric_block
    # Set true model
    # val_background,val_block, block_x0, block_dx, block_y0, block_dy
    mtrue = np.r_[np.log(1e3), np.log(10), 100, 10, -20, 10]

    # Set initial model
    m0 = np.r_[np.log(rho_background),
               np.log(rho_block), block_x0, block_dx, block_y0, block_dy, ]
    rho = mapping * mtrue
    rho0 = mapping * m0
    # Show the true conductivity model
    fig = plt.figure(figsize=(12, 3))
    ax = plt.subplot(111)
    temp = rho.copy()
    temp[~actind] = np.nan
    out = mesh.plotImage(
        temp,
        grid=False,
        ax=ax,
        gridOpts={"alpha": 0.2},
        clim=(10, 1000),
        pcolorOpts={
            "cmap": "viridis",
            "norm": colors.LogNorm()
        },
    )
    ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1],
            "k.")
    ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
    ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
    cb = plt.colorbar(out[0])
    cb.set_label("Resistivity (ohm-m)")
    ax.set_aspect("equal")
    ax.set_title("True resistivity model")
    plt.show()
    # Show the true conductivity model
    fig = plt.figure(figsize=(12, 3))
    ax = plt.subplot(111)
    temp = rho0.copy()
    temp[~actind] = np.nan
    out = mesh.plotImage(
        temp,
        grid=False,
        ax=ax,
        gridOpts={"alpha": 0.2},
        clim=(10, 1000),
        pcolorOpts={
            "cmap": "viridis",
            "norm": colors.LogNorm()
        },
    )
    ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1],
            "k.")
    ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
    ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
    cb = plt.colorbar(out[0])
    cb.set_label("Resistivity (ohm-m)")
    ax.set_aspect("equal")
    ax.set_title("Initial resistivity model")
    plt.show()

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Simulation2DNodal(mesh,
                               survey=survey,
                               rhoMap=mapping,
                               storeJ=True,
                               solver=Solver)

    # Make synthetic DC data with 5% Gaussian noise
    data = prb.make_synthetic_data(mtrue, relative_error=0.05, add_noise=True)

    # Show apparent resisitivty pseudo-section
    IO.plotPseudoSection(data=data.dobs / IO.G,
                         data_type="apparent_resistivity")

    # Show apparent resisitivty histogram
    fig = plt.figure()
    out = hist(data.dobs / IO.G, bins=20)
    plt.show()
    # Set standard_deviation
    # floor
    eps = 10**(-3.2)
    # percentage
    relative = 0.05
    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data)
    uncert = abs(data.dobs) * relative + eps
    dmisfit.standard_deviation = uncert

    # Map for a regularization
    mesh_1d = discretize.TensorMesh([parametric_block.nP])
    # Related to inversion
    reg = regularization.Simple(mesh_1d, alpha_x=0.0)
    opt = optimization.InexactGaussNewton(maxIter=10)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = directives.TargetMisfit()
    updateSensW = directives.UpdateSensitivityWeights()
    update_Jacobi = directives.UpdatePreconditioner()
    invProb.beta = 0.0
    inv = inversion.BaseInversion(invProb, directiveList=[target])
    prb.counter = opt.counter = utils.Counter()
    opt.LSshorten = 0.5
    opt.remember("xc")

    # Run inversion
    mopt = inv.run(m0)

    # Convert obtained inversion model to resistivity
    # rho = M(m), where M(.) is a mapping

    rho_est = mapping * mopt
    rho_true = rho.copy()
    # show recovered conductivity
    vmin, vmax = rho.min(), rho.max()
    fig, ax = plt.subplots(2, 1, figsize=(20, 6))
    out1 = mesh.plotImage(
        rho_true,
        clim=(10, 1000),
        pcolorOpts={
            "cmap": "viridis",
            "norm": colors.LogNorm()
        },
        ax=ax[0],
    )
    out2 = mesh.plotImage(
        rho_est,
        clim=(10, 1000),
        pcolorOpts={
            "cmap": "viridis",
            "norm": colors.LogNorm()
        },
        ax=ax[1],
    )
    out = [out1, out2]
    for i in range(2):
        ax[i].plot(survey.electrode_locations[:, 0],
                   survey.electrode_locations[:, 1], "kv")
        ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[i][0], ax=ax[i])
        cb.set_label("Resistivity ($\Omega$m)")
        ax[i].set_xlabel("Northing (m)")
        ax[i].set_ylabel("Elevation (m)")
        ax[i].set_aspect("equal")
    ax[0].set_title("True resistivity model")
    ax[1].set_title("Recovered resistivity model")
    plt.tight_layout()
    plt.show()