Beispiel #1
0
def report_CEA_CBA(sim_outcomes_none, sim_outcomes_anticoag):
    """ performs cost-effectiveness and cost-benefit analyses
    :param sim_outcomes_none: outcomes of a cohort simulated under no therapy
    :param sim_outcomes_anticoag: outcomes of a cohort simulated under anticoagultation therapy
    """

    # define two strategies
    no_therapy_strategy = Econ.Strategy(
        name='No Therapy',
        cost_obs=sim_outcomes_none.costs,
        effect_obs=sim_outcomes_none.utilities,
        color='red'
    )
    anticoag_therapy_strategy = Econ.Strategy(
        name='Anticoagulation Therapy',
        cost_obs=sim_outcomes_anticoag.costs,
        effect_obs=sim_outcomes_anticoag.utilities,
        color='blue'
    )

    # do cost-effectiveness analysis
    # (the first strategy in the list of strategies is assumed to be the 'Base' strategy)
    CEA = Econ.CEA(
        strategies=[no_therapy_strategy, anticoag_therapy_strategy],
        if_paired=False
    )

    # plot cost-effectiveness figure
    CEA.plot_CE_plane(
        title='Cost-Effectiveness Analysis',
        x_label='Additional QALYs',
        y_label='Additional Cost',
        x_range=(-0.6, 1.5),
        y_range=(-5000, 50000),
        interval_type='c'
    )

    # report the CE table
    CEA.build_CE_table(
        interval_type='c',
        alpha=D.ALPHA,
        cost_digits=0,
        effect_digits=2,
        icer_digits=2)

    # cost-benefit analysis
    CBA = Econ.CBA(
        strategies=[no_therapy_strategy, anticoag_therapy_strategy],
        wtp_range=[0, 100000],
        if_paired=False
    )
    # show the net monetary benefit figure
    CBA.plot_incremental_nmbs(
        title='Cost-Benefit Analysis',
        x_label='Willingness-to-pay per QALY ($)',
        y_label='Incremental Net Monetary Benefit ($)',
        interval_type='c',
        show_legend=True,
        figure_size=(6, 5)
    )
Beispiel #2
0
    def update(self, time, current_state, next_state):

        # cost (per unit of time) during the period since the last recording until now
        cost = self.params.annualStateCosts[current_state.value]
        if current_state == HealthStates.POST_STROKE:
            cost += self.params.annuaAntiCoagCost

        # discounted cost and utility (continuously compounded)
        discounted_cost = Econ.pv_continuous_payment(payment=cost,
                                                     discount_rate=self.params.discountRate,
                                                     discount_period=(self.tLastRecorded, time))

        # add discounted stoke cost, if stroke occurred
        if next_state == HealthStates.STROKE:
            discounted_cost += Econ.pv_single_payment(payment=self.params.strokeCost,
                                                      discount_rate=self.params.discountRate,
                                                      discount_period=time,
                                                      discount_continuously=True)

        # utility (per unit of time) during the period since the last recording until now
        utility = self.params.annualStateUtilities[current_state.value]
        discounted_utility = Econ.pv_continuous_payment(payment=utility,
                                                        discount_rate=self.params.discountRate,
                                                        discount_period=(self.tLastRecorded, time))

        # update total discounted cost and utility
        self.totalDiscountedCost += discounted_cost
        self.totalDiscountedUtility += discounted_utility

        # update the time since last recording to the current time
        self.tLastRecorded = time
    def update(self, time, current_state, next_state):
        """ updates the discounted total cost and health utility
        :param time: simulation time
        :param current_state: current health state
        :param next_state: next health state
        """

        # cost and utility (per unit of time) during the period since the last recording until now
        cost = self.params.annualStateCosts[
            current_state.value] + self.params.annualTreatmentCost
        utility = self.params.annualStateUtilities[current_state.value]

        # discounted cost and utility (continuously compounded)
        discounted_cost = Econ.pv_continuous_payment(
            payment=cost,
            discount_rate=self.params.discountRate,
            discount_period=(self.tLastRecorded, time))
        discounted_utility = Econ.pv_continuous_payment(
            payment=utility,
            discount_rate=self.params.discountRate,
            discount_period=(self.tLastRecorded, time))

        # update total discounted cost and utility
        self.totalDiscountedCost += discounted_cost
        self.totalDiscountedUtility += discounted_utility

        # update the time since last recording to the current time
        self.tLastRecorded = time
    def update(self, k, current_state, next_state):
        """ updates the discounted total cost and health utility
        :param k: simulation time step
        :param current_state: current health state
        :param next_state: next health state
        """

        # update cost
        cost = 0.5 * (self.params.annualStateCosts[current_state.value] +
                      self.params.annualStateCosts[next_state.value])
        # update utility
        utility = 0.5 * (self.params.annualStateUtilities[current_state.value]
                         + self.params.annualStateUtilities[next_state.value])

        # add the cost of treatment
        # if HIV death will occur, add the cost for half-year of treatment
        if next_state == HealthStates.HIV_DEATH:
            cost += 0.5 * self.params.annualTreatmentCost
        else:
            cost += 1 * self.params.annualTreatmentCost

        # update total discounted cost and utility (corrected for the half-cycle effect)
        self.totalDiscountedCost += Econ.pv_single_payment(
            payment=cost,
            discount_rate=self.params.discountRate / 2,
            discount_period=2 * k + 1)
        self.totalDiscountedUtility += Econ.pv_single_payment(
            payment=utility,
            discount_rate=self.params.discountRate / 2,
            discount_period=2 * k + 1)
def report_CEA_CBA(multi_cohort_outcomes_mono, multi_cohort_outcomes_combo):
    """ performs cost-effectiveness and cost-benefit analyses
    :param multi_cohort_outcomes_mono: outcomes of a multi-cohort simulated under mono therapy
    :param multi_cohort_outcomes_combo: outcomes of a multi-cohort simulated under combination therapy
    """

    # define two strategies
    mono_therapy_strategy = Econ.Strategy(
        name='Mono Therapy',
        cost_obs=multi_cohort_outcomes_mono.meanCosts,
        effect_obs=multi_cohort_outcomes_mono.meanQALYs,
        color='green')
    combo_therapy_strategy = Econ.Strategy(
        name='Combination Therapy',
        cost_obs=multi_cohort_outcomes_combo.meanCosts,
        effect_obs=multi_cohort_outcomes_combo.meanQALYs,
        color='blue')

    # do CEA
    CEA = Econ.CEA(strategies=[mono_therapy_strategy, combo_therapy_strategy],
                   if_paired=True)

    # show the cost-effectiveness plane
    CEA.plot_CE_plane(title='Cost-Effectiveness Analysis',
                      x_label='Additional Discounted QALY',
                      y_label='Additional Discounted Cost',
                      fig_size=(6, 5),
                      add_clouds=True,
                      transparency=0.2)

    # report the CE table
    CEA.build_CE_table(
        interval_type='p',  # uncertainty (projection) interval
        alpha=D.ALPHA,
        cost_digits=0,
        effect_digits=2,
        icer_digits=2,
        file_name='CETable.csv')

    # CBA
    NBA = Econ.CBA(strategies=[mono_therapy_strategy, combo_therapy_strategy],
                   wtp_range=(0, 50000),
                   if_paired=True)
    # show the net monetary benefit figure
    NBA.plot_incremental_nmbs(
        title='Cost-Benefit Analysis',
        x_label='Willingness-To-Pay for One Additional QALY ($)',
        y_label='Incremental Net Monetary Benefit ($)',
        interval_type='p',
        show_legend=True,
        figure_size=(6, 5),
    )
Beispiel #6
0
def report_CEA_CBA(sim_outcomes_none, sim_outcomes_anti):
    """ performs cost-effectiveness and cost-benefit analyses
    :param sim_outcomes_mono: outcomes of a cohort simulated under mono therapy
    :param sim_outcomes_combo: outcomes of a cohort simulated under combination therapy
    """

    # define two strategies
    no_therapy_strategy = Econ.Strategy(name='No Anticoagulation ',
                                        cost_obs=sim_outcomes_none.costs,
                                        effect_obs=sim_outcomes_none.utilities,
                                        color='green')
    anti_therapy_strategy = Econ.Strategy(
        name='With Anticoagulation',
        cost_obs=sim_outcomes_anti.costs,
        effect_obs=sim_outcomes_anti.utilities,
        color='blue')

    # do CEA
    CEA = Econ.CEA(strategies=[no_therapy_strategy, anti_therapy_strategy],
                   if_paired=False)

    # plot cost-effectiveness figure
    CEA.plot_CE_plane(title='Cost-Effectiveness Analysis',
                      x_label='Additional QALYs',
                      y_label='Additional Cost',
                      interval_type='c',
                      x_range=(-0.5, 1),
                      y_range=(-1000, 10000))

    # report the CE table
    CEA.build_CE_table(interval_type='c',
                       alpha=D.ALPHA,
                       cost_digits=0,
                       effect_digits=2,
                       icer_digits=2,
                       file_name='CETable.csv')

    # CBA
    NBA = Econ.CBA(strategies=[no_therapy_strategy, anti_therapy_strategy],
                   wtp_range=[0, 50000],
                   if_paired=False)
    # show the net monetary benefit figure
    NBA.plot_incremental_nmbs(title='Cost-Benefit Analysis',
                              x_label='Willingness-to-pay per QALY ($)',
                              y_label='Incremental Net Monetary Benefit ($)',
                              interval_type='c',
                              show_legend=True,
                              figure_size=(6, 5))
Beispiel #7
0
    def update(self, t, current_state, next_state):

        cost = 0.5 * (self.params.annualStateCosts[current_state.value] +
                      self.params.annualStateCosts[next_state.value])

        utility = 0.5 * (self.params.annualStateUtilities[current_state.value]
                         + self.params.annualStateUtilities[next_state.value])

        self.totalDiscountedCost += Econ.pv_single_payment(
            payment=cost,
            discount_rate=self.params.discountRate / 2,
            discount_period=2 * t + 1)
        self.totalDiscountedUtility += Econ.pv_single_payment(
            payment=utility,
            discount_rate=self.params.discountRate / 2,
            discount_period=2 * t + 1)
Beispiel #8
0
import SimPy.EconEval as Econ


print('Present value of $10 collected in year 20 at discount rate 5%:')
print(Econ.pv_single_payment(payment=10, discount_rate=0.05, discount_period=20))

print('\nPresent value of $10 collected in year 20 at discount rate 5% (discounted continuously):')
print('These 2 numbers should be almost the same:')
print(Econ.pv_single_payment(payment=10, discount_rate=0.05,
                             discount_period=20, discount_continuously=True))
print(Econ.pv_single_payment(payment=10, discount_rate=0.05 / 100,
                             discount_period=20 * 100, discount_continuously=False))

print('\nPresent value of a continuous payment of $10 over the period [10, 20] at discount rate 5%:')
print(Econ.pv_continuous_payment(payment=10, discount_rate=0.05, discount_period=(10, 20)))
print('\nPresent value of a continuous payment of $10 over the period [10, 20] at discount rate 0%:')
print(Econ.pv_continuous_payment(payment=10, discount_rate=0, discount_period=(10, 20)))

print('\nEquivalent annual value of $50 over 10 years at discount rate 5%:')
print(Econ.equivalent_annual_value(present_value=50, discount_rate=0.05, discount_period=10))
Beispiel #9
0
from SimPy import EconEval as EV

S0 = EV.Strategy(name='Base', cost_obs=[100], effect_obs=[1])
S1 = EV.Strategy(name='A1', cost_obs=[800], effect_obs=[0.5])
S2 = EV.Strategy(name='A2', cost_obs=[2000], effect_obs=[10])
S3 = EV.Strategy(name='A3', cost_obs=[500], effect_obs=[7])
S4 = EV.Strategy(name='A4', cost_obs=[-100], effect_obs=[2])
S5 = EV.Strategy(name='A5', cost_obs=[200], effect_obs=[2])
S6 = EV.Strategy(name='A6', cost_obs=[1000], effect_obs=[7.2])
S7 = EV.Strategy(name='A7', cost_obs=[1100], effect_obs=[7.3])

cea = EV.CEA(strategies=[S0, S1, S2, S3, S4, S5, S6, S7],
             if_paired=False,
             health_measure='u')

# show the ce plane:
cea.plot_CE_plane()

# build table
cea.build_CE_table(interval_type='n')

print('On frontier')
frontier_strategies = cea.get_strategies_on_frontier()
for i, s in enumerate(frontier_strategies):
    print(s.name)
    if i > 0:
        print('incCost:', s.incCost.get_mean())
        print('incEffect:', s.incEffect.get_mean())
        print('ICER:', s.icer.get_ICER())
import SimPy.EconEval as EconEval

np.random.seed(573)

cost_base = np.random.normal(loc=10000, scale=100, size=1000)
effect_base = np.random.normal(loc=1, scale=.1, size=1000)
cost_intervention = np.random.normal(loc=20000, scale=200, size=1000)
effect_intervention = np.random.normal(loc=2, scale=.2, size=1000)

print('')

# ICER calculation assuming paired observations
ICER_paired = EconEval.ICER_Paired(name='Testing paired ICER',
                                   costs_new=cost_intervention,
                                   effects_new=effect_intervention,
                                   costs_base=cost_base,
                                   effects_base=effect_base)
print('Paired ICER:'
      '\n\tICER: {} '
      '\n\tCI (boostrap): {} '
      '\n\tCI (Bayesian): {} '
      '\n\tPI: {}'.format(ICER_paired.get_ICER(), ICER_paired.get_CI(0.05),
                          ICER_paired.get_CI(0.05, method='Bayesian'),
                          ICER_paired.get_PI(0.05)))

# ICER calculation assuming independent observations
ICER_indp = EconEval.ICER_Indp('Testing independent ICER',
                               costs_new=cost_intervention,
                               effects_new=effect_intervention,
                               costs_base=cost_base,
import numpy as np

from SimPy import EconEval as EV

np.random.seed(seed=1)

S0 = EV.Strategy(name='Base',
                 cost_obs=np.random.normal(loc=100, scale=10, size=100),
                 effect_obs=np.random.normal(loc=1, scale=.2, size=100),
                 color='red')
S1 = EV.Strategy(name='A1',
                 cost_obs=np.random.normal(loc=800, scale=50, size=100),
                 effect_obs=np.random.normal(loc=0.5, scale=0.1, size=100),
                 color='blue')
S2 = EV.Strategy(name='A2',
                 cost_obs=np.random.normal(loc=2000, scale=200, size=100),
                 effect_obs=np.random.normal(loc=10, scale=1, size=100),
                 color='green')
S3 = EV.Strategy(name='A3',
                 cost_obs=np.random.normal(loc=500, scale=50, size=100),
                 effect_obs=np.random.normal(loc=7, scale=1, size=100),
                 color='orange')
S4 = EV.Strategy(name='A4',
                 cost_obs=np.random.normal(loc=-100, scale=10, size=100),
                 effect_obs=np.random.normal(loc=2, scale=0.1, size=100),
                 color='purple')

cea = EV.CEA(strategies=[S0, S1, S2, S3, S4], if_paired=False, health_measure='u')

print('On frontier')
for s in cea.get_strategies_on_frontier():
Beispiel #12
0
    def populate_sets_of_scenarios(list_of_scenario_sets,
                                   save_cea_results=False,
                                   colors_of_scenarios=None,
                                   interval_type='n',
                                   effect_multiplier=1,
                                   cost_multiplier=1,
                                   switch_cost_effect_on_figure=False,
                                   wtp_range=None):
        """
        :param list_of_scenario_sets: (list) of sets of scenarios
        :param save_cea_results: set it to True if the CE table should be generated
        :param colors_of_scenarios: (dictionary) of colors for scenarios
        :param interval_type: select from Econ.Interval (no interval, CI, or PI)
        :param effect_multiplier:
        :param cost_multiplier:
        :param switch_cost_effect_on_figure: displays cost on the x-axis and effect on the y-axis
        :param wtp_range: for net monetary benefit analysis
        """

        # populate series to display on the cost-effectiveness plane
        for i, scenario_set in enumerate(list_of_scenario_sets):

            if scenario_set.ifPopulated:
                continue

            # create the base strategy
            scn = scenario_set.scenarioDF.scenarios['Base']
            base_strategy = Econ.Strategy(
                name='Base',
                label='Base',
                cost_obs=scn.outcomes[COST_MEASURE],
                effect_obs=scn.outcomes[HEALTH_MEASURE],
                color=None
                if colors_of_scenarios is None else colors_of_scenarios[0])

            # add base
            scenario_set.strategies = [base_strategy]
            # add other scenarios
            i = 0
            for key, scenario in scenario_set.scenarioDF.scenarios.items():
                # add only non-Base strategies that can be on this series
                if scenario.name != 'Base' and scenario_set.if_acceptable(
                        scenario):

                    # find labels of each strategy
                    label_list = []
                    for varCon in scenario_set.varConditions:
                        if varCon.ifIncludedInLabel:

                            # value of this variable
                            value = scenario.variables[varCon.varName]
                            # if there is not label rules
                            if varCon.labelRules is None:
                                if varCon.labelFormat == '':
                                    label_list.append(str(value) + ',')
                                else:
                                    label_list.append(
                                        varCon.labelFormat.format(value) +
                                        ', ')
                            else:
                                label = varCon.get_label(value)
                                if label == '':
                                    pass
                                else:
                                    label_list.append(label + ', ')

                    for outcomeCon in scenario_set.outcomeConditions:
                        if outcomeCon.ifIncludedInLabel:

                            # value of this variable
                            value = Stat.SummaryStat(
                                name=outcomeCon.outcomeName,
                                data=scenario.outcomes[
                                    outcomeCon.outcomeName]).get_mean()
                            # if there is not label rules
                            if outcomeCon.labelRules is None:
                                if outcomeCon.labelFormat == '':
                                    label_list.append(str(value) + ',')
                                else:
                                    label_list.append(
                                        outcomeCon.labelFormat.format(value) +
                                        ', ')
                            else:
                                label = outcomeCon.get_label(value)
                                if label == '':
                                    pass
                                else:
                                    label_list.append(label + ', ')

                    label = ''.join(str(x) for x in label_list)

                    if len(label) > 0:
                        if label[-1] == ' ' or label[-1] == ',':
                            label = label[:-1]
                        if label[-1] == ' ' or label[-1] == ',':
                            label = label[:-1]

                    # legends
                    scenario_set.legend.append(label)

                    # color of this strategy
                    color = None
                    if colors_of_scenarios is not None:
                        color = colors_of_scenarios[i + 1]

                    if scenario_set.xyLabelsProvided:
                        label = scenario_set.xyLabels[i]

                    scenario_set.strategies.append(
                        Econ.Strategy(
                            name=scenario.name,
                            label=label,
                            cost_obs=scenario.outcomes[COST_MEASURE],
                            effect_obs=scenario.outcomes[HEALTH_MEASURE],
                            color=color))
                    i += 1

            # do CEA on this series
            scenario_set.build_CE_curve(
                save_cea_results=save_cea_results,
                interval_type=interval_type,
                effect_multiplier=effect_multiplier,
                cost_multiplier=cost_multiplier,
                switch_cost_effect_on_figure=switch_cost_effect_on_figure,
                wtp_range=wtp_range)

            scenario_set.ifPopulated = True
Beispiel #13
0
    def build_CE_curve(self,
                       save_cea_results=False,
                       interval_type='n',
                       effect_multiplier=1,
                       cost_multiplier=1,
                       switch_cost_effect_on_figure=False,
                       wtp_range=None):

        # cost-effectiveness analysis
        self.CEA = Econ.CEA(self.strategies,
                            if_paired=True,
                            health_measure='d')

        # CBA
        if wtp_range is not None:
            self.CBA = Econ.CBA(self.strategies,
                                wtp_range=wtp_range,
                                if_paired=True,
                                health_measure='d')

        # if to save the results of the CEA
        if save_cea_results:
            self.CEA.build_CE_table(interval_type=interval_type,
                                    file_name='CEA Table-' + self.name +
                                    '.csv',
                                    cost_multiplier=cost_multiplier,
                                    effect_multiplier=effect_multiplier,
                                    effect_digits=0)

        # if the CE frontier should be calculated
        if self.ifFindFrontier:
            # find the (x, y)'s of strategies on the frontier
            for idx, strategy in enumerate(
                    self.CEA.get_strategies_on_frontier()):
                if switch_cost_effect_on_figure:
                    self.frontierXValues.append(strategy.dCost.get_mean() *
                                                cost_multiplier)
                    self.frontierYValues.append(strategy.dEffect.get_mean() *
                                                effect_multiplier)
                else:
                    self.frontierXValues.append(strategy.dEffect.get_mean() *
                                                effect_multiplier)
                    self.frontierYValues.append(strategy.dCost.get_mean() *
                                                cost_multiplier)

                self.frontierLabels.append(strategy.name)

                if interval_type != 'n':
                    effect_interval = strategy.dEffect.get_interval(
                        interval_type=interval_type,
                        alpha=ALPHA,
                        multiplier=effect_multiplier)
                    cost_interval = strategy.dCost.get_interval(
                        interval_type=interval_type,
                        alpha=ALPHA,
                        multiplier=effect_multiplier)
                    if switch_cost_effect_on_figure:
                        self.frontierYIntervals.append(effect_interval)
                        self.frontierXIntervals.append(cost_interval)
                    else:
                        self.frontierXIntervals.append(effect_interval)
                        self.frontierYIntervals.append(cost_interval)

        #else:  # the CE frontier needs not to be calculated

        # find the (x, y) values of strategies to display on CE plane
        # remove the base strategy
        if not self.xyLabelsProvided:
            self.xyLabels = []
        for strategy in [s for s in self.CEA.strategies if s.idx > 0]:
            if switch_cost_effect_on_figure:
                self.allDeltaEffects = np.append(
                    self.allDeltaEffects,
                    strategy.dEffectObs * effect_multiplier)
                self.allDeltaCosts = np.append(
                    self.allDeltaCosts, strategy.dCostObs * cost_multiplier)
                self.xValues.append(strategy.dCost.get_mean() *
                                    cost_multiplier)
                self.yValues.append(strategy.dEffect.get_mean() *
                                    effect_multiplier)

                self.xValuesByScenario.append(strategy.dCostObs *
                                              cost_multiplier)
                self.yValuesByScenario.append(strategy.dEffectObs *
                                              effect_multiplier)
            else:
                self.allDeltaEffects = np.append(
                    self.allDeltaEffects,
                    strategy.effectObs * effect_multiplier)
                self.allDeltaCosts = np.append(
                    self.allDeltaCosts, strategy.costObs * cost_multiplier)
                self.xValues.append(strategy.dEffect.get_mean() *
                                    effect_multiplier)
                self.yValues.append(strategy.dCost.get_mean() *
                                    cost_multiplier)

                self.xValuesByScenario.append(strategy.dEffectObs *
                                              effect_multiplier)
                self.yValuesByScenario.append(strategy.dCostObs *
                                              cost_multiplier)

            if not self.xyLabelsProvided:
                self.xyLabels.append(strategy.label)

            if interval_type != 'n':
                effect_interval = strategy.dEffect.get_interval(
                    interval_type=interval_type,
                    alpha=ALPHA,
                    multiplier=effect_multiplier)
                cost_interval = strategy.dCost.get_interval(
                    interval_type=interval_type,
                    alpha=ALPHA,
                    multiplier=cost_multiplier)
                # print(strategy.name, cost_interval, effect_interval)
                if switch_cost_effect_on_figure:
                    self.yIntervals.append(effect_interval)
                    self.xIntervals.append(cost_interval)
                else:
                    self.xIntervals.append(effect_interval)
                    self.yIntervals.append(cost_interval)
Beispiel #14
0
import numpy as np

from SimPy import EconEval as ce

N = 100

np.random.seed(573)
s_center = np.array([[10000, 0.2], [20000, 0.7], [50000, 1.2]])

s0 = ce.Strategy("s0",
                 s_center[0, 0] + np.random.normal(0, 1000, N),
                 s_center[0, 1] + np.random.normal(0, 0.01, N),
                 color='red')
s1 = ce.Strategy("s1",
                 s_center[1, 0] + np.random.normal(0, 1000, N),
                 s_center[1, 1] + np.random.normal(0, 0.01, N),
                 color='blue')
s2 = ce.Strategy("s2",
                 s_center[2, 0] + np.random.normal(0, 1000, N),
                 s_center[2, 1] + np.random.normal(0, 0.05, N),
                 color='green')

cea = ce.CEA([s0, s1, s2], if_paired=True)
cea.plot_CE_plane()

nmb_paired = ce.CBA([s0, s1, s2], wtp_range=[0, 100000], if_paired=True)
nmb_indp = ce.CBA([s0, s1, s2], wtp_range=[0, 100000],
                  if_paired=False)  # list of frontier strategies as input

# Try NMB_Lines figure - paired CI
nmb_paired.plot_incremental_nmbs(title="deltaNMB lines for paired CI",
import SimPy.EconEval as EconEval

np.random.seed(573)

cost_base = np.random.normal(loc=10000, scale=100, size=1000)
effect_base = np.random.normal(loc=2, scale=.1, size=1000)
cost_intervention = np.random.normal(loc=20000, scale=200, size=1000)
effect_intervention = np.random.normal(loc=1, scale=.2, size=1000)

print('')

# ICER calculation assuming paired observations
ICER_paired = EconEval.ICER_Paired('Testing paired ICER',
                                   cost_intervention,
                                   effect_intervention,
                                   cost_base,
                                   effect_base,
                                   health_measure='d')
print(
    'Paired ICER:\n\tICER: {} \n\tCI (boostrap): {} \n\tCI (Bayesian): {} \n\tPI: '
    .format(ICER_paired.get_ICER(), ICER_paired.get_CI(0.05, 1000),
            ICER_paired.get_CI(0.05, 1000, method='Bayesian'),
            ICER_paired.get_PI(0.05)))

# ICER calculation assuming independent observations
ICER_indp = EconEval.ICER_Indp('Testing independent ICER',
                               cost_intervention,
                               effect_intervention,
                               cost_base,
                               effect_base,
                               health_measure='d')
Beispiel #16
0
import numpy as np

from SimPy import EconEval as ce

np.random.seed(573)
# create the centers of strategies
s_center = np.random.normal(0, 5000, (10, 2))

s0 = ce.Strategy("s1", s_center[0, 0] + np.random.normal(0, 200, 10),
                 s_center[0, 1] + np.random.normal(0, 200, 10))
s1 = ce.Strategy("s2", s_center[1, 0] + np.random.normal(0, 200, 10),
                 s_center[1, 1] + np.random.normal(0, 100, 10))
s2 = ce.Strategy("s3", s_center[2, 0] + np.random.normal(0, 200, 10),
                 s_center[2, 1] + np.random.normal(0, 200, 10))
s3 = ce.Strategy("s4", s_center[3, 0] + np.random.normal(0, 200, 10),
                 s_center[3, 1] + np.random.normal(0, 200, 10))
s4 = ce.Strategy("s5", s_center[4, 0] + np.random.normal(0, 200, 10),
                 s_center[4, 1] + np.random.normal(0, 200, 10))
s5 = ce.Strategy("s6", s_center[5, 0] + np.random.normal(0, 200, 10),
                 s_center[5, 1] + np.random.normal(0, 200, 10))
s6 = ce.Strategy("s7", s_center[6, 0] + np.random.normal(0, 200, 10),
                 s_center[6, 1] + np.random.normal(0, 200, 10))
s7 = ce.Strategy("s8", s_center[7, 0] + np.random.normal(0, 200, 10),
                 s_center[7, 1] + np.random.normal(0, 200, 10))
s8 = ce.Strategy("s9", s_center[8, 0] + np.random.normal(0, 200, 10),
                 s_center[8, 1] + np.random.normal(0, 200, 10))
s9 = ce.Strategy("s10", s_center[9, 0] + np.random.normal(0, 200, 10),
                 s_center[9, 1] + np.random.normal(0, 200, 10))

# create a CEA object -- unpaired
myCEA = ce.CEA([s0, s1, s2, s3, s4, s5, s6, s7, s8, s9], if_paired=False)