Beispiel #1
0
    def test_inv_mref_setting(self):
        reg1 = regularization.Tikhonov(self.mesh)
        reg2 = regularization.Tikhonov(self.mesh)
        reg = reg1 + reg2
        opt = optimization.InexactGaussNewton(maxIter=10)
        invProb = inverse_problem.BaseInvProblem(self.dmiscobmo, reg, opt)
        directives_list = [directives.BetaEstimate_ByEig(beta0_ratio=1e-2)]
        inv = inversion.BaseInversion(invProb, directiveList=directives_list)
        m0 = self.model.mean() * np.ones_like(self.model)

        mrec = inv.run(m0)

        self.assertTrue(np.all(reg1.mref == m0))
        self.assertTrue(np.all(reg2.mref == m0))
    def setUp(self):

        ntx = 31
        xtemp_txP = np.logspace(1, 3, ntx)
        xtemp_txN = -xtemp_txP
        ytemp_tx = np.zeros(ntx)
        xtemp_rxP = -5
        xtemp_rxN = 5
        ytemp_rx = 0.0
        abhalf = abs(xtemp_txP - xtemp_txN) * 0.5
        a = xtemp_rxN - xtemp_rxP
        b = ((xtemp_txN - xtemp_txP) - a) * 0.5

        # We generate tx and rx lists:
        srclist = []
        for i in range(ntx):
            rx = dc.receivers.Dipole(np.r_[xtemp_rxP, ytemp_rx, -12.5],
                                     np.r_[xtemp_rxN, ytemp_rx, -12.5])
            locA = np.r_[xtemp_txP[i], ytemp_tx[i], -12.5]
            locB = np.r_[xtemp_txN[i], ytemp_tx[i], -12.5]
            src = dc.sources.Dipole([rx], locA, locB)
            srclist.append(src)
        survey = dc.survey.Survey(srclist)

        rho = np.r_[10, 10, 10]
        dummy_hz = 100.0
        hz = np.r_[10, 10, dummy_hz]
        mesh = TensorMesh([hz])

        simulation = dc.simulation_1d.Simulation1DLayers(
            survey=survey,
            rhoMap=maps.ExpMap(mesh),
            thicknesses=hz[:-1],
            data_type="apparent_resistivity",
        )
        simulation.dpred(np.log(rho))

        mSynth = np.log(rho)
        dobs = simulation.make_synthetic_data(mSynth, add_noise=True)

        # Now set up the problem to do some minimization
        dmis = data_misfit.L2DataMisfit(simulation=simulation, data=dobs)
        reg = regularization.Tikhonov(mesh)
        opt = optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=0.0)
        inv = inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = simulation
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
        self.dobs = dobs
    def test_linked_properties(self):
        mesh = discretize.TensorMesh([8, 7, 6])
        reg = regularization.Tikhonov(mesh)

        [self.assertTrue(reg.regmesh is fct.regmesh) for fct in reg.objfcts]
        [self.assertTrue(reg.mapping is fct.mapping) for fct in reg.objfcts]

        D = reg.regmesh.cellDiffx
        reg.regmesh._cellDiffx = 4 * D
        v = np.random.rand(D.shape[1])
        [
            self.assertTrue(
                np.all(reg.regmesh._cellDiffx * v == fct.regmesh.cellDiffx *
                       v)) for fct in reg.objfcts
        ]

        indActive = mesh.gridCC[:, 2] < 0.4
        reg.indActive = indActive
        self.assertTrue(np.all(reg.regmesh.indActive == indActive))
        [
            self.assertTrue(np.all(reg.indActive == fct.indActive))
            for fct in reg.objfcts
        ]

        [
            self.assertTrue(np.all(reg.indActive == fct.regmesh.indActive))
            for fct in reg.objfcts
        ]
Beispiel #4
0
    def setUp(self, parallel=True):
        frequency = np.array([900, 7200, 56000], dtype=float)
        hz = get_vertical_discretization_frequency(frequency,
                                                   sigma_background=1. / 10.)
        n_sounding = 10
        dx = 20.
        hx = np.ones(n_sounding) * dx
        mesh = Mesh.TensorMesh([hx, hz], x0='00')
        inds = mesh.gridCC[:, 1] < 25
        inds_1 = mesh.gridCC[:, 1] < 50
        sigma = np.ones(mesh.nC) * 1. / 100.
        sigma[inds_1] = 1. / 10.
        sigma[inds] = 1. / 50.
        sigma_em1d = sigma.reshape(mesh.vnC, order='F').flatten()
        mSynth = np.log(sigma_em1d)

        x = mesh.vectorCCx
        y = np.zeros_like(x)
        z = np.ones_like(x) * 30.
        rx_locations = np.c_[x, y, z]
        src_locations = np.c_[x, y, z]
        topo = np.c_[x, y, z - 30.].astype(float)
        mapping = Maps.ExpMap(mesh)
        survey = GlobalEM1DSurveyFD(rx_locations=rx_locations,
                                    src_locations=src_locations,
                                    frequency=frequency,
                                    offset=np.ones_like(frequency) * 8.,
                                    src_type="VMD",
                                    rx_type="Hz",
                                    field_type='secondary',
                                    topo=topo)

        problem = GlobalEM1DProblemFD([],
                                      sigmaMap=mapping,
                                      hz=hz,
                                      parallel=parallel,
                                      n_cpu=2)
        problem.pair(survey)
        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)

        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.)
        inv = Inversion.BaseInversion(invProb)
        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
Beispiel #5
0
    def setUp(self, parallel=True):
        frequency = np.array([900, 7200, 56000], dtype=float)
        hz = np.r_[1.]
        n_sounding = 10
        dx = 20.
        hx = np.ones(n_sounding) * dx
        e = np.ones(n_sounding)
        mSynth = np.r_[e * np.log(1. / 100.), e * 20]

        x = np.arange(n_sounding)
        y = np.zeros_like(x)
        z = np.ones_like(x) * 30.
        rx_locations = np.c_[x, y, z]
        src_locations = np.c_[x, y, z]
        topo = np.c_[x, y, z - 30.].astype(float)

        wires = Maps.Wires(('sigma', n_sounding), ('h', n_sounding))
        expmap = Maps.ExpMap(nP=n_sounding)
        sigmaMap = expmap * wires.sigma

        survey = GlobalEM1DSurveyFD(rx_locations=rx_locations,
                                    src_locations=src_locations,
                                    frequency=frequency,
                                    offset=np.ones_like(frequency) * 8.,
                                    src_type="VMD",
                                    rx_type="ppm",
                                    field_type='secondary',
                                    topo=topo,
                                    half_switch=True)

        problem = GlobalEM1DProblemFD([],
                                      sigmaMap=sigmaMap,
                                      hMap=wires.h,
                                      hz=hz,
                                      parallel=parallel,
                                      n_cpu=2)
        problem.pair(survey)
        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        mesh = Mesh.TensorMesh([int(n_sounding * 2)])
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)

        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.)
        inv = Inversion.BaseInversion(invProb)
        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth * 1.2
        self.survey = survey
        self.dmis = dmis
Beispiel #6
0
def run_inversion(
    m0,
    simulation,
    data,
    actind,
    mesh,
    maxIter=15,
    beta0_ratio=1e0,
    coolingFactor=5,
    coolingRate=2,
    upper=np.inf,
    lower=-np.inf,
    use_sensitivity_weight=True,
    alpha_s=1e-4,
    alpha_x=1.0,
    alpha_y=1.0,
    alpha_z=1.0,
):
    """
    Run DC inversion
    """
    dmisfit = data_misfit.L2DataMisfit(simulation=simulation, data=data)
    # Map for a regularization
    regmap = maps.IdentityMap(nP=int(actind.sum()))
    # Related to inversion
    if use_sensitivity_weight:
        reg = regularization.Sparse(mesh, indActive=actind, mapping=regmap)
        reg.alpha_s = alpha_s
        reg.alpha_x = alpha_x
        reg.alpha_y = alpha_y
        reg.alpha_z = alpha_z
    else:
        reg = regularization.Tikhonov(mesh, indActive=actind, mapping=regmap)
        reg.alpha_s = alpha_s
        reg.alpha_x = alpha_x
        reg.alpha_y = alpha_y
        reg.alpha_z = alpha_z

    opt = optimization.ProjectedGNCG(maxIter=maxIter, upper=upper, lower=lower)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=coolingFactor,
                                   coolingRate=coolingRate)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio)
    target = directives.TargetMisfit()
    # Need to have basice saving function
    update_Jacobi = directives.UpdatePreconditioner()
    if use_sensitivity_weight:
        updateSensW = directives.UpdateSensitivityWeights()
        directiveList = [beta, target, updateSensW, update_Jacobi, betaest]
    else:
        directiveList = [beta, target, update_Jacobi, betaest]
    inv = inversion.BaseInversion(invProb, directiveList=directiveList)
    opt.LSshorten = 0.5
    opt.remember("xc")

    # Run inversion
    mopt = inv.run(m0)
    return mopt, invProb.dpred
Beispiel #7
0
    def test_inv(self):
        reg = regularization.Tikhonov(self.mesh)
        opt = optimization.InexactGaussNewton(maxIter=10)
        invProb = inverse_problem.BaseInvProblem(self.dmiscobmo, reg, opt)
        directives_list = [directives.BetaEstimate_ByEig(beta0_ratio=1e-2)]
        print(len(directives_list))
        inv = inversion.BaseInversion(invProb, directiveList=directives_list)
        m0 = self.model.mean() * np.ones_like(self.model)

        mrec = inv.run(m0)
Beispiel #8
0
    def test_inv_mref_setting(self):
        reg1 = regularization.Tikhonov(self.mesh)
        reg2 = regularization.Tikhonov(self.mesh)
        reg = reg1 + reg2
        opt = optimization.ProjectedGNCG(
            maxIter=10, lower=-10, upper=10, maxIterLS=20, maxIterCG=50, tolCG=1e-4
        )
        invProb = inverse_problem.BaseInvProblem(self.dmiscombo, reg, opt)
        directives_list = [
            directives.ScalingMultipleDataMisfits_ByEig(chi0_ratio=[0.01, 1.0], verbose=True),
            directives.AlphasSmoothEstimate_ByEig(verbose=True),
            directives.BetaEstimate_ByEig(beta0_ratio=1e-2),
            directives.BetaSchedule(),
        ]
        inv = inversion.BaseInversion(invProb, directiveList=directives_list)
        m0 = self.model.mean() * np.ones_like(self.model)

        mrec = inv.run(m0)

        self.assertTrue(np.all(reg1.mref == m0))
        self.assertTrue(np.all(reg2.mref == m0))
    def setUp(self):

        cs = 12.5
        hx = [(cs, 7, -1.3), (cs, 61), (cs, 7, 1.3)]
        hy = [(cs, 7, -1.3), (cs, 20)]
        mesh = discretize.TensorMesh([hx, hy], x0="CN")

        # x = np.linspace(-200, 200., 20)
        x = np.linspace(-200, 200.0, 2)
        M = utils.ndgrid(x - 12.5, np.r_[0.0])
        N = utils.ndgrid(x + 12.5, np.r_[0.0])

        A0loc = np.r_[-150, 0.0]
        A1loc = np.r_[-130, 0.0]
        B0loc = np.r_[-130, 0.0]
        B1loc = np.r_[-110, 0.0]

        rx = dc.Rx.Dipole(M, N)
        src0 = dc.Src.Dipole([rx], A0loc, B0loc)
        src1 = dc.Src.Dipole([rx], A1loc, B1loc)
        survey = ip.Survey([src0, src1])

        sigma = np.ones(mesh.nC) * 1.0
        problem = ip.Simulation2DCellCentered(
            mesh,
            survey=survey,
            sigma=sigma,
            etaMap=maps.IdentityMap(mesh),
            verbose=False,
        )

        mSynth = np.ones(mesh.nC) * 0.1
        dobs = problem.make_synthetic_data(mSynth, add_noise=True)
        # Now set up the problem to do some minimization
        dmis = data_misfit.L2DataMisfit(data=dobs, simulation=problem)
        reg = regularization.Tikhonov(mesh)
        opt = optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
Beispiel #10
0
    def test_inv(self):
        reg = regularization.Tikhonov(self.mesh)
        opt = optimization.InexactGaussNewton(maxIter=10, use_WolfeCurvature=True)
        invProb = inverse_problem.BaseInvProblem(self.dmiscombo, reg, opt)
        directives_list = [
            directives.ScalingMultipleDataMisfits_ByEig(verbose=True),
            directives.AlphasSmoothEstimate_ByEig(verbose=True),
            directives.BetaEstimate_ByEig(beta0_ratio=1e-2),
            directives.BetaSchedule(),
        ]
        inv = inversion.BaseInversion(invProb, directiveList=directives_list)
        m0 = self.model.mean() * np.ones_like(self.model)

        mrec = inv.run(m0)
    def run_inversion_direct(
        self,
        m0=0.0,
        mref=0.0,
        percentage=0,
        floor=3e-2,
        chi_fact=1.0,
        beta_min=1e-4,
        beta_max=1e5,
        n_beta=81,
        alpha_s=1.0,
        alpha_x=0,
    ):

        self.uncertainty = percentage * abs(self.data_vec) * 0.01 + floor

        survey_obj, simulation_obj = self.get_problem_survey()
        data_obj = data.Data(survey_obj,
                             dobs=self.data_vec,
                             noise_floor=self.uncertainty)
        dmis = data_misfit.L2DataMisfit(simulation=simulation_obj,
                                        data=data_obj)

        m0 = np.ones(self.M) * m0
        mref = np.ones(self.M) * mref
        reg = regularization.Tikhonov(self.mesh_prop,
                                      alpha_s=alpha_s,
                                      alpha_x=alpha_x,
                                      mref=mref)

        betas = np.logspace(np.log10(beta_min), np.log10(beta_max),
                            n_beta)[::-1]

        phi_d = np.zeros(n_beta, dtype=float)
        phi_m = np.zeros(n_beta, dtype=float)
        models = []
        preds = []

        G = dmis.W.dot(self.G)

        for ii, beta in enumerate(betas):
            A = G.T.dot(G) + beta * reg.deriv2(m0)
            b = -(dmis.deriv(m0) + beta * reg.deriv(m0))
            m = np.linalg.solve(A, b)
            phi_d[ii] = dmis(m) * 2.0
            phi_m[ii] = reg(m) * 2.0
            models.append(m)
            preds.append(simulation_obj.dpred(m))

        return phi_d, phi_m, models, preds, betas
Beispiel #12
0
    def setUp(self):

        aSpacing = 2.5
        nElecs = 10

        surveySize = nElecs * aSpacing - aSpacing
        cs = surveySize / nElecs / 4

        mesh = discretize.TensorMesh(
            [
                [(cs, 10, -1.3), (cs, surveySize / cs), (cs, 10, 1.3)],
                [(cs, 3, -1.3), (cs, 3, 1.3)],
                # [(cs, 5, -1.3), (cs, 10)]
            ],
            "CN",
        )

        source_list = dc.utils.WennerSrcList(nElecs, aSpacing, in2D=True)
        survey = dc.survey.Survey(source_list)
        simulation = dc.simulation.Simulation3DNodal(
            mesh=mesh,
            survey=survey,
            rhoMap=maps.IdentityMap(mesh),
            storeJ=True,
            bc_type="Robin",
        )

        mSynth = np.ones(mesh.nC)
        dobs = simulation.make_synthetic_data(mSynth, add_noise=True)

        # Now set up the problem to do some minimization
        dmis = data_misfit.L2DataMisfit(simulation=simulation, data=dobs)
        reg = regularization.Tikhonov(mesh)
        opt = optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = simulation
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
        self.dobs = dobs
    def setUp(self):
        print("\n  ---- Testing {} ---- \n".format(self.formulation))
        cs = 12.5
        hx = [(cs, 2, -1.3), (cs, 61), (cs, 2, 1.3)]
        hy = [(cs, 2, -1.3), (cs, 20)]
        mesh = discretize.TensorMesh([hx, hy], x0="CN")
        x = np.linspace(-135, 250.0, 20)
        M = utils.ndgrid(x - 12.5, np.r_[0.0])
        N = utils.ndgrid(x + 12.5, np.r_[0.0])
        A0loc = np.r_[-150, 0.0]
        A1loc = np.r_[-130, 0.0]
        # rxloc = [np.c_[M, np.zeros(20)], np.c_[N, np.zeros(20)]]
        rx1 = dc.receivers.Dipole(M, N)
        rx2 = dc.receivers.Dipole(M, N, data_type="apparent_resistivity")
        src0 = dc.sources.Pole([rx1, rx2], A0loc)
        src1 = dc.sources.Pole([rx1, rx2], A1loc)
        survey = dc.survey.Survey([src0, src1])
        survey.set_geometric_factor()
        simulation = getattr(dc, self.formulation)(
            mesh,
            rhoMap=maps.IdentityMap(mesh),
            storeJ=self.storeJ,
            solver=Solver,
            survey=survey,
            bc_type=self.bc_type,
        )
        mSynth = np.ones(mesh.nC) * 1.0
        data = simulation.make_synthetic_data(mSynth, add_noise=True)

        # Now set up the problem to do some minimization
        dmis = data_misfit.L2DataMisfit(simulation=simulation, data=data)
        reg = regularization.Tikhonov(mesh)
        opt = optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e0)
        inv = inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = simulation
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
        self.data = data
    def run_inversion_direct(
        self,
        m0=0.0,
        mref=0.0,
        percentage=5,
        floor=0.1,
        chi_fact=1.0,
        beta_min=1e-4,
        beta_max=1e0,
        n_beta=31,
        alpha_s=1.0,
        alpha_x=1.0,
    ):
        simulation = self.get_simulation()
        dobs = self.data.copy()
        lin_data = Data(survey=simulation.survey, dobs=dobs)

        self.uncertainty = percentage * abs(dobs) * 0.01 + floor

        m0 = np.ones(self.M) * m0
        mref = np.ones(self.M) * mref
        reg = regularization.Tikhonov(self.mesh,
                                      alpha_s=alpha_s,
                                      alpha_x=alpha_x,
                                      mref=mref)
        dmis = data_misfit.L2DataMisfit(data=lin_data, simulation=simulation)
        dmis.W = 1.0 / self.uncertainty

        betas = np.logspace(np.log10(beta_min), np.log10(beta_max),
                            n_beta)[::-1]

        phi_d = np.zeros(n_beta, dtype=float)
        phi_m = np.zeros(n_beta, dtype=float)
        models = []
        preds = []

        G = dmis.W.dot(self.G)

        for ii, beta in enumerate(betas):
            A = G.T.dot(G) + beta * reg.deriv2(m0)
            b = -(dmis.deriv(m0) + beta * reg.deriv(m0))
            m = np.linalg.solve(A, b)
            phi_d[ii] = dmis(m) * 2.0
            phi_m[ii] = reg(m) * 2.0
            models.append(m)
            preds.append(simulation.dpred(m))

        return phi_d, phi_m, models, preds, betas
Beispiel #15
0
    def test_addition(self):
        mesh = discretize.TensorMesh([8, 7, 6])
        m = np.random.rand(mesh.nC)

        reg1 = regularization.Tikhonov(mesh)
        reg2 = regularization.Simple(mesh)

        reg_a = reg1 + reg2
        self.assertTrue(len(reg_a) == 2)
        self.assertTrue(reg1(m) + reg2(m) == reg_a(m))
        reg_a.test(eps=TOL)

        reg_b = 2 * reg1 + reg2
        self.assertTrue(len(reg_b) == 2)
        self.assertTrue(2 * reg1(m) + reg2(m) == reg_b(m))
        reg_b.test(eps=TOL)

        reg_c = reg1 + reg2 / 2
        self.assertTrue(len(reg_c) == 2)
        self.assertTrue(reg1(m) + 0.5 * reg2(m) == reg_c(m))
        reg_c.test(eps=TOL)
    def setUp(self):

        time = np.logspace(-3, 0, 21)
        n_loc = 5
        wires = Maps.Wires(('eta', n_loc), ('tau', n_loc), ('c', n_loc))
        taumap = Maps.ExpMap(nP=n_loc) * wires.tau
        etamap = Maps.ExpMap(nP=n_loc) * wires.eta
        cmap = Maps.ExpMap(nP=n_loc) * wires.c
        survey = SEMultiSurvey(time=time, locs=np.zeros((n_loc, 3)), n_pulse=0)
        mesh = Mesh.TensorMesh([np.ones(int(n_loc * 3))])
        prob = SEMultiInvProblem(mesh, etaMap=etamap, tauMap=taumap, cMap=cmap)
        prob.pair(survey)

        eta0, tau0, c0 = 0.1, 10., 0.5
        m0 = np.log(np.r_[eta0 * np.ones(n_loc), tau0 * np.ones(n_loc),
                          c0 * np.ones(n_loc)])
        survey.makeSyntheticData(m0)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.)
        inv = Inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = prob
        self.survey = survey
        self.m0 = m0
        self.dmis = dmis
        self.mesh = mesh
def run(plotIt=True):

    nC = 40
    de = 1.0
    h = np.ones(nC) * de / nC
    M = discretize.TensorMesh([h, h])

    y = np.linspace(M.vectorCCy[0], M.vectorCCx[-1], int(np.floor(nC / 4)))
    rlocs = np.c_[0 * y + M.vectorCCx[-1], y]
    rx = tomo.Rx(rlocs)

    source_list = [
        tomo.Src(location=np.r_[M.vectorCCx[0], yi], receiver_list=[rx])
        for yi in y
    ]

    # phi model
    phi0 = 0
    phi1 = 0.65
    phitrue = utils.model_builder.defineBlock(M.gridCC, [0.4, 0.6], [0.6, 0.4],
                                              [phi1, phi0])

    knownVolume = np.sum(phitrue * M.vol)
    print("True Volume: {}".format(knownVolume))

    # Set up true conductivity model and plot the model transform
    sigma0 = np.exp(1)
    sigma1 = 1e4

    if plotIt:
        fig, ax = plt.subplots(1, 1)
        sigmaMapTest = maps.SelfConsistentEffectiveMedium(nP=1000,
                                                          sigma0=sigma0,
                                                          sigma1=sigma1,
                                                          rel_tol=1e-1,
                                                          maxIter=150)
        testphis = np.linspace(0.0, 1.0, 1000)

        sigetest = sigmaMapTest * testphis
        ax.semilogy(testphis, sigetest)
        ax.set_title("Model Transform")
        ax.set_xlabel("$\\varphi$")
        ax.set_ylabel("$\sigma$")

    sigmaMap = maps.SelfConsistentEffectiveMedium(M,
                                                  sigma0=sigma0,
                                                  sigma1=sigma1)

    # scale the slowness so it is on a ~linear scale
    slownessMap = maps.LogMap(M) * sigmaMap

    # set up the true sig model and log model dobs
    sigtrue = sigmaMap * phitrue

    # modt = Model.BaseModel(M);
    slownesstrue = slownessMap * phitrue  # true model (m = log(sigma))

    # set up the problem and survey
    survey = tomo.Survey(source_list)
    problem = tomo.Simulation(M, survey=survey, slownessMap=slownessMap)

    if plotIt:
        fig, ax = plt.subplots(1, 1)
        cb = plt.colorbar(M.plotImage(phitrue, ax=ax)[0], ax=ax)
        survey.plot(ax=ax)
        cb.set_label("$\\varphi$")

    # get observed data
    data = problem.make_synthetic_data(phitrue,
                                       relative_error=0.03,
                                       add_noise=True)
    dpred = problem.dpred(np.zeros(M.nC))

    # objective function pieces
    reg = regularization.Tikhonov(M)
    dmis = data_misfit.L2DataMisfit(simulation=problem, data=data)
    dmisVol = Volume(mesh=M, knownVolume=knownVolume)
    beta = 0.25
    maxIter = 15

    # without the volume regularization
    opt = optimization.ProjectedGNCG(maxIter=maxIter, lower=0.0, upper=1.0)
    opt.remember("xc")
    invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=beta)
    inv = inversion.BaseInversion(invProb)

    mopt1 = inv.run(np.zeros(M.nC) + 1e-16)
    print("\nTotal recovered volume (no vol misfit term in inversion): "
          "{}".format(dmisVol(mopt1)))

    # with the volume regularization
    vol_multiplier = 9e4
    reg2 = reg
    dmis2 = dmis + vol_multiplier * dmisVol
    opt2 = optimization.ProjectedGNCG(maxIter=maxIter, lower=0.0, upper=1.0)
    opt2.remember("xc")
    invProb2 = inverse_problem.BaseInvProblem(dmis2, reg2, opt2, beta=beta)
    inv2 = inversion.BaseInversion(invProb2)

    mopt2 = inv2.run(np.zeros(M.nC) + 1e-16)
    print("\nTotal volume (vol misfit term in inversion): {}".format(
        dmisVol(mopt2)))

    # plot results

    if plotIt:

        fig, ax = plt.subplots(1, 1)
        ax.plot(data.dobs)
        ax.plot(dpred)
        ax.plot(problem.dpred(mopt1), "o")
        ax.plot(problem.dpred(mopt2), "s")
        ax.legend(["dobs", "dpred0", "dpred w/o Vol", "dpred with Vol"])

        fig, ax = plt.subplots(1, 3, figsize=(16, 4))
        im0 = M.plotImage(phitrue, ax=ax[0])[0]
        im1 = M.plotImage(mopt1, ax=ax[1])[0]
        im2 = M.plotImage(mopt2, ax=ax[2])[0]

        for im in [im0, im1, im2]:
            im.set_clim([0.0, phi1])

        plt.colorbar(im0, ax=ax[0])
        plt.colorbar(im1, ax=ax[1])
        plt.colorbar(im2, ax=ax[2])

        ax[0].set_title("true, vol: {:1.3e}".format(knownVolume))
        ax[1].set_title("recovered(no Volume term), vol: {:1.3e} ".format(
            dmisVol(mopt1)))
        ax[2].set_title("recovered(with Volume term), vol: {:1.3e} ".format(
            dmisVol(mopt2)))

        plt.tight_layout()
def run(plotIt=True):

    M = discretize.TensorMesh([np.ones(40)], x0="N")
    M.setCellGradBC("dirichlet")
    # We will use the haverkamp empirical model with parameters from Celia1990
    k_fun, theta_fun = richards.empirical.haverkamp(
        M,
        A=1.1750e06,
        gamma=4.74,
        alpha=1.6110e06,
        theta_s=0.287,
        theta_r=0.075,
        beta=3.96,
    )

    # Here we are making saturated hydraulic conductivity
    # an exponential mapping to the model (defined below)
    k_fun.KsMap = maps.ExpMap(nP=M.nC)

    # Setup the boundary and initial conditions
    bc = np.array([-61.5, -20.7])
    h = np.zeros(M.nC) + bc[0]
    prob = richards.SimulationNDCellCentered(
        M,
        hydraulic_conductivity=k_fun,
        water_retention=theta_fun,
        boundary_conditions=bc,
        initial_conditions=h,
        do_newton=False,
        method="mixed",
        debug=False,
    )
    prob.time_steps = [(5, 25, 1.1), (60, 40)]

    # Create the survey
    locs = -np.arange(2, 38, 4.0).reshape(-1, 1)
    times = np.arange(30, prob.time_mesh.vectorCCx[-1], 60)
    rxSat = richards.receivers.Saturation(locs, times)
    survey = richards.Survey([rxSat])
    prob.survey = survey

    # Create a simple model for Ks
    Ks = 1e-3
    mtrue = np.ones(M.nC) * np.log(Ks)
    mtrue[15:20] = np.log(5e-2)
    mtrue[20:35] = np.log(3e-3)
    mtrue[35:40] = np.log(1e-2)
    m0 = np.ones(M.nC) * np.log(Ks)

    # Create some synthetic data and fields
    relative = 0.02  # The standard deviation for the noise
    Hs = prob.fields(mtrue)
    data = prob.make_synthetic_data(mtrue,
                                    relative_error=relative,
                                    f=Hs,
                                    add_noise=True)

    # Setup a pretty standard inversion
    reg = regularization.Tikhonov(M, alpha_s=1e-1)
    dmis = data_misfit.L2DataMisfit(simulation=prob, data=data)
    opt = optimization.InexactGaussNewton(maxIter=20, maxIterCG=10)
    invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=4)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e2)
    target = directives.TargetMisfit()
    dir_list = [beta, betaest, target]
    inv = inversion.BaseInversion(invProb, directiveList=dir_list)

    mopt = inv.run(m0)

    Hs_opt = prob.fields(mopt)

    if plotIt:
        plt.figure(figsize=(14, 9))

        ax = plt.subplot(121)
        plt.semilogx(np.exp(np.c_[mopt, mtrue]), M.gridCC)
        plt.xlabel("Saturated Hydraulic Conductivity, $K_s$")
        plt.ylabel("Depth, cm")
        plt.semilogx([10**-3.9] * len(locs), locs, "ro")
        plt.legend(("$m_{rec}$", "$m_{true}$", "Data locations"), loc=4)

        ax = plt.subplot(222)
        mesh2d = discretize.TensorMesh([prob.time_mesh.hx / 60, prob.mesh.hx],
                                       "0N")
        sats = [theta_fun(_) for _ in Hs]
        clr = mesh2d.plotImage(np.c_[sats][1:, :], ax=ax)
        cmap0 = matplotlib.cm.RdYlBu_r
        clr[0].set_cmap(cmap0)
        c = plt.colorbar(clr[0])
        c.set_label("Saturation $\\theta$")
        plt.xlabel("Time, minutes")
        plt.ylabel("Depth, cm")
        plt.title("True saturation over time")

        ax = plt.subplot(224)
        mesh2d = discretize.TensorMesh([prob.time_mesh.hx / 60, prob.mesh.hx],
                                       "0N")
        sats = [theta_fun(_) for _ in Hs_opt]
        clr = mesh2d.plotImage(np.c_[sats][1:, :], ax=ax)
        cmap0 = matplotlib.cm.RdYlBu_r
        clr[0].set_cmap(cmap0)
        c = plt.colorbar(clr[0])
        c.set_label("Saturation $\\theta$")
        plt.xlabel("Time, minutes")
        plt.ylabel("Depth, cm")
        plt.title("Recovered saturation over time")

        plt.tight_layout()
Beispiel #19
0
petrodir = directives.PGI_UpdateParameters(update_gmm=False)

# Setup Inversion
inv = inversion.BaseInversion(
    invProb,
    directiveList=[
        alphas, scales, beta, petrodir, targets, betaIt, scaling_schedule
    ],
)

mcluster_no_map = inv.run(minit)

# Tikhonov Inversion

reg1 = regularization.Tikhonov(mesh,
                               alpha_s=1.0,
                               alpha_x=1.0,
                               mapping=wires.m1)
reg1.cell_weights = wr1
reg2 = regularization.Tikhonov(mesh,
                               alpha_s=1.0,
                               alpha_x=1.0,
                               mapping=wires.m2)
reg2.cell_weights = wr2
reg = reg1 + reg2

opt = optimization.ProjectedGNCG(
    maxIter=30,
    tolX=1e-6,
    maxIterCG=100,
    tolCG=1e-3,
    lower=-10,
Beispiel #20
0
#
# The inverse problem is defined by 3 things:
#
#     1) Data Misfit: a measure of how well our recovered model explains the field data
#     2) Regularization: constraints placed on the recovered model and a priori information
#     3) Optimization: the numerical approach used to solve the inverse problem
#

# Define the data misfit. Here the data misfit is the L2 norm of the weighted
# residual between the observed data and the data predicted for a given model.
# Within the data misfit, the residual between predicted and observed data are
# normalized by the data's standard deviation.
dmis = data_misfit.L2DataMisfit(simulation=sim, data=data_obj)

# Define the regularization (model objective function).
reg = regularization.Tikhonov(mesh, alpha_s=1.0, alpha_x=1.0)

# Define how the optimization problem is solved.
opt = optimization.InexactGaussNewton(maxIter=50)

# Here we define the inverse problem that is to be solved
inv_prob = inverse_problem.BaseInvProblem(dmis, reg, opt)

#######################################################################
# Define Inversion Directives
# ---------------------------
#
# Here we define any directiveas that are carried out during the inversion. This
# includes the cooling schedule for the trade-off parameter (beta), stopping
# criteria for the inversion and saving inversion results at each iteration.
#
    def setUp(self, parallel=True):
        time = np.logspace(-6, -3, 21)
        time_input_currents = wave.current_times[-7:]
        input_currents = wave.currents[-7:]
        hz = get_vertical_discretization_time(time,
                                              facter_tmax=0.5,
                                              factor_tmin=10.)

        hz = np.r_[1.]
        n_sounding = 10
        dx = 20.
        hx = np.ones(n_sounding) * dx
        e = np.ones(n_sounding)
        mSynth = np.r_[e * np.log(1. / 100.), e * 20]

        x = np.arange(n_sounding)
        y = np.zeros_like(x)
        z = np.ones_like(x) * 30.
        rx_locations = np.c_[x, y, z]
        src_locations = np.c_[x, y, z]
        topo = np.c_[x, y, z - 30.].astype(float)

        rx_type_global = np.array(["dBzdt"], dtype=str).repeat(n_sounding,
                                                               axis=0)
        field_type_global = np.array(['secondary'],
                                     dtype=str).repeat(n_sounding, axis=0)
        wave_type_global = np.array(['general'], dtype=str).repeat(n_sounding,
                                                                   axis=0)

        time_global = [time for i in range(n_sounding)]

        src_type_global = np.array(["CircularLoop"],
                                   dtype=str).repeat(n_sounding, axis=0)
        a_global = np.array([13.], dtype=float).repeat(n_sounding, axis=0)
        input_currents_global = [input_currents for i in range(n_sounding)]
        time_input_currents_global = [
            time_input_currents for i in range(n_sounding)
        ]

        wires = Maps.Wires(('sigma', n_sounding), ('h', n_sounding))
        expmap = Maps.ExpMap(nP=n_sounding)
        sigmaMap = expmap * wires.sigma

        survey = GlobalEM1DSurveyTD(
            rx_locations=rx_locations,
            src_locations=src_locations,
            topo=topo,
            time=time_global,
            src_type=src_type_global,
            rx_type=rx_type_global,
            field_type=field_type_global,
            wave_type=wave_type_global,
            a=a_global,
            input_currents=input_currents_global,
            time_input_currents=time_input_currents_global,
            half_switch=True)

        problem = GlobalEM1DProblemTD([],
                                      sigmaMap=sigmaMap,
                                      hMap=wires.h,
                                      hz=hz,
                                      parallel=parallel,
                                      n_cpu=2)
        problem.pair(survey)

        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        mesh = Mesh.TensorMesh([int(n_sounding * 2)])
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.)
        inv = Inversion.BaseInversion(invProb)
        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
    def setUp(self, parallel=True):
        time = np.logspace(-6, -3, 21)
        hz = get_vertical_discretization_time(time,
                                              facter_tmax=0.5,
                                              factor_tmin=10.)
        time_input_currents = wave.current_times[-7:]
        input_currents = wave.currents[-7:]

        n_sounding = 5
        dx = 20.
        hx = np.ones(n_sounding) * dx
        mesh = Mesh.TensorMesh([hx, hz], x0='00')
        inds = mesh.gridCC[:, 1] < 25
        inds_1 = mesh.gridCC[:, 1] < 50
        sigma = np.ones(mesh.nC) * 1. / 100.
        sigma[inds_1] = 1. / 10.
        sigma[inds] = 1. / 50.
        sigma_em1d = sigma.reshape(mesh.vnC, order='F').flatten()
        mSynth = np.log(sigma_em1d)

        x = mesh.vectorCCx
        y = np.zeros_like(x)
        z = np.ones_like(x) * 30.
        rx_locations = np.c_[x, y, z]
        src_locations = np.c_[x, y, z]
        topo = np.c_[x, y, z - 30.].astype(float)

        n_sounding = rx_locations.shape[0]

        rx_type_global = np.array(["dBzdt"], dtype=str).repeat(n_sounding,
                                                               axis=0)
        field_type_global = np.array(['secondary'],
                                     dtype=str).repeat(n_sounding, axis=0)
        wave_type_global = np.array(['general'], dtype=str).repeat(n_sounding,
                                                                   axis=0)

        time_global = [time for i in range(n_sounding)]

        src_type_global = np.array(["CircularLoop"],
                                   dtype=str).repeat(n_sounding, axis=0)
        a_global = np.array([13.], dtype=float).repeat(n_sounding, axis=0)
        input_currents_global = [input_currents for i in range(n_sounding)]
        time_input_currents_global = [
            time_input_currents for i in range(n_sounding)
        ]

        mapping = Maps.ExpMap(mesh)

        survey = GlobalEM1DSurveyTD(
            rx_locations=rx_locations,
            src_locations=src_locations,
            topo=topo,
            time=time_global,
            src_type=src_type_global,
            rx_type=rx_type_global,
            field_type=field_type_global,
            wave_type=wave_type_global,
            a=a_global,
            input_currents=input_currents_global,
            time_input_currents=time_input_currents_global)

        problem = GlobalEM1DProblemTD(mesh,
                                      sigmaMap=mapping,
                                      hz=hz,
                                      parallel=parallel,
                                      n_cpu=2)
        problem.pair(survey)

        survey.makeSyntheticData(mSynth)

        # Now set up the problem to do some minimization
        dmis = DataMisfit.l2_DataMisfit(survey)
        reg = regularization.Tikhonov(mesh)
        opt = Optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=0.)
        inv = Inversion.BaseInversion(invProb)
        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
    def setUp(self):

        cs = 25.0
        hx = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)]
        hy = [(cs, 0, -1.3), (cs, 21), (cs, 0, 1.3)]
        hz = [(cs, 0, -1.3), (cs, 20)]
        mesh = discretize.TensorMesh([hx, hy, hz], x0="CCN")
        blkind0 = utils.model_builder.getIndicesSphere(
            np.r_[-100.0, -100.0, -200.0], 75.0, mesh.gridCC)
        blkind1 = utils.model_builder.getIndicesSphere(
            np.r_[100.0, 100.0, -200.0], 75.0, mesh.gridCC)
        sigma = np.ones(mesh.nC) * 1e-2
        eta = np.zeros(mesh.nC)
        tau = np.ones_like(sigma) * 1.0
        eta[blkind0] = 0.1
        eta[blkind1] = 0.1
        tau[blkind0] = 0.1
        tau[blkind1] = 0.01

        x = mesh.vectorCCx[(mesh.vectorCCx > -155.0)
                           & (mesh.vectorCCx < 155.0)]
        y = mesh.vectorCCy[(mesh.vectorCCy > -155.0)
                           & (mesh.vectorCCy < 155.0)]
        Aloc = np.r_[-200.0, 0.0, 0.0]
        Bloc = np.r_[200.0, 0.0, 0.0]
        M = utils.ndgrid(x - 25.0, y, np.r_[0.0])
        N = utils.ndgrid(x + 25.0, y, np.r_[0.0])

        times = np.arange(10) * 1e-3 + 1e-3
        rx = sip.receivers.Dipole(M, N, times)
        print(rx.nD)
        print(rx.locations)
        src = sip.sources.Dipole([rx], Aloc, Bloc)
        survey = sip.Survey([src])
        print(f"Survey ND = {survey.nD}")
        print(f"Survey ND = {src.nD}")

        wires = maps.Wires(("eta", mesh.nC), ("taui", mesh.nC))
        problem = sip.Simulation3DCellCentered(
            mesh,
            survey=survey,
            rho=1.0 / sigma,
            etaMap=wires.eta,
            tauiMap=wires.taui,
            storeJ=False,
        )
        problem.solver = Solver
        mSynth = np.r_[eta, 1.0 / tau]
        problem.model = mSynth
        dobs = problem.make_synthetic_data(mSynth, add_noise=True)
        # Now set up the problem to do some minimization
        dmis = data_misfit.L2DataMisfit(data=dobs, simulation=problem)
        reg = regularization.Tikhonov(mesh)
        opt = optimization.InexactGaussNewton(maxIterLS=20,
                                              maxIter=10,
                                              tolF=1e-6,
                                              tolX=1e-6,
                                              tolG=1e-6,
                                              maxIterCG=6)
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e4)
        inv = inversion.BaseInversion(invProb)

        self.inv = inv
        self.reg = reg
        self.p = problem
        self.mesh = mesh
        self.m0 = mSynth
        self.survey = survey
        self.dmis = dmis
        self.dobs = dobs
    def run_inversion(
        self,
        maxIter=60,
        m0=0.0,
        mref=0.0,
        percentage=5,
        floor=0.1,
        chifact=1,
        beta0_ratio=1.0,
        coolingFactor=1,
        n_iter_per_beta=1,
        alpha_s=1.0,
        alpha_x=1.0,
        alpha_z=1.0,
        use_target=False,
        use_tikhonov=True,
        use_irls=False,
        p_s=2,
        p_x=2,
        p_y=2,
        p_z=2,
        beta_start=None,
    ):

        self.uncertainty = percentage * abs(self.data_prop.dobs) * 0.01 + floor

        m0 = np.ones(self.mesh_prop.nC) * m0
        mref = np.ones(self.mesh_prop.nC) * mref

        if ~use_tikhonov:
            reg = regularization.Sparse(
                self.mesh_prop,
                alpha_s=alpha_s,
                alpha_x=alpha_x,
                alpha_y=alpha_z,
                mref=mref,
                mapping=maps.IdentityMap(self.mesh_prop),
                cell_weights=self.mesh_prop.vol,
            )
        else:
            reg = regularization.Tikhonov(
                self.mesh_prop,
                alpha_s=alpha_s,
                alpha_x=alpha_x,
                alpha_y=alpha_z,
                mref=mref,
                mapping=maps.IdentityMap(self.mesh_prop),
            )
        dataObj = data.Data(self.survey_prop,
                            dobs=self.dobs,
                            noise_floor=self.uncertainty)
        dmis = data_misfit.L2DataMisfit(simulation=self.simulation_prop,
                                        data=dataObj)
        dmis.W = 1.0 / self.uncertainty

        opt = optimization.ProjectedGNCG(maxIter=maxIter, maxIterCG=20)
        opt.lower = 0.0
        opt.remember("xc")
        opt.tolG = 1e-10
        opt.eps = 1e-10
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)

        beta_schedule = directives.BetaSchedule(coolingFactor=coolingFactor,
                                                coolingRate=n_iter_per_beta)

        save = directives.SaveOutputEveryIteration()
        print(chifact)

        if use_irls:
            IRLS = directives.Update_IRLS(
                f_min_change=1e-4,
                minGNiter=1,
                silent=False,
                max_irls_iterations=40,
                beta_tol=5e-1,
                coolEpsFact=1.3,
                chifact_start=chifact,
            )

            if beta_start is None:
                directives_list = [
                    directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                    IRLS,
                    save,
                ]
            else:
                directives_list = [IRLS, save]
                invProb.beta = beta_start
            reg.norms = np.c_[p_s, p_x, p_z, 2]
        else:
            target = directives.TargetMisfit(chifact=chifact)
            directives_list = [
                directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                beta_schedule,
                save,
            ]
            if use_target:
                directives_list.append(target)

        inv = inversion.BaseInversion(invProb, directiveList=directives_list)
        mopt = inv.run(m0)
        model = opt.recall("xc")
        model.append(mopt)
        pred = []
        for m in model:
            pred.append(self.simulation_prop.dpred(m))
        return model, pred, save
Beispiel #25
0
def run(plotIt=True):

    cs, ncx, ncz, npad = 5.0, 25, 15, 15
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = discretize.CylMesh([hx, 1, hz], "00C")

    active = mesh.vectorCCz < 0.0
    layer = (mesh.vectorCCz < 0.0) & (mesh.vectorCCz >= -100.0)
    actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap
    sig_half = 2e-3
    sig_air = 1e-8
    sig_layer = 1e-3
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer
    mtrue = np.log(sigma[active])

    rxOffset = 1e-3
    rx = time_domain.Rx.PointMagneticFluxTimeDerivative(
        np.array([[rxOffset, 0.0, 30]]), np.logspace(-5, -3, 31), "z"
    )
    src = time_domain.Src.MagDipole([rx], location=np.array([0.0, 0.0, 80]))
    survey = time_domain.Survey([src])
    time_steps = [(1e-06, 20), (1e-05, 20), (0.0001, 20)]
    simulation = time_domain.Simulation3DElectricField(
        mesh, sigmaMap=mapping, survey=survey, time_steps=time_steps
    )
    # d_true = simulation.dpred(mtrue)

    # create observed data
    rel_err = 0.05
    data = simulation.make_synthetic_data(mtrue, relative_error=rel_err)

    dmisfit = data_misfit.L2DataMisfit(simulation=simulation, data=data)
    regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = regularization.Tikhonov(regMesh, alpha_s=1e-2, alpha_x=1.0)
    opt = optimization.InexactGaussNewton(maxIter=5, LSshorten=0.5)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

    # Create an inversion object
    beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    inv = inversion.BaseInversion(invProb, directiveList=[beta, betaest])
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    simulation.counter = opt.counter = utils.Counter()
    opt.remember("xc")

    mopt = inv.run(m0)

    if plotIt:
        fig, ax = plt.subplots(1, 2, figsize=(10, 6))
        ax[0].loglog(rx.times, -invProb.dpred, "b.-")
        ax[0].loglog(rx.times, -data.dobs, "r.-")
        ax[0].legend(("Noisefree", "$d^{obs}$"), fontsize=16)
        ax[0].set_xlabel("Time (s)", fontsize=14)
        ax[0].set_ylabel("$B_z$ (T)", fontsize=16)
        ax[0].set_xlabel("Time (s)", fontsize=14)
        ax[0].grid(color="k", alpha=0.5, linestyle="dashed", linewidth=0.5)

        plt.semilogx(sigma[active], mesh.vectorCCz[active])
        plt.semilogx(np.exp(mopt), mesh.vectorCCz[active])
        ax[1].set_ylim(-600, 0)
        ax[1].set_xlim(1e-4, 1e-2)
        ax[1].set_xlabel("Conductivity (S/m)", fontsize=14)
        ax[1].set_ylabel("Depth (m)", fontsize=14)
        ax[1].grid(color="k", alpha=0.5, linestyle="dashed", linewidth=0.5)
        plt.legend(["$\sigma_{true}$", "$\sigma_{pred}$"])
    def run_inversion_cg(
        self,
        maxIter=60,
        m0=0.0,
        mref=0.0,
        percentage=5,
        floor=0.1,
        chifact=1,
        beta0_ratio=1.0,
        coolingFactor=1,
        coolingRate=1,
        alpha_s=1.0,
        alpha_x=1.0,
        use_target=False,
    ):
        sim = self.get_simulation()
        data = Data(sim.survey,
                    dobs=self.data,
                    relative_error=percentage,
                    noise_floor=floor)
        self.uncertainty = data.uncertainty

        m0 = np.ones(self.M) * m0
        mref = np.ones(self.M) * mref
        reg = regularization.Tikhonov(self.mesh,
                                      alpha_s=alpha_s,
                                      alpha_x=alpha_x,
                                      mref=mref)
        dmis = data_misfit.L2DataMisfit(data=data, simulation=sim)

        opt = optimization.InexactGaussNewton(maxIter=maxIter, maxIterCG=20)
        opt.remember("xc")
        opt.tolG = 1e-10
        opt.eps = 1e-10
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
        save = directives.SaveOutputEveryIteration()
        beta_schedule = directives.BetaSchedule(coolingFactor=coolingFactor,
                                                coolingRate=coolingRate)
        target = directives.TargetMisfit(chifact=chifact)

        if use_target:
            directs = [
                directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                beta_schedule,
                target,
                save,
            ]
        else:
            directs = [
                directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                beta_schedule,
                save,
            ]
        inv = inversion.BaseInversion(invProb, directiveList=directs)
        mopt = inv.run(m0)
        model = opt.recall("xc")
        model.append(mopt)
        pred = []
        for m in model:
            pred.append(sim.dpred(m))
        return model, pred, save