Beispiel #1
0
def main(night_name=None, reffile=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with reference file being None (i.e. get from sys.argv)
    if reffile is None:
        customargs = spirouStartup.GetCustomFromRuntime(p, [0], [str],
                                                        ['reffile'])
    else:
        customargs = dict(reffile=reffile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p, night_name, customargs=customargs,
                                    mainfitsfile='reffile',
                                    mainfitsdir='reduced')
    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE'],
                                                   skipcheck=True)
    p['REFFILENAME'] = reffilename
    p.set_source('REFFILENAME', __NAME__ + '.main()')
    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    data, hdr, nbo, nx = spirouImage.ReadData(p, p['REFFILENAME'])
    # ----------------------------------------------------------------------
    # Add keys and save file
    # ----------------------------------------------------------------------
    newfilename = p['REFFILE'].replace('.fits', '_edit.fits')
    newpath = os.path.join(p['ARG_FILE_DIR'], newfilename)
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # set the version
    hdict = spirouImage.AddKey(p, hdict, HEADER_KEY, value=HEADER_VALUE)
    # log saving
    wmsg = 'Writing file {0} to {1}'
    WLOG(p, '', wmsg.format(newfilename, p['ARG_FILE_DIR']))
    # save drift values
    p = spirouImage.WriteImage(p, newpath, data, hdict)
    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #2
0
def main(night_name=None, files=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    files,
                                    mainfitsdir='reduced')
    p = spirouStartup.InitialFileSetup(p, calibdb=True)
    # set up function name
    main_name = __NAME__ + '.main()'

    # ----------------------------------------------------------------------
    # load up first file
    # ----------------------------------------------------------------------
    # construct loc parameter dictionary for storing data
    loc = ParamDict()
    # read first file and assign values
    rdata = spirouImage.ReadImage(p, p['FITSFILENAME'])
    loc['DATA'], loc['DATAHDR'] = rdata[:2]

    # Get output key
    loc['OUTPUT'] = loc['DATAHDR'][p['KW_OUTPUT'][0]]
    # set source
    source = main_name + '+ spirouImage.ReadParams()'
    loc.set_source('OUTPUT', source)

    # ----------------------------------------------------------------------
    # Get database files
    # ----------------------------------------------------------------------
    # get current telluric maps from telluDB
    files, output_codes = [], []
    # filter by object name (only keep OBJNAME objects) and only keep
    #   unique filenames
    use_files = []
    for it in range(len(files)):
        # check that OUTPUT is correct
        cond1 = p['KW_OUTPUT'] in output_codes[it]
        # check that filename is not already used
        cond2 = files[it] not in use_files
        # append to file list if criteria correct
        if cond1 and cond2:
            use_files.append(files[it])

    # log if we have no files
    if len(use_files) == 0:
        wmsg = 'No files found for OUTPUT ="{0}" skipping'
        WLOG(p, 'warning', wmsg.format(loc['KW_OUTPUT']))
        # End Message
        wmsg = 'Recipe {0} has been successfully completed'
        WLOG(p, 'info', wmsg.format(p['PROGRAM']))
        # return a copy of locally defined variables in the memory
        return dict(locals())
    else:
        # log how many found
        wmsg = 'N={0} files found for OUTPUT="{1}"'
        WLOG(p, '', wmsg.format(len(use_files), loc['OUTPUT']))

    # ----------------------------------------------------------------------
    # Set up storage for cubes (NaN arrays)
    # ----------------------------------------------------------------------
    # set up flat size
    dims = [loc['DATA'].shape[0], loc['DATA'].shape[1], len(use_files)]
    flatsize = np.product(dims)
    # create NaN filled storage
    big_cube = np.repeat([np.nan], flatsize).reshape(*dims)
    big_cube0 = np.repeat([np.nan], flatsize).reshape(*dims)

    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
        # get master wave map
        loc['MASTERWAVEFILE'] = spirouDB.GetDatabaseMasterWave(p)
    # read master wave map
    mout = spirouImage.GetWaveSolution(p,
                                       filename=loc['MASTERWAVEFILE'],
                                       return_wavemap=True,
                                       quiet=True,
                                       fiber=wave_fiber)
    loc['MASTERWAVEPARAMS'], loc['MASTERWAVE'], loc['WSOURCE'] = mout
    keys = ['MASTERWAVEPARAMS', 'MASTERWAVE', 'MASTERWAVEFILE', 'WSOURCE']
    loc.set_sources(keys, main_name)

    # ----------------------------------------------------------------------
    # Loop through input files
    # ----------------------------------------------------------------------
    base_filelist, berv_list = [], []
    # loop through files
    for it, filename in enumerate(use_files):
        # get base filenmae
        basefilename = os.path.basename(filename)
        # append basename to file list
        base_filelist.append(basefilename)
        # ------------------------------------------------------------------
        # Load the data for this file
        tdata, thdr, _, _ = spirouImage.ReadImage(p, filename)
        # ------------------------------------------------------------------
        # log stats
        wmsg = 'Processing file {0} of {1} file={2}'
        wargs = [it + 1, len(use_files), basefilename]
        WLOG(p, '', wmsg.format(*wargs))
        # ------------------------------------------------------------------
        # add to cube storage
        big_cube0[:, :, it] = tdata

    # ----------------------------------------------------------------------
    # Save cubes to file
    # ----------------------------------------------------------------------
    # get raw file name
    raw_in_file = os.path.basename(p['FITSFILENAME'])
    # construct file names
    outfile = raw_in_file.replace('.fits', '_stack.fits')
    tag = loc['OUTPUT'] + '_STACK'
    # log big cube 1
    wmsg1 = 'Saving bigcube to file {0}'.format(os.path.basename(outfile))

    # hdict is first file keys
    hdict = spirouImage.CopyOriginalKeys(loc['DATAHDR'])
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['MASTERWAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    # add file list to header
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_OBJFILELIST'],
                                     values=base_filelist)
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_OBJBERVLIST'],
                                     values=berv_list)
    # add wave solution coefficients
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_WAVE_PARAM'],
                                     values=loc['MASTERWAVEPARAMS'])
    # log big cube 0
    wmsg = 'Saving bigcube0 to file {0}'.format(os.path.basename(outfile))
    # save big cube 0
    big_cube_s0 = np.swapaxes(big_cube0, 1, 2)
    p = spirouImage.WriteImageMulti(p, outfile, big_cube_s0, hdict)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, reffile=None):
    """
    cal_DRIFTPEAK_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_DRIFTPEAK_E2DS_spirou.py [night_directory] [reffile]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param reffile: string, the reference file to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with reference file being None (i.e. get from sys.argv)
    if reffile is None:
        customargs = spirouStartup.GetCustomFromRuntime(
            p, [0], [str], ['reffile'])
    else:
        customargs = dict(reffile=reffile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='reffile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE'])
    p['REFFILENAME'] = reffilename
    p.set_source('REFFILENAME', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    speref, hdr, nbo, nx = spirouImage.ReadData(p, p['REFFILENAME'])
    # add to loc
    loc = ParamDict()
    loc['SPEREF'] = speref
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['SPEREF', 'NUMBER_ORDERS'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get lamp type
    # ----------------------------------------------------------------------
    # get lamp type
    if p['KW_EXT_TYPE'][0] in hdr:
        ext_type = hdr[p['KW_EXT_TYPE'][0]]
        drift_types = p['DRIFT_PEAK_ALLOWED_TYPES'].keys()
        found = False
        for kind in drift_types:
            if ext_type == kind:
                loc['LAMP'] = p['DRIFT_PEAK_ALLOWED_TYPES'][kind]
                found = True
        if not found:
            eargs1 = [p['KW_EXT_TYPE'][0], ' or '.join(drift_types)]
            emsg1 = (
                'Wrong type of image for Drift, header key "{0}" should be'
                '{1}'.format(*eargs1))
            emsg2 = '\tPlease check DRIFT_PEAK_ALLOWED_TYPES'
            WLOG(p, 'error', [emsg1, emsg2])
    else:
        emsg = 'Header key = "{0}" missing from file {1}'
        eargs = [p['KW_EXT_TYPE'][0], p['REFFILENAME']]
        WLOG(p, 'error', emsg.format(*eargs))
    loc.set_source('LAMP', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    source = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    _, loc['WAVE'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVE', 'WAVEFILE', 'WSOURCE'], source)

    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # get flat
    p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])
    # correct for flat file
    loc['SPEREF'] = loc['SPEREF'] / loc['FLAT']

    # ----------------------------------------------------------------------
    # Background correction
    # ----------------------------------------------------------------------
    # test whether we want to subtract background
    if p['IC_DRIFT_BACK_CORR']:
        # Loop around the orders
        for order_num in range(loc['NUMBER_ORDERS']):
            # get the box size from constants
            bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
            # Measurethe min and max flux
            miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num],
                                                  bsize)
            # subtract off the background (miny)
            loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny

    # ----------------------------------------------------------------------
    # Identify FP peaks in reference file
    # ----------------------------------------------------------------------
    # log that we are identifying peaks
    wmsg = 'Identification of lines in reference file: {0}'
    WLOG(p, '', wmsg.format(p['REFFILE']))
    # get the position of FP peaks from reference file
    loc = spirouRV.CreateDriftFile(p, loc)

    # ----------------------------------------------------------------------
    # Removal of suspiciously wide FP lines
    # ----------------------------------------------------------------------
    loc = spirouRV.RemoveWidePeaks(p, loc)

    # ----------------------------------------------------------------------
    # Get reference drift
    # ----------------------------------------------------------------------
    # are we using gaussfit?
    gaussfit = p['DRIFT_PEAK_GETDRIFT_GAUSSFIT']
    # get drift
    loc['XREF'] = spirouRV.GetDrift(p,
                                    loc['SPEREF'],
                                    loc['ORDPEAK'],
                                    loc['XPEAK'],
                                    gaussfit=gaussfit)
    loc.set_source('XREF', __NAME__ + '/main()')
    # remove any drifts that are zero (i.e. peak not measured
    loc = spirouRV.RemoveZeroPeaks(p, loc)

    # ------------------------------------------------------------------
    # Reference plots
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        sPlt.drift_plot_selected_wave_ref(p, loc)

    # ------------------------------------------------------------------
    # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from
    #    ref file
    # ------------------------------------------------------------------
    # get files
    listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr)
    # get the number of files
    nfiles = len(listfiles)
    # Log the number of files found
    wmsgs = [
        'Number of files found on directory = {0}'.format(nfiles),
        '\tExtensions allowed:'
    ]
    for listtype in listtypes:
        wmsgs.append('\t\t - {0}'.format(listtype))
    WLOG(p, 'info', wmsgs)

    # ------------------------------------------------------------------
    # Set up Extract storage for all files
    # ------------------------------------------------------------------
    # decide whether we need to skip (for large number of files)
    if len(listfiles) >= p['DRIFT_NLARGE']:
        skip = p['DRIFT_PEAK_FILE_SKIP']
        nfiles = int(nfiles / skip)
    else:
        skip = 1
    # set up storage
    loc['DRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['DRIFT_LEFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['DRIFT_RIGHT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['ERRDRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['DELTATIME'] = np.zeros(nfiles)
    loc['MEANRV'] = np.zeros(nfiles)
    loc['MEANRV_LEFT'] = np.zeros(nfiles)
    loc['MEANRV_RIGHT'] = np.zeros(nfiles)
    loc['MERRDRIFT'] = np.zeros(nfiles)
    loc['FLUXRATIO'] = np.zeros(nfiles)
    # add sources
    source = __NAME__ + '/main()'
    keys = [
        'drift', 'drift_left', 'drift_right', 'errdrift', 'deltatime',
        'meanrv', 'meanrv_left', 'meanrv_right', 'merrdrift', 'fluxratio'
    ]
    loc.set_sources(keys, source)

    # ------------------------------------------------------------------
    # Loop around all files: correct for dark, reshape, extract and
    #     calculate dvrms and meanpond
    # ------------------------------------------------------------------
    # get the maximum number of orders to use
    nomin = p['IC_DRIFT_PEAK_N_ORDER_MIN']
    nomax = p['IC_DRIFT_PEAK_N_ORDER_MAX']
    # loop around files
    for i_it in range(nfiles):
        # get file for this iteration
        fpfile = listfiles[::skip][i_it]
        # Log the file we are reading
        wmsg = 'Reading file {0}'
        WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1]))
        # ------------------------------------------------------------------
        # read e2ds files and get timestamp
        # ------------------------------------------------------------------
        # read data
        rout = spirouImage.ReadData(p, filename=fpfile, log=False)
        loc['SPE'], hdri, nxi, nyi = rout
        # apply flat
        loc['SPE'] = loc['SPE'] / loc['FLAT']
        # get acqtime
        bjdspe = spirouImage.GetAcqTime(p,
                                        hdri,
                                        name='acqtime',
                                        return_value=1,
                                        kind='julian')
        # ----------------------------------------------------------------------
        # Background correction
        # ----------------------------------------------------------------------
        # test whether we want to subtract background
        if p['IC_DRIFT_BACK_CORR']:
            # Loop around the orders
            for order_num in range(loc['NUMBER_ORDERS']):
                # get the box size from constants
                bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
                # Measurethe min and max flux
                miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num],
                                                      bsize)
                # subtract off the background (miny)
                loc['SPE'][order_num] = loc['SPE'][order_num] - miny

        # ------------------------------------------------------------------
        # calculate flux ratio
        # ------------------------------------------------------------------
        sorder = p['IC_DRIFT_ORDER_PLOT']
        fratio = np.nansum(loc['SPE'][sorder]) / np.nansum(
            loc['SPEREF'][sorder])
        loc['FLUXRATIO'][i_it] = fratio
        # ------------------------------------------------------------------
        # Calculate delta time
        # ------------------------------------------------------------------
        # calculate the time from reference (in hours)
        loc['DELTATIME'][i_it] = (bjdspe - bjdref) * 24
        # ------------------------------------------------------------------
        # Calculate PearsonR coefficient
        # ------------------------------------------------------------------
        pargs = [loc['NUMBER_ORDERS'], loc['SPE'], loc['SPEREF']]
        correlation_coeffs = spirouRV.PearsonRtest(*pargs)
        # ----------------------------------------------------------------------
        # Get drift with comparison to the reference image
        # ----------------------------------------------------------------------
        # only calculate drift if the correlation between orders and
        #   reference file is above threshold
        prcut = p['DRIFT_PEAK_PEARSONR_CUT']
        if np.min(correlation_coeffs[nomin:nomax]) > prcut:
            # get drifts for each order
            dargs = [p, loc['SPE'], loc['ORDPEAK'], loc['XREF']]
            x = spirouRV.GetDrift(*dargs, gaussfit=gaussfit)
            # get delta v
            loc['DV'] = (x - loc['XREF']) * loc['VRPEAK']
            # sigma clip
            loc = spirouRV.SigmaClip(loc, sigma=p['DRIFT_PEAK_SIGMACLIP'])
            # work out median drifts per order
            loc = spirouRV.DriftPerOrder(loc, i_it)
            # work out mean drift across all orders
            loc = spirouRV.DriftAllOrders(p, loc, i_it, nomin, nomax)
            # log the mean drift
            wmsg = ('Time from ref= {0:.2f} h - Flux Ratio= {1:.3f} '
                    '- Drift mean= {2:.2f} +- {3:.2f} m/s')
            wargs = [
                loc['DELTATIME'][i_it], loc['FLUXRATIO'][i_it],
                loc['MEANRV'][i_it], loc['MERRDRIFT'][i_it]
            ]
            WLOG(p, 'info', wmsg.format(*wargs))
        # else we can't use this extract
        else:
            if p['DRS_PLOT'] > 0:
                # start interactive session if needed
                sPlt.plt.ioff()
                # plot comparison between spe and ref
                sPlt.drift_plot_correlation_comp(p, loc, correlation_coeffs,
                                                 i_it)
                sPlt.plt.show()
                sPlt.plt.close()
                # turn interactive plotting back on
                sPlt.plt.ion()
            # log that we cannot use this extraction
            wmsg1 = 'The correlation of some orders compared to the template is'
            wmsg2 = '   < {0}, something went wrong in the extract.'
            WLOG(p, 'warning', wmsg1)
            WLOG(p, 'warning', wmsg2.format(prcut))
    # ------------------------------------------------------------------
    # peak to peak drift
    driftptp = np.max(loc['MEANRV']) - np.min(loc['MEANRV'])
    driftrms = np.std(loc['MEANRV'])
    # log th etotal drift peak-to-peak and rms
    wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in '
            '{2:.2f} hour')
    wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])]
    WLOG(p, '', wmsg.format(*wargs))

    # ------------------------------------------------------------------
    # Plot of mean drift
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot delta time against median drift
        sPlt.drift_peak_plot_dtime_against_drift(p, loc)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Save drift values to file
    # ------------------------------------------------------------------
    # get raw input file name
    raw_infile = os.path.basename(p['REFFILE'])
    # construct filename
    driftfits, tag = spirouConfig.Constants.DRIFTPEAK_E2DS_FITS_FILE(p)
    driftfitsname = os.path.split(driftfits)[-1]
    # log that we are saving drift values
    wmsg = 'Saving drift values of Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname))
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile)
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # save drift values
    p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict)

    # ------------------------------------------------------------------
    # print .tbl result
    # ------------------------------------------------------------------
    # construct filename
    drifttbl = spirouConfig.Constants.DRIFTPEAK_E2DS_TBL_FILE(p)
    drifttblname = os.path.split(drifttbl)[-1]
    # construct and write table
    columnnames = ['time', 'drift', 'drifterr', 'drift_left', 'drift_right']
    columnformats = ['7.4f', '6.2f', '6.3f', '6.2f', '6.2f']
    columnvalues = [
        loc['DELTATIME'], loc['MEANRV'], loc['MERRDRIFT'], loc['MEANRV_LEFT'],
        loc['MEANRV_RIGHT']
    ]
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    wmsg = 'Average Drift saved in {0} Saved '
    WLOG(p, '', wmsg.format(drifttblname))
    spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst')

    # ------------------------------------------------------------------
    # Plot amp and llpeak
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] and p['DRIFT_PEAK_PLOT_LINE_LOG_AMP']:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot delta time against median drift
        sPlt.drift_peak_plot_llpeak_amps(p, loc)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #4
0
def measure_background_flatfield(p, image, header):
    """
    Measures the background of a flat field image - currently does not work
    as need an interpolation function (see code)

    :param p: parameter dictionary, ParamDict containing constants

            Must contain at least:
                IC_BKGR_WINDOW: int, Half-size of window for background
                                measurements
                GAIN: float, the gain of the image (from HEADER)
                SIGDET: float, the read noise of the image (from HEADER)
                log_opt: string, log option, normally the program name

    :param image: numpy array (2D), the image to measure the background of

    :return background: numpy array (2D), the background image (currently all
                        zeros) as background not implemented
    :return xc: numpy array (1D), the box centers (x positions) used to create
                the background image
    :return yc: numpy array (1D), the box centers (y positions) used to create
                the background image
    :return minlevel: numpy array (2D), the 2 * size -th minimum pixel value
                      of each box for each pixel in the image
    """
    # func_name = __NAME__ + '.measure_background_flatfield()'

    image1 = np.array(image)
    image_med = signal.medfilt(image1, [3, 3])

    # get constants
    size = p['IC_BKGR_WINDOW']
    percent = p['IC_BKGR_PERCENT']
    # create the box centers
    xc = np.arange(size, image_med.shape[0], 2 * size)
    yc = np.arange(size, image_med.shape[1], 2 * size)
    # min level box
    minlevel = np.zeros((len(xc), len(yc)))
    # loop around all boxes with centers xc and yc
    for i_it in range(len(xc)):
        for j_it in range(len(yc)):
            xci, yci = xc[i_it], yc[j_it]
            # get the pixels for this box
            subframe = image_med[xci - size:xci + size,
                                 yci - size:yci + size].ravel()
            # get the (2*size)th minimum pixel
            with warnings.catch_warnings(record=True) as _:
                value = np.nanpercentile(subframe, percent)

            if np.isfinite(value):
                minlevel[i_it, j_it] = value
            else:
                minlevel[i_it, j_it] = 0.0

    # TODO: FIX PROBLEMS: SECTION NEEDS COMMENTING!!!
    gridx1, gridy1 = np.mgrid[size:image_med.shape[0]:2 * size,
                              size:image_med.shape[1]:2 * size]
    gridx2, gridy2 = np.indices(image_med.shape)

    # TODO: FIX PROBLEMS: SECTION NEEDS COMMENTING!!!
    minlevel2 = np.zeros((minlevel.shape[0] + 2, minlevel.shape[1] + 2),
                         dtype=float)
    minlevel2[1:-1, 1:-1] = minlevel
    minlevel2[0, 1:-1] = minlevel[0]
    minlevel2[-1, 1:-1] = minlevel[-1]
    minlevel2[1:-1, 0] = minlevel[:, 0]
    minlevel2[1:-1, -1] = minlevel[:, -1]
    minlevel2[0, 0] = minlevel[0, 0]
    minlevel2[-1, -1] = minlevel[-1, -1]
    minlevel2[0, -1] = minlevel[0, -1]
    minlevel2[-1, 0] = minlevel[-1, 0]

    # TODO: FIX PROBLEMS: SECTION NEEDS COMMENTING!!!
    gridx1c = np.zeros((gridx1.shape[0] + 2, gridx1.shape[1] + 2), dtype=float)
    gridx1c[1:-1, 1:-1] = gridx1
    gridx1c[0, :] = 0
    gridx1c[-1, :] = np.shape(image_med)[0]
    gridx1c[:, 0] = gridx1c[:, 1]
    gridx1c[:, -1] = gridx1c[:, -2]

    # TODO: FIX PROBLEMS: SECTION NEEDS COMMENTING!!!
    gridy1c = np.zeros((gridy1.shape[0] + 2, gridy1.shape[1] + 2), dtype=float)
    gridy1c[1:-1, 1:-1] = gridy1
    gridy1c[:, 0] = 0
    gridy1c[:, -1] = np.shape(image_med)[1]
    gridy1c[0, :] = gridy1c[1, :]
    gridy1c[-1, :] = gridy1c[-2, :]

    # TODO: FIX PROBLEMS: SECTION NEEDS COMMENTING!!!
    points = np.array([gridx1c.ravel(), gridy1c.ravel()]).T
    background = griddata(points, minlevel2.ravel(), (gridx2, gridy2),
                          method='cubic')

    # ----------------------------------------------------------------------
    # Produce DEBUG plot
    # ----------------------------------------------------------------------
    data1 = image - background
    # construct debug background file name
    debug_background, tag = spirouConfig.Constants.BACKGROUND_CORRECT_FILE(p)
    # construct images
    dimages = [data1, background, image1, image_med]
    # construct hdicts
    hdict = spirouImage.CopyOriginalKeys(header)
    drsname = ['DRSNAME', None, 'Extension description']
    hdict1 = spirouImage.AddKey(p, hdict, drsname, value='Corrected')
    hdict2 = spirouImage.AddKey(p, hdict, drsname, value='Background')
    hdict3 = spirouImage.AddKey(p, hdict, drsname, value='Original')
    hdict4 = spirouImage.AddKey(p, hdict, drsname, value='Median')
    dheaders = [hdict1, hdict2, hdict3, hdict4]
    # write debug to file
    spirouImage.WriteImageMulti(p, debug_background, dimages, hdicts=dheaders)
    # ----------------------------------------------------------------------


    # return background, xc, yc and minlevel
    return background, gridx1c, gridy1c, minlevel2
Beispiel #5
0
def main(night_name=None, files=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    files,
                                    mainfitsdir='reduced')
    p = spirouStartup.InitialFileSetup(p, calibdb=True)
    # set up function name
    main_name = __NAME__ + '.main()'

    # ------------------------------------------------------------------
    # Load first file
    # ------------------------------------------------------------------
    loc = ParamDict()
    rd = spirouImage.ReadImage(p, p['FITSFILENAME'])
    loc['DATA'], loc['DATAHDR'], loc['YDIM'], loc['XDIM'] = rd
    loc.set_sources(['DATA', 'DATAHDR', 'XDIM', 'YDIM'], main_name)

    # ------------------------------------------------------------------
    # Get the wave solution
    # ------------------------------------------------------------------
    masterwavefile = spirouDB.GetDatabaseMasterWave(p)
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # read master wave map
    wout = spirouImage.GetWaveSolution(p,
                                       filename=masterwavefile,
                                       return_wavemap=True,
                                       quiet=True,
                                       return_header=True,
                                       fiber=wave_fiber)
    _, loc['WAVE'], loc['WAVEFILE'], _ = wout
    loc.set_sources(['WAVE', 'WAVEFILE'], main_name)
    # get the wave keys
    loc = spirouImage.GetWaveKeys(p, loc, loc['DATAHDR'])

    # ------------------------------------------------------------------
    # Construct convolution kernels (used in GetMolecularTellLines)
    # ------------------------------------------------------------------
    loc = spirouTelluric.ConstructConvKernel1(p, loc)

    # ------------------------------------------------------------------
    # Get molecular telluric lines
    # ------------------------------------------------------------------
    loc = spirouTelluric.GetMolecularTellLines(p, loc)
    # if TAPAS FNAME is not None we generated a new file so should add to tellDB
    if loc['TAPAS_FNAME'] is not None:
        # add to the telluric database
        spirouDB.UpdateDatabaseTellConv(p, loc['TAPAS_FNAME'], loc['DATAHDR'])
        # put file in telluDB
        spirouDB.PutTelluFile(p, loc['TAPAS_ABSNAME'])

    # ----------------------------------------------------------------------
    # load the expected atmospheric transmission
    # ----------------------------------------------------------------------
    # read filename from telluDB
    tapas_file_names = spirouDB.GetDatabaseTellConv(p)
    tapas_file_name = tapas_file_names[-1]
    # load atmospheric transmission
    sp_tapas = np.load(tapas_file_name)
    loc['TAPAS_ALL_SPECIES'] = sp_tapas
    # extract the water and other line-of-sight optical depths
    loc['TAPAS_WATER'] = sp_tapas[1, :]
    loc['TAPAS_OTHERS'] = np.prod(sp_tapas[2:, :], axis=0)
    loc.set_sources(['TAPAS_ALL_SPECIES', 'TAPAS_WATER', 'TAPAS_OTHERS'],
                    main_name)

    # ------------------------------------------------------------------
    # Get master wave solution map
    # ------------------------------------------------------------------
    # get master wave map
    masterwavefile = spirouDB.GetDatabaseMasterWave(p)
    # log process
    wmsg1 = 'Shifting transmission map on to master wavelength grid'
    wmsg2 = '\tFile = {0}'.format(os.path.basename(masterwavefile))
    WLOG(p, '', [wmsg1, wmsg2])
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # read master wave map
    mout = spirouImage.GetWaveSolution(p,
                                       filename=masterwavefile,
                                       return_wavemap=True,
                                       quiet=True,
                                       return_header=True,
                                       fiber=wave_fiber)
    masterwavep, masterwave, masterwaveheader, mwsource = mout
    # get wave acqtimes
    master_acqtimes = spirouDB.GetTimes(p, masterwaveheader)

    # ------------------------------------------------------------------
    # Loop around the files
    # ------------------------------------------------------------------
    # construct extension
    tellu_ext = '{0}_{1}.fits'
    # get current telluric maps from telluDB
    # tellu_db_data = spirouDB.GetDatabaseTellMap(p, required=False)
    # tellu_db_files = tellu_db_data[0]
    # storage for valid output files
    loc['OUTPUTFILES'] = []
    # loop around the files
    for basefilename in p['ARG_FILE_NAMES']:

        # ------------------------------------------------------------------
        # Get absolute path of filename
        # ------------------------------------------------------------------
        filename = os.path.join(p['ARG_FILE_DIR'], basefilename)

        # ------------------------------------------------------------------
        # Read obj telluric file and correct blaze (per order)
        # ------------------------------------------------------------------
        # get image
        sp, shdr, _, _ = spirouImage.ReadImage(p, filename)

        # ------------------------------------------------------------------
        # check that file has valid DPRTYPE
        # ------------------------------------------------------------------
        # get FP_FP DPRTYPE
        p = spirouImage.ReadParam(p, shdr, 'KW_DPRTYPE', 'DPRTYPE', dtype=str)
        # if dprtype is incorrect skip
        if p['DPRTYPE'] not in p['ALLOWED_TELLURIC_DPRTYPES']:
            wmsg1 = 'Skipping file (DPRTYPE incorrect)'
            wmsg2 = '\t DPRTYPE = {0}'.format(p['DPRTYPE'])
            WLOG(p, 'warning', [wmsg1, wmsg2])
            continue

        # get blaze
        p, blaze = spirouImage.ReadBlazeFile(p, shdr)

        # get the blaze percentile
        blaze_p = p['MKTELLU_BLAZE_PERCENTILE']
        # loop through blaze orders, normalize blaze by its peak amplitude
        for order_num in range(sp.shape[0]):
            # normalize the spectrum
            spo, bzo = sp[order_num], blaze[order_num]

            sp[order_num] = spo / np.nanpercentile(spo, blaze_p)
            # normalize the blaze
            blaze[order_num] = bzo / np.nanpercentile(bzo, blaze_p)

        # find where the blaze is bad
        with warnings.catch_warnings(record=True) as _:
            badblaze = blaze < p['MKTELLU_CUT_BLAZE_NORM']
        # set bad blaze to NaN
        blaze[badblaze] = np.nan

        # set to NaN values where spectrum is zero
        zeromask = sp == 0
        sp[zeromask] = np.nan
        # divide spectrum by blaze
        with warnings.catch_warnings(record=True) as _:
            sp = sp / blaze
        # add sp to loc
        loc['SP'] = sp
        loc.set_source('SP', main_name)

        # ----------------------------------------------------------------------
        # Get object name, airmass and berv
        # ----------------------------------------------------------------------
        # Get object name
        loc['OBJNAME'] = spirouImage.GetObjName(p, shdr)
        # Get the airmass
        loc['AIRMASS'] = spirouImage.GetAirmass(p, shdr)
        # Get the Barycentric correction from header
        p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, shdr)
        # set sources
        source = main_name + '+ spirouImage.ReadParams()'
        loc.set_sources(['OBJNAME', 'AIRMASS'], source)

        # ------------------------------------------------------------------
        # get output transmission filename
        outfile, tag1 = spirouConfig.Constants.TELLU_TRANS_MAP_FILE(
            p, filename)
        outfilename = os.path.basename(outfile)
        loc['OUTPUTFILES'].append(outfile)

        # ----------------------------------------------------------------------
        # Load template (if available)
        # ----------------------------------------------------------------------
        # read filename from telluDB
        template_file = spirouDB.GetDatabaseObjTemp(p,
                                                    loc['OBJNAME'],
                                                    required=False)
        # if we don't have a template flag it
        if template_file is None:
            loc['FLAG_TEMPLATE'] = False
            loc['TEMPLATE'] = None
            # construct progres string
            pstring = 'No template found.'
        else:
            loc['FLAG_TEMPLATE'] = True
            # load template
            template, _, _, _ = spirouImage.ReadImage(p, template_file)
            # add to loc
            loc['TEMPLATE'] = template
            # construct progres string
            template_bfile = os.path.basename(template_file)
            pstring = 'Using template {0}'.format(template_bfile)
        # set the source for flag and template
        loc.set_sources(['FLAG_TEMPLATE', 'TEMPLATE'], main_name)

        # ------------------------------------------------------------------
        # log processing file
        wmsg = 'Processing file {0}. {1}'
        WLOG(p, '', [wmsg.format(outfilename, pstring)])

        # ------------------------------------------------------------------
        # Check that basefile is not in blacklist
        # ------------------------------------------------------------------
        blacklist_check = spirouTelluric.CheckBlackList(loc['OBJNAME'])
        if blacklist_check:
            # log black list file found
            wmsg = 'File {0} is blacklisted (OBJNAME={1}). Skipping'
            wargs = [basefilename, loc['OBJNAME']]
            WLOG(p, 'warning', wmsg.format(*wargs))
            # skip this file
            continue

        # ------------------------------------------------------------------
        # deal with applying template to spectrum
        # ------------------------------------------------------------------
        # Requires from loc:
        #           TEMPLATE   (None or template loaded from file)
        #           FLAG_TEMPLATE
        #           WAVE
        #           SP
        #           BERV
        #
        # Returns:
        #           SP (modified if template was used)
        #           TEMPLATE
        #           WCONV
        loc = spirouTelluric.ApplyTemplate(p, loc)

        # ------------------------------------------------------------------
        # calcullate telluric absorption (with a sigma clip loop)
        # ------------------------------------------------------------------
        # Requires from loc:
        #           AIRMASS
        #           WAVE
        #           SP
        #           WCONV
        # Returns:
        #           PASSED   [Bool] True or False
        #           SP_OUT
        #           SED_OUT
        #           RECOV_AIRMASS
        #           RECOV_WATER
        loc = spirouTelluric.CalcTelluAbsorption(p, loc)
        # calculate tranmission map from sp and sed
        transmission_map = loc['SP_OUT'] / loc['SED_OUT']

        # ----------------------------------------------------------------------
        # Quality control
        # ----------------------------------------------------------------------
        # set passed variable and fail message list
        passed, fail_msg = True, []
        qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
        # ----------------------------------------------------------------------
        # if array is completely NaNs it shouldn't pass
        if np.sum(np.isfinite(transmission_map)) == 0:
            fail_msg.append('transmission map is all NaNs')
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append('NaN')
        qc_names.append('image')
        qc_logic.append('image is all NaN')
        # ----------------------------------------------------------------------
        # get SNR for each order from header
        nbo = loc['DATA'].shape[0]
        snr_order = p['QC_MK_TELLU_SNR_ORDER']
        snr = spirouImage.Read1Dkey(p, shdr, p['kw_E2DS_SNR'][0], nbo)
        # check that SNR is high enough
        if snr[snr_order] < p['QC_MK_TELLU_SNR_MIN']:
            fmsg = 'low SNR in order {0}: ({1:.2f} < {2:.2f})'
            fargs = [snr_order, snr[snr_order], p['QC_MK_TELLU_SNR_MIN']]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(snr[snr_order])
        qc_name_str = 'SNR[{0}]'.format(snr_order)
        qc_names.append(qc_name_str)
        qc_logic.append('{0} < {1:.2f}'.format(qc_name_str,
                                               p['QC_MK_TELLU_SNR_ORDER']))
        # ----------------------------------------------------------------------
        # check that the file passed the CalcTelluAbsorption sigma clip loop
        if not loc['PASSED']:
            fmsg = 'File {0} did not converge on a solution in function: {1}'
            fargs = [basefilename, 'spirouTelluric.CalcTelluAbsorption()']
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(basefilename)
        qc_names.append('FILE')
        qc_logic.append('FILE did not converge')
        # ----------------------------------------------------------------------
        # check that the airmass is not too different from input airmass
        airmass_diff = np.abs(loc['RECOV_AIRMASS'] - loc['AIRMASS'])
        fargs = [
            loc['RECOV_AIRMASS'], loc['AIRMASS'], p['QC_MKTELLU_AIRMASS_DIFF']
        ]
        if airmass_diff > p['QC_MKTELLU_AIRMASS_DIFF']:
            fmsg = ('Recovered airmass to de-similar than input airmass.'
                    'Recovered: {0:.3f}. Input: {1:.3f}. QC limit = {2}')
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(airmass_diff)
        qc_names.append('airmass_diff')
        qc_logic.append('airmass_diff > {0:.2f}'
                        ''.format(p['QC_MKTELLU_AIRMASS_DIFF']))
        # ----------------------------------------------------------------------
        # check that the water vapor is within limits
        water_cond1 = loc['RECOV_WATER'] < p['MKTELLU_TRANS_MIN_WATERCOL']
        water_cond2 = loc['RECOV_WATER'] > p['MKTELLU_TRANS_MAX_WATERCOL']
        fargs = [
            p['MKTELLU_TRANS_MIN_WATERCOL'], p['MKTELLU_TRANS_MAX_WATERCOL']
        ]
        if water_cond1 or water_cond2:
            fmsg = ('Recovered water vapor optical depth not between {0:.3f} '
                    'and {1:.3f}')
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(loc['RECOV_WATER'])
        qc_names.append('RECOV_WATER')
        qc_logic.append('RECOV_WATER not between {0:.3f} and {1:.3f}'
                        ''.format(*fargs))
        # ----------------------------------------------------------------------
        # finally log the failed messages and set QC = 1 if we pass the
        # quality control QC = 0 if we fail quality control
        if passed:
            WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
            p['QC'] = 1
            p.set_source('QC', __NAME__ + '/main()')
        else:
            for farg in fail_msg:
                wmsg = 'QUALITY CONTROL FAILED: {0}'
                WLOG(p, 'warning', wmsg.format(farg))
            p['QC'] = 0
            p.set_source('QC', __NAME__ + '/main()')
            continue
        # store in qc_params
        qc_params = [qc_names, qc_values, qc_logic, qc_pass]

        # ------------------------------------------------------------------
        # Save transmission map to file
        # ------------------------------------------------------------------
        # get raw file name
        raw_in_file = os.path.basename(p['FITSFILENAME'])
        # copy original keys
        hdict = spirouImage.CopyOriginalKeys(loc['DATAHDR'])
        # add version number
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        # set the input files
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBBLAZE'],
                                   value=p['BLAZFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBWAVE'],
                                   value=os.path.basename(masterwavefile))
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVESOURCE'],
                                   value=mwsource)
        hdict = spirouImage.AddKey1DList(p,
                                         hdict,
                                         p['KW_INFILE1'],
                                         dim1name='file',
                                         values=p['ARG_FILE_NAMES'])
        # add qc parameters
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
        hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
        # add wave solution date
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_TIME1'],
                                   value=master_acqtimes[0])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_TIME2'],
                                   value=master_acqtimes[1])
        # add wave solution number of orders
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_ORD_N'],
                                   value=masterwavep.shape[0])
        # add wave solution degree of fit
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_LL_DEG'],
                                   value=masterwavep.shape[1] - 1)
        # add wave solution coefficients
        hdict = spirouImage.AddKey2DList(p,
                                         hdict,
                                         p['KW_WAVE_PARAM'],
                                         values=masterwavep)
        # add telluric keys
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_TELLU_AIRMASS'],
                                   value=loc['RECOV_AIRMASS'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_TELLU_WATER'],
                                   value=loc['RECOV_WATER'])
        # write to file
        p = spirouImage.WriteImage(p, outfile, transmission_map, hdict)

        # ------------------------------------------------------------------
        # Add transmission map to telluDB
        # ------------------------------------------------------------------
        if p['QC']:
            # copy tellu file to the telluDB folder
            spirouDB.PutTelluFile(p, outfile)
            # update the master tellu DB file with transmission map
            targs = [
                p, outfilename, loc['OBJNAME'], loc['RECOV_AIRMASS'],
                loc['RECOV_WATER']
            ]
            spirouDB.UpdateDatabaseTellMap(*targs)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, files=None):
    """
    cal_SLIT_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_SLIT_spirou.py [night_directory] [files]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p, night_name, files)
    p = spirouStartup.InitialFileSetup(p, calibdb=True)
    # set the fiber type
    p['FIB_TYP'] = 'AB'
    p.set_source('FIB_TYP', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    p, data, hdr = spirouImage.ReadImageAndCombine(p, framemath='add')

    # ----------------------------------------------------------------------
    # fix for un-preprocessed files
    # ----------------------------------------------------------------------
    data = spirouImage.FixNonPreProcess(p, data)

    # ----------------------------------------------------------------------
    # Get basic image properties
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')

    # ----------------------------------------------------------------------
    # Correction of DARK
    # ----------------------------------------------------------------------
    p, datac = spirouImage.CorrectForDark(p, data, hdr)

    # ----------------------------------------------------------------------
    # Resize image
    # ----------------------------------------------------------------------
    # rotate the image and convert from ADU/s to e-
    data = spirouImage.ConvertToE(spirouImage.FlipImage(p, datac), p=p)
    # convert NaN to zeros
    data0 = np.where(~np.isfinite(data), np.zeros_like(data), data)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'], xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'], yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    data2 = spirouImage.ResizeImage(p, data0, **bkwargs)
    # log change in data size
    WLOG(p, '', ('Image format changed to '
                            '{0}x{1}').format(*data2.shape))

    # ----------------------------------------------------------------------
    # Correct for the BADPIX mask (set all bad pixels to zero)
    # ----------------------------------------------------------------------
    p, data2 = spirouImage.CorrectForBadPix(p, data2, hdr)

    # ----------------------------------------------------------------------
    # Background computation
    # ----------------------------------------------------------------------
    if p['IC_DO_BKGR_SUBTRACTION']:
        # log that we are doing background measurement
        WLOG(p, '', 'Doing background measurement on raw frame')
        # get the bkgr measurement
        bargs = [p, data2, hdr]
        # background, xc, yc, minlevel = spirouBACK.MeasureBackgroundFF(*bargs)
        p, background = spirouBACK.MeasureBackgroundMap(*bargs)
    else:
        background = np.zeros_like(data2)
        p['BKGRDFILE'] = 'None'
        p.set_source('BKGRDFILE', __NAME__ + '.main()')

    # correct data2 with background
    data2 = data2 - background

    # ----------------------------------------------------------------------
    # Log the number of dead pixels
    # ----------------------------------------------------------------------
    # get the number of bad pixels
    n_bad_pix = np.nansum(~np.isfinite(data2))
    n_bad_pix_frac = n_bad_pix * 100 / np.product(data2.shape)
    # Log number
    wmsg = 'Nb dead pixels = {0} / {1:.2f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # ----------------------------------------------------------------------
    # Log the number of dead pixels
    # ----------------------------------------------------------------------
    loc = ParamDict()

    # ----------------------------------------------------------------------
    # Loop around fiber types
    # ----------------------------------------------------------------------
    # set fiber
    p['FIBER'] = p['FIB_TYP']
    # ------------------------------------------------------------------
    # Get localisation coefficients
    # ------------------------------------------------------------------
    # original there is a loop but it is not used --> removed
    p = spirouImage.FiberParams(p, p['FIBER'], merge=True)
    # get localisation fit coefficients
    p, loc = spirouLOCOR.GetCoeffs(p, hdr, loc)

    # ------------------------------------------------------------------
    # Calculating the tilt
    # ------------------------------------------------------------------
    # get the tilt by extracting the AB fibers and correlating them
    loc = spirouImage.GetTilt(p, loc, data2)

    # fit the tilt with a polynomial
    loc = spirouImage.FitTilt(p, loc)
    # log the tilt dispersion
    wmsg = 'Tilt dispersion = {0:.3f} deg'
    WLOG(p, 'info', wmsg.format(loc['RMS_TILT']))

    # ------------------------------------------------------------------
    # Plotting
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plots setup: start interactive plot
        sPlt.start_interactive_session(p)
        # plot image with selected order shown
        sPlt.slit_sorder_plot(p, loc, data2)
        # plot slit tilt angle and fit
        sPlt.slit_tilt_angle_and_fit_plot(p, loc)
        # end interactive section
        sPlt.end_interactive_session(p)

    # ------------------------------------------------------------------
    # Replace tilt by the global fit
    # ------------------------------------------------------------------
    loc['TILT'] = loc['YFIT_TILT']
    oldsource = loc.get_source('tilt')
    loc.set_source('TILT', oldsource + '+{0}/main()'.format(__NAME__))

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # check that tilt rms is below required
    if loc['RMS_TILT'] > p['QC_SLIT_RMS']:
        # add failed message to fail message list
        fmsg = 'abnormal RMS of SLIT angle ({0:.2f} > {1:.2f} deg)'
        fail_msg.append(fmsg.format(loc['RMS_TILT'], p['QC_SLIT_RMS']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(loc['RMS_TILT'])
    qc_names.append('RMS_TILT')
    qc_logic.append('RMS_TILT > {0:.2f}'.format(p['QC_SLIT_RMS']))
    # ----------------------------------------------------------------------
    # check that tilt is less than max tilt required
    max_tilt = np.max(loc['TILT'])
    if max_tilt > p['QC_SLIT_MAX']:
        # add failed message to fail message list
        fmsg = 'abnormal SLIT angle ({0:.2f} > {1:.2f} deg)'
        fail_msg.append(fmsg.format(max_tilt, p['QC_SLIT_MAX']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(max_tilt)
    qc_names.append('max_tilt')
    qc_logic.append('max_tilt > {0:.2f}'.format(p['QC_SLIT_MAX']))
    # ----------------------------------------------------------------------
    # check that tilt is greater than min tilt required
    min_tilt = np.min(loc['TILT'])
    if min_tilt < p['QC_SLIT_MIN']:
        # add failed message to fail message list
        fmsg = 'abnormal SLIT angle ({0:.2f} < {1:.2f} deg)'
        fail_msg.append(fmsg.format(max_tilt, p['QC_SLIT_MIN']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(min_tilt)
    qc_names.append('min_tilt')
    qc_logic.append('min_tilt > {0:.2f}'.format(p['QC_SLIT_MIN']))
    # ----------------------------------------------------------------------
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ----------------------------------------------------------------------
    # Save and record of tilt table
    # ----------------------------------------------------------------------
    # copy the tilt along the orders
    tiltima = np.ones((int(loc['NUMBER_ORDERS']/2), data2.shape[1]))
    tiltima *= loc['TILT'][:, None]
    # get the raw tilt file name
    raw_tilt_file = os.path.basename(p['FITSFILENAME'])
    # construct file name and path
    tiltfits, tag = spirouConfig.Constants.SLIT_TILT_FILE(p)
    tiltfitsname = os.path.basename(tiltfits)
    # Log that we are saving tilt file
    wmsg = 'Saving tilt information in file: {0}'
    WLOG(p, '', wmsg.format(tiltfitsname))
    # Copy keys from fits file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'],
                               value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'],
                               value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBACK'],
                               value=p['BKGRDFILE'])
    hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='file',
                                     values=p['ARG_FILE_NAMES'])
    # add qc parameters
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add tilt parameters as 1d list
    hdict = spirouImage.AddKey1DList(p, hdict, p['KW_TILT'], values=loc['TILT'])
    # write tilt file to file
    p = spirouImage.WriteImage(p, tiltfits, tiltima, hdict)

    # ----------------------------------------------------------------------
    # Update the calibration data base
    # ----------------------------------------------------------------------
    if p['QC']:
        keydb = 'TILT'
        # copy localisation file to the calibDB folder
        spirouDB.PutCalibFile(p, tiltfits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, tiltfitsname, hdr)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, files=None):
    """
    cal_DARK_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_DARK_spirou.py [night_directory] [fitsfilename]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p, night_name, files)
    p = spirouStartup.InitialFileSetup(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    p, data, hdr = spirouImage.ReadImageAndCombine(p, framemath='average')

    # ----------------------------------------------------------------------
    # fix for un-preprocessed files
    # ----------------------------------------------------------------------
    data = spirouImage.FixNonPreProcess(p, data)

    # ----------------------------------------------------------------------
    # Get basic image properties
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')

    # ----------------------------------------------------------------------
    # Dark exposure time check
    # ----------------------------------------------------------------------
    # log the Dark exposure time
    WLOG(p, 'info', 'Dark Time = {0:.3f} s'.format(p['EXPTIME']))
    # Quality control: make sure the exposure time is longer than qc_dark_time
    if p['EXPTIME'] < p['QC_DARK_TIME']:
        emsg = 'Dark exposure time too short (< {0:.1f} s)'
        WLOG(p, 'error', emsg.format(p['QC_DARK_TIME']))

    # ----------------------------------------------------------------------
    # Resize image
    # ----------------------------------------------------------------------
    # # rotate the image and conver from ADU/s to e-
    # data = data[::-1, ::-1] * p['exptime'] * p['gain']
    # convert NaN to zeros
    nanmask = ~np.isfinite(data)
    data0 = np.where(nanmask, np.zeros_like(data), data)
    # resize blue image
    bkwargs = dict(xlow=p['IC_CCDX_BLUE_LOW'],
                   xhigh=p['IC_CCDX_BLUE_HIGH'],
                   ylow=p['IC_CCDY_BLUE_LOW'],
                   yhigh=p['IC_CCDY_BLUE_HIGH'])
    datablue, nx2, ny2 = spirouImage.ResizeImage(p, data, **bkwargs)
    # Make sure we have data in the blue image
    if nx2 == 0 or ny2 == 0:
        WLOG(p, 'error', ('IC_CCD(X/Y)_BLUE_(LOW/HIGH) remove '
                          'all pixels from image.'))
    # resize red image
    rkwargs = dict(xlow=p['IC_CCDX_RED_LOW'],
                   xhigh=p['IC_CCDX_RED_HIGH'],
                   ylow=p['IC_CCDY_RED_LOW'],
                   yhigh=p['IC_CCDY_RED_HIGH'])
    datared, nx3, ny3 = spirouImage.ResizeImage(p, data, **rkwargs)
    # Make sure we have data in the red image
    if nx3 == 0 or ny3 == 0:
        WLOG(p, 'error', ('IC_CCD(X/Y)_RED_(LOW/HIGH) remove '
                          'all pixels from image.'))

    # ----------------------------------------------------------------------
    # Dark Measurement
    # ----------------------------------------------------------------------
    # Log that we are doing dark measurement
    WLOG(p, '', 'Doing Dark measurement')
    # measure dark for whole frame
    p = spirouImage.MeasureDark(p, data, 'Whole det', 'full')
    # measure dark for blue part
    p = spirouImage.MeasureDark(p, datablue, 'Blue part', 'blue')
    # measure dark for rede part
    p = spirouImage.MeasureDark(p, datared, 'Red part', 'red')

    # ----------------------------------------------------------------------
    # Identification of bad pixels
    # ----------------------------------------------------------------------
    # get number of bad dark pixels (as a fraction of total pixels)
    with warnings.catch_warnings(record=True) as w:
        baddark = 100.0 * np.sum(data0 > p['DARK_CUTLIMIT'])
        baddark /= np.product(data0.shape)
    # log the fraction of bad dark pixels
    wmsg = 'Frac pixels with DARK > {0:.2f} ADU/s = {1:.3f} %'
    WLOG(p, 'info', wmsg.format(p['DARK_CUTLIMIT'], baddark))

    # define mask for values above cut limit or NaN
    with warnings.catch_warnings(record=True) as w:
        datacutmask = ~((data0 > p['DARK_CUTLIMIT']) | (~np.isfinite(data)))
    spirouCore.spirouLog.warninglogger(p, w)
    # get number of pixels above cut limit or NaN
    n_bad_pix = np.product(data.shape) - np.nansum(datacutmask)
    # work out fraction of dead pixels + dark > cut, as percentage
    p['DADEADALL'] = n_bad_pix * 100 / np.product(data.shape)
    p.set_source('DADEADALL', __NAME__ + '/main()')
    # log fraction of dead pixels + dark > cut
    logargs = [p['DARK_CUTLIMIT'], p['DADEADALL']]
    WLOG(p, 'info', ('Total Frac dead pixels (N.A.N) + DARK > '
                     '{0:.2f} ADU/s = {1:.3f} %').format(*logargs))

    # ----------------------------------------------------------------------
    # Plots
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive plot
        sPlt.start_interactive_session(p)
        # plot the image with blue and red regions
        sPlt.darkplot_image_and_regions(p, data)
        # plot histograms
        sPlt.darkplot_histograms(p)
        # end interactive session
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # ----------------------------------------------------------------------
    # check that med < qc_max_darklevel
    if p['MED_FULL'] > p['QC_MAX_DARKLEVEL']:
        # add failed message to fail message list
        fmsg = 'Unexpected Median Dark level  ({0:5.2f} > {1:5.2f} ADU/s)'
        fail_msg.append(fmsg.format(p['MED_FULL'], p['QC_MAX_DARKLEVEL']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(p['MED_FULL'])
    qc_names.append('MED_FULL')
    qc_logic.append('MED_FULL > {0:.2f}'.format(p['QC_MAX_DARKLEVEL']))
    # ----------------------------------------------------------------------
    # check that fraction of dead pixels < qc_max_dead
    if p['DADEADALL'] > p['QC_MAX_DEAD']:
        # add failed message to fail message list
        fmsg = 'Unexpected Fraction of dead pixels ({0:5.2f} > {1:5.2f} %)'
        fail_msg.append(fmsg.format(p['DADEADALL'], p['QC_MAX_DEAD']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(p['DADEADALL'])
    qc_names.append('DADEADALL')
    qc_logic.append('DADEADALL > {0:.2f}'.format(p['QC_MAX_DEAD']))
    # ----------------------------------------------------------------------
    # checl that the precentage of dark pixels < qc_max_dark
    if baddark > p['QC_MAX_DARK']:
        fmsg = ('Unexpected Fraction of dark pixels > {0:.2f} ADU/s '
                '({1:.2f} > {2:.2f}')
        fail_msg.append(
            fmsg.format(p['DARK_CUTLIMIT'], baddark, p['QC_MAX_DARK']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(baddark)
    qc_names.append('baddark')
    qc_logic.append('baddark > {0:.2f}'.format(p['QC_MAX_DARK']))
    # ----------------------------------------------------------------------
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]
    # ----------------------------------------------------------------------
    # Save dark to file
    # ----------------------------------------------------------------------
    # get raw dark filename
    rawdarkfile = os.path.basename(p['FITSFILENAME'])
    # construct folder and filename
    darkfits, tag = spirouConfig.Constants.DARK_FILE(p)
    darkfitsname = os.path.basename(darkfits)
    # log saving dark frame
    WLOG(p, '', 'Saving Dark frame in ' + darkfitsname)
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # define new keys to add
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='file',
                                     values=p['ARG_FILE_NAMES'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_DARK_DEAD'],
                               value=p['DADEAD_FULL'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DARK_MED'], value=p['MED_FULL'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_DARK_B_DEAD'],
                               value=p['DADEAD_BLUE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_DARK_B_MED'],
                               value=p['MED_BLUE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_DARK_R_DEAD'],
                               value=p['DADEAD_RED'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_DARK_R_MED'],
                               value=p['MED_RED'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_DARK_CUT'],
                               value=p['DARK_CUTLIMIT'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)

    # Set to zero dark value > dark_cutlimit
    cutmask = data0 > p['DARK_CUTLIMIT']
    data0c = np.where(cutmask, np.zeros_like(data0), data0)
    # write image and add header keys (via hdict)
    p = spirouImage.WriteImage(p, darkfits, data0c, hdict)

    # ----------------------------------------------------------------------
    # Save bad pixel mask
    # ----------------------------------------------------------------------
    # construct bad pixel file name
    badpixelfits, tag = spirouConfig.Constants.DARK_BADPIX_FILE(p)
    badpixelfitsname = os.path.split(badpixelfits)[-1]
    # log that we are saving bad pixel map in dir
    WLOG(p, '', 'Saving Bad Pixel Map in ' + badpixelfitsname)
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # define new keys to add
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)

    hdict['DACUT'] = (p['DARK_CUTLIMIT'],
                      'Threshold of dark level retain [ADU/s]')
    # write to file
    datacutmask = np.array(datacutmask, dtype=float)
    p = spirouImage.WriteImage(p,
                               badpixelfits,
                               datacutmask,
                               hdict,
                               dtype='float64')

    # ----------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ----------------------------------------------------------------------
    if p['QC']:
        # set dark key
        if p['DPRTYPE'] == 'DARK_DARK':
            keydb = 'DARK'
        elif p['USE_SKYDARK_CORRECTION']:
            keydb = 'SKYDARK'
        else:
            emsg = 'Error: Currently {0} only supports DARK_DARK and OBJ_DARK'
            WLOG(p, 'error', emsg.format(__NAME__))
        # copy dark fits file to the calibDB folder
        spirouDB.PutCalibFile(p, darkfits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, darkfitsname, hdr)

        # # set badpix key
        # keydb = 'BADPIX_OLD'
        # # copy badpix fits file to calibDB folder
        # spirouDB.PutCalibFile(p, badpixelfits)
        # # update the master calib DB file with new key
        # spirouDB.UpdateCalibMaster(p, keydb, badpixelfitsname, hdr)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, files=None):
    """
    cal_SLIT_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_SLIT_spirou.py [night_directory] [files]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p, night_name, files)
    p = spirouStartup.InitialFileSetup(p, calibdb=True)
    # set the fiber type
    p['FIBER'] = 'AB'
    p.set_source('FIBER', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    p, data, hdr = spirouImage.ReadImageAndCombine(p, framemath='add')

    # ----------------------------------------------------------------------
    # fix for un-preprocessed files
    # ----------------------------------------------------------------------
    data = spirouImage.FixNonPreProcess(p, data)

    # ----------------------------------------------------------------------
    # Get basic image properties
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')

    # ----------------------------------------------------------------------
    # Correction of DARK
    # ----------------------------------------------------------------------
    p, datac = spirouImage.CorrectForDark(p, data, hdr)
    datac = data

    # ----------------------------------------------------------------------
    # Resize image
    # ----------------------------------------------------------------------
    # rotate the image and convert from ADU/s to e-
    data = spirouImage.ConvertToE(spirouImage.FlipImage(p, datac), p=p)
    # convert NaN to zeros
    data0 = np.where(~np.isfinite(data), np.zeros_like(data), data)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'], xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'], yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    data2 = spirouImage.ResizeImage(p, data0, **bkwargs)
    # log change in data size
    WLOG(p, '', ('Image format changed to '
                            '{0}x{1}').format(*data2.shape))

    # ----------------------------------------------------------------------
    # Correct for the BADPIX mask (set all bad pixels to zero)
    # ----------------------------------------------------------------------
    p, data2 = spirouImage.CorrectForBadPix(p, data2, hdr)
    p, badpixmap = spirouImage.CorrectForBadPix(p, data2, hdr, return_map=True)

    # ----------------------------------------------------------------------
    # Background computation
    # ----------------------------------------------------------------------
    if p['IC_DO_BKGR_SUBTRACTION']:
        # log that we are doing background measurement
        WLOG(p, '', 'Doing background measurement on raw frame')
        # get the bkgr measurement
        bargs = [p, data2, hdr, badpixmap]
        # background, xc, yc, minlevel = spirouBACK.MeasureBackgroundFF(*bargs)
        p, background = spirouBACK.MeasureBackgroundMap(*bargs)
    else:
        background = np.zeros_like(data2)
        p['BKGRDFILE'] = 'None'
        p.set_source('BKGRDFILE', __NAME__ + '.main()')
    # apply background correction to data
    data2 = data2 - background

    # save data to loc
    loc = ParamDict()
    loc['DATA'] = data2
    loc.set_source('DATA', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Log the number of dead pixels
    # ----------------------------------------------------------------------
    # get the number of bad pixels
    n_bad_pix = np.nansum(data2 <= 0)
    n_bad_pix_frac = n_bad_pix * 100 / np.product(data2.shape)
    # Log number
    wmsg = 'Nb dead pixels = {0} / {1:.2f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # ------------------------------------------------------------------
    # Get localisation coefficients
    # ------------------------------------------------------------------
    # original there is a loop but it is not used --> removed
    p = spirouImage.FiberParams(p, p['FIBER'], merge=True)
    # get localisation fit coefficients
    p, loc = spirouLOCOR.GetCoeffs(p, hdr, loc)

    # ------------------------------------------------------------------
    # Calculate shape map
    # ------------------------------------------------------------------
    loc = spirouImage.GetShapeMap(p, loc)

    # ------------------------------------------------------------------
    # Plotting
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plots setup: start interactive plot
        sPlt.start_interactive_session(p)
        # plot the shape process for each order
        sPlt.slit_shape_angle_plot(p, loc)
        # end interactive section
        sPlt.end_interactive_session(p)

    # ------------------------------------------------------------------
    # Writing to file
    # ------------------------------------------------------------------
    # get the raw tilt file name
    raw_shape_file = os.path.basename(p['FITSFILENAME'])
    # construct file name and path
    shapefits, tag = spirouConfig.Constants.SLIT_XSHAPE_FILE(p)
    shapefitsname = os.path.basename(shapefits)
    # Log that we are saving tilt file
    wmsg = 'Saving shape information in file: {0}'
    WLOG(p, '', wmsg.format(shapefitsname))
    # Copy keys from fits file
    # Copy keys from fits file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBSHAPE'], value=raw_shape_file)
    # write tilt file to file
    p = spirouImage.WriteImage(p, shapefits, loc['DXMAP'], hdict)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # TODO: Decide on some quality control criteria?
    # set passed variable and fail message list
    passed, fail_msg = True, []
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ----------------------------------------------------------------------
    if p['QC']:
        keydb = 'SHAPE'
        # copy shape file to the calibDB folder
        spirouDB.PutCalibFile(p, shapefits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, shapefitsname, hdr)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, fpfile=None, hcfiles=None):
    """
    cal_WAVE_E2DS.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_DARK_spirou.py [night_directory] [fpfile] [hcfiles]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param fpfile: string, or None, the FP file to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)
    :param hcfiles: string, list or None, the list of HC files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------

    # test files TC2
    # night_name = 'AT5/AT5-12/2018-05-29_17-41-44/'
    # fpfile = '2279844a_fp_fp_pp_e2dsff_AB.fits'
    # hcfiles = ['2279845c_hc_pp_e2dsff_AB.fits']

    # test files TC3
    # night_name = 'TC3/AT5/AT5-12/2018-07-24_16-17-57/'
    # fpfile = '2294108a_pp_e2dsff_AB.fits'
    # hcfiles = ['2294115c_pp_e2dsff_AB.fits']

    # night_name = 'TC3/AT5/AT5-12/2018-07-25_16-49-50/'
    # fpfile = '2294223a_pp_e2dsff_AB.fits'
    # hcfiles = ['2294230c_pp_e2dsff_AB.fits']

    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    if hcfiles is None or fpfile is None:
        names, types = ['fpfile', 'hcfiles'], [str, str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1],
                                                        types,
                                                        names,
                                                        last_multi=True)
    else:
        customargs = dict(hcfiles=hcfiles, fpfile=fpfile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsdir='reduced',
                                    mainfitsfile='hcfiles')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, fpfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['FPFILE'])
    fiber1 = str(p['FIBER'])
    p, hcfilenames = spirouStartup.MultiFileSetup(p, files=p['HCFILES'])
    fiber2 = str(p['FIBER'])
    # set the hcfilename to the first hcfilenames
    hcfitsfilename = hcfilenames[0]

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Have to check that the fibers match
    # ----------------------------------------------------------------------
    if fiber1 == fiber2:
        p['FIBER'] = fiber1
        fsource = __NAME__ + '/main() & spirouStartup.GetFiberType()'
        p.set_source('FIBER', fsource)
    else:
        emsg = 'Fiber not matching for {0} and {1}, should be the same'
        eargs = [hcfitsfilename, fpfitsfilename]
        WLOG(p, 'error', emsg.format(*eargs))
    # set the fiber type
    p['FIB_TYP'] = [p['FIBER']]
    p.set_source('FIB_TYP', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Read FP and HC files
    # ----------------------------------------------------------------------

    # read and combine all HC files except the first (fpfitsfilename)
    rargs = [p, 'add', hcfitsfilename, hcfilenames[1:]]
    p, hcdata, hchdr = spirouImage.ReadImageAndCombine(*rargs)
    # read first file (fpfitsfilename)
    fpdata, fphdr, _, _ = spirouImage.ReadImage(p, fpfitsfilename)

    # TODO: ------------------------------------------------------------
    # TODO remove to test NaNs
    # TODO: ------------------------------------------------------------
    # hcmask = np.isfinite(hcdata)
    # fpmask = np.isfinite(fpdata)
    # hcdata[~hcmask] = 0.0
    # fpdata[~fpmask] = 0.0
    # TODO: ------------------------------------------------------------

    # add data and hdr to loc
    loc = ParamDict()
    loc['HCDATA'], loc['HCHDR'] = hcdata, hchdr
    loc['FPDATA'], loc['FPHDR'] = fpdata, fphdr

    # set the source
    sources = ['HCDATA', 'HCHDR']
    loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()')
    sources = ['FPDATA', 'FPHDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hchdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hchdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hchdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hchdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # get lamp parameters
    p = spirouTHORCA.GetLampParams(p, hchdr)

    # get number of orders
    # we always get fibre A number because AB is doubled in constants file
    loc['NBO'] = p['QC_LOC_NBO_FPALL']['A']
    loc.set_source('NBO', __NAME__ + '.main()')
    # get number of pixels in x from hcdata size
    loc['NBPIX'] = loc['HCDATA'].shape[1]
    loc.set_source('NBPIX', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Read blaze
    # ----------------------------------------------------------------------
    # get tilts
    p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hchdr)
    loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile')
    # make copy of blaze (as it's overwritten later)
    loc['BLAZE2'] = np.copy(loc['BLAZE'])

    # ----------------------------------------------------------------------
    # Read wave solution
    # ----------------------------------------------------------------------
    # wavelength file; we will use the polynomial terms in its header,
    # NOT the pixel values that would need to be interpolated

    # set source of wave file
    wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hchdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    loc['WAVEPARAMS'], loc['WAVE_INIT'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVE_INIT', 'WAVEFILE', 'WAVEPARAMS', 'WSOURCE'],
                    wsource)
    poly_wave_sol = loc['WAVEPARAMS']

    # ----------------------------------------------------------------------
    # Check that wave parameters are consistent with "ic_ll_degr_fit"
    # ----------------------------------------------------------------------
    loc = spirouImage.CheckWaveSolConsistency(p, loc)

    # ----------------------------------------------------------------------
    # Read UNe solution
    # ----------------------------------------------------------------------
    wave_u_ne, amp_u_ne = spirouImage.ReadLineList(p)
    loc['LL_LINE'], loc['AMPL_LINE'] = wave_u_ne, amp_u_ne
    source = __NAME__ + '.main() + spirouImage.ReadLineList()'
    loc.set_sources(['ll_line', 'ampl_line'], source)

    # ----------------------------------------------------------------------
    # Generate wave map from wave solution
    # ----------------------------------------------------------------------
    loc = spirouWAVE.generate_wave_map(p, loc)

    # ----------------------------------------------------------------------
    # Find Gaussian Peaks in HC spectrum
    # ----------------------------------------------------------------------
    loc = spirouWAVE.find_hc_gauss_peaks(p, loc)

    # ----------------------------------------------------------------------
    # Start plotting session
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive plot
        sPlt.start_interactive_session(p)

    # ----------------------------------------------------------------------
    # Fit Gaussian peaks (in triplets) to
    # ----------------------------------------------------------------------
    loc = spirouWAVE.fit_gaussian_triplets(p, loc)

    # ----------------------------------------------------------------------
    # Generate Resolution map and line profiles
    # ----------------------------------------------------------------------
    # log progress
    wmsg = 'Generating resolution map and '
    # generate resolution map
    loc = spirouWAVE.generate_resolution_map(p, loc)
    # map line profile map
    if p['DRS_PLOT'] > 0:
        sPlt.wave_ea_plot_line_profiles(p, loc)

    # ----------------------------------------------------------------------
    # End plotting session
    # ----------------------------------------------------------------------
    # end interactive session
    if p['DRS_PLOT'] > 0:
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # Set up all_lines storage
    # ----------------------------------------------------------------------

    # initialise up all_lines storage
    all_lines_1 = []

    # get parameters from p
    n_ord_start = p['IC_HC_N_ORD_START_2']
    n_ord_final = p['IC_HC_N_ORD_FINAL_2']
    pixel_shift_inter = p['PIXEL_SHIFT_INTER']
    pixel_shift_slope = p['PIXEL_SHIFT_SLOPE']

    # get values from loc
    xgau = np.array(loc['XGAU_T'])
    dv = np.array(loc['DV_T'])
    fit_per_order = np.array(loc['POLY_WAVE_SOL'])
    ew = np.array(loc['EW_T'])
    peak = np.array(loc['PEAK_T'])
    amp_catalog = np.array(loc['AMP_CATALOG'])
    wave_catalog = np.array(loc['WAVE_CATALOG'])
    ord_t = np.array(loc['ORD_T'])

    # loop through orders
    for iord in range(n_ord_start, n_ord_final):
        # keep relevant lines
        # -> right order
        # -> finite dv
        gg = (ord_t == iord) & (np.isfinite(dv))
        nlines = np.nansum(gg)
        # put lines into ALL_LINES structure
        # reminder:
        # gparams[0] = output wavelengths
        # gparams[1] = output sigma(gauss fit width)
        # gparams[2] = output amplitude(gauss fit)
        # gparams[3] = difference in input / output wavelength
        # gparams[4] = input amplitudes
        # gparams[5] = output pixel positions
        # gparams[6] = output pixel sigma width (gauss fit width in pixels)
        # gparams[7] = output weights for the pixel position

        chebval = np.polynomial.chebyshev.chebval

        # dummy array for weights
        test = np.ones(np.shape(xgau[gg]), 'd') * 1e4
        # get the final wavelength value for each peak in order
        output_wave_1 = np.polyval(fit_per_order[iord][::-1], xgau[gg])
        # output_wave_1 = chebval(xgau[gg], fit_per_order[iord])
        # convert the pixel equivalent width to wavelength units
        xgau_ew_ini = xgau[gg] - ew[gg] / 2
        xgau_ew_fin = xgau[gg] + ew[gg] / 2
        ew_ll_ini = np.polyval(fit_per_order[iord, :], xgau_ew_ini)
        ew_ll_fin = np.polyval(fit_per_order[iord, :], xgau_ew_fin)
        # ew_ll_ini = chebval(xgau_ew_ini, fit_per_order[iord])
        # ew_ll_fin = chebval(xgau_ew_fin, fit_per_order[iord])
        ew_ll = ew_ll_fin - ew_ll_ini
        # put all lines in the order into array
        gau_params = np.column_stack(
            (output_wave_1, ew_ll, peak[gg], wave_catalog[gg] - output_wave_1,
             amp_catalog[gg], xgau[gg], ew[gg], test))
        # append the array for the order into a list
        all_lines_1.append(gau_params)
        # save dv in km/s and auxiliary order number
        # res_1 = np.concatenate((res_1,2.997e5*(input_wave - output_wave_1)/
        #                        output_wave_1))
        # ord_save = np.concatenate((ord_save, test*iord))

    # add to loc
    loc['ALL_LINES_1'] = all_lines_1
    loc['LL_PARAM_1'] = np.array(fit_per_order)
    loc['LL_OUT_1'] = np.array(loc['WAVE_MAP2'])
    loc.set_sources(['ALL_LINES_1', 'LL_PARAM_1'], __NAME__ + '/main()')

    # For compatibility w/already defined functions, I need to save
    # here all_lines_2
    all_lines_2 = list(all_lines_1)
    loc['ALL_LINES_2'] = all_lines_2
    # loc['LL_PARAM_2'] = np.fliplr(fit_per_order)
    # loc['LL_OUT_2'] = np.array(loc['WAVE_MAP2'])
    # loc.set_sources(['ALL_LINES_2', 'LL_PARAM_2'], __NAME__ + '/main()')

    # ------------------------------------------------------------------
    # Littrow test
    # ------------------------------------------------------------------

    start = p['IC_LITTROW_ORDER_INIT_1']
    end = p['IC_LITTROW_ORDER_FINAL_1']

    # calculate echelle orders
    o_orders = np.arange(start, end)
    echelle_order = p['IC_HC_T_ORDER_START'] - o_orders
    loc['ECHELLE_ORDERS'] = echelle_order
    loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()')

    # reset Littrow fit degree
    p['IC_LITTROW_FIT_DEG_1'] = 7

    # Do Littrow check
    ckwargs = dict(ll=loc['LL_OUT_1'][start:end, :], iteration=1, log=True)
    loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs)

    # Plot wave solution littrow check
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_check_plot(p, loc, iteration=1)

    # ------------------------------------------------------------------
    # extrapolate Littrow solution
    # ------------------------------------------------------------------
    ekwargs = dict(ll=loc['LL_OUT_1'], iteration=1)
    loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs)

    # ------------------------------------------------------------------
    # Plot littrow solution
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_extrap_plot(p, loc, iteration=1)

    # ------------------------------------------------------------------
    # Incorporate FP into solution
    # ------------------------------------------------------------------
    # Copy LL_OUT_1 and LL_PARAM_1 into new constants (for FP integration)
    loc['LITTROW_EXTRAP_SOL_1'] = np.array(loc['LL_OUT_1'])
    loc['LITTROW_EXTRAP_PARAM_1'] = np.array(loc['LL_PARAM_1'])
    # only use FP if switched on in constants file
    if p['IC_WAVE_USE_FP']:
        # ------------------------------------------------------------------
        # Find FP lines
        # ------------------------------------------------------------------
        # print message to screen
        wmsg = 'Identification of lines in reference file: {0}'
        WLOG(p, '', wmsg.format(fpfile))

        # ------------------------------------------------------------------
        # Get the FP solution
        # ------------------------------------------------------------------

        loc = spirouTHORCA.FPWaveSolutionNew(p, loc)

        # ------------------------------------------------------------------
        # FP solution plots
        # ------------------------------------------------------------------
        if p['DRS_PLOT'] > 0:
            # Plot the FP extracted spectrum against wavelength solution
            sPlt.wave_plot_final_fp_order(p, loc, iteration=1)
            # Plot the measured FP cavity width offset against line number
            sPlt.wave_local_width_offset_plot(p, loc)
            # Plot the FP line wavelength residuals
            sPlt.wave_fp_wavelength_residuals(p, loc)

    # ------------------------------------------------------------------
    # Create new wavelength solution
    # ------------------------------------------------------------------
    # TODO: Melissa fault - fix later
    p['IC_HC_N_ORD_START_2'] = min(p['IC_HC_N_ORD_START_2'],
                                   p['IC_FP_N_ORD_START'])
    p['IC_HC_N_ORD_FINAL_2'] = max(p['IC_HC_N_ORD_FINAL_2'],
                                   p['IC_FP_N_ORD_FINAL'])
    start = p['IC_HC_N_ORD_START_2']
    end = p['IC_HC_N_ORD_FINAL_2']

    # recalculate echelle orders for Fit1DSolution
    o_orders = np.arange(start, end)
    echelle_order = p['IC_HC_T_ORDER_START'] - o_orders
    loc['ECHELLE_ORDERS'] = echelle_order
    loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()')

    # select the orders to fit
    lls = loc['LITTROW_EXTRAP_SOL_1'][start:end]
    loc = spirouTHORCA.Fit1DSolution(p, loc, lls, iteration=2)
    # from here, LL_OUT_2 wil be 0-47

    # ------------------------------------------------------------------
    # Repeat Littrow test
    # ------------------------------------------------------------------
    start = p['IC_LITTROW_ORDER_INIT_2']
    end = p['IC_LITTROW_ORDER_FINAL_2']
    # recalculate echelle orders for Littrow check
    o_orders = np.arange(start, end)
    echelle_order = p['IC_HC_T_ORDER_START'] - o_orders
    loc['ECHELLE_ORDERS'] = echelle_order
    loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()')

    # Do Littrow check
    ckwargs = dict(ll=loc['LL_OUT_2'][start:end, :], iteration=2, log=True)
    loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs)

    # Plot wave solution littrow check
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_check_plot(p, loc, iteration=2)

    # ------------------------------------------------------------------
    # extrapolate Littrow solution
    # ------------------------------------------------------------------
    ekwargs = dict(ll=loc['LL_OUT_2'], iteration=2)
    loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs)

    # ------------------------------------------------------------------
    # Plot littrow solution
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_extrap_plot(p, loc, iteration=2)

    # ------------------------------------------------------------------
    # Join 0-47 and 47-49 solutions
    # ------------------------------------------------------------------
    loc = spirouTHORCA.JoinOrders(p, loc)

    # ------------------------------------------------------------------
    # Plot single order, wavelength-calibrated, with found lines
    # ------------------------------------------------------------------

    if p['DRS_PLOT'] > 0:
        sPlt.wave_ea_plot_single_order(p, loc)

    # ----------------------------------------------------------------------
    # Do correlation on FP spectra
    # ----------------------------------------------------------------------

    # ------------------------------------------------------------------
    # Compute photon noise uncertainty for FP
    # ------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['FPDATA'], loc['LL_FINAL']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))

    # Use CCF Mask function with drift constants
    p['CCF_MASK'] = p['DRIFT_CCF_MASK']
    p['TARGET_RV'] = p['DRIFT_TARGET_RV']
    p['CCF_WIDTH'] = p['DRIFT_CCF_WIDTH']
    p['CCF_STEP'] = p['DRIFT_CCF_STEP']
    p['RVMIN'] = p['TARGET_RV'] - p['CCF_WIDTH']
    p['RVMAX'] = p['TARGET_RV'] + p['CCF_WIDTH'] + p['CCF_STEP']

    # get the CCF mask from file (check location of mask)
    loc = spirouRV.GetCCFMask(p, loc)

    # TODO Check why Blaze makes bugs in correlbin
    loc['BLAZE'] = np.ones((loc['NBO'], loc['NBPIX']))
    # set sources
    # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()')
    loc.set_source('blaze', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Do correlation on FP
    # ----------------------------------------------------------------------
    # calculate and fit the CCF
    loc['E2DSFF'] = np.array(loc['FPDATA'])
    loc.set_source('E2DSFF', __NAME__ + '/main()')
    p['CCF_FIT_TYPE'] = 1
    loc['BERV'] = 0.0
    loc['BERV_MAX'] = 0.0
    loc['BJD'] = 0.0

    # run the RV coravelation function with these parameters
    loc['WAVE_LL'] = np.array(loc['LL_FINAL'])
    loc['PARAM_LL'] = np.array(loc['LL_PARAM_FINAL'])
    loc = spirouRV.Coravelation(p, loc)

    # ----------------------------------------------------------------------
    # Update the Correlation stats with values using fiber C (FP) drift
    # ----------------------------------------------------------------------
    # get the maximum number of orders to use
    nbmax = p['CCF_NUM_ORDERS_MAX']
    # get the average ccf
    loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
    # normalize the average ccf
    normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF'])
    # get the fit for the normalized average ccf
    ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                       loc['RV_CCF'],
                                       normalized_ccf,
                                       fit_type=1)
    loc['CCF_RES'] = ccf_res
    loc['CCF_FIT'] = ccf_fit
    # get the max cpp
    loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum(
        loc['PIX_PASSED_ALL'])
    # get the RV value from the normalised average ccf fit center location
    loc['RV'] = float(ccf_res[1])
    # get the contrast (ccf fit amplitude)
    loc['CONTRAST'] = np.abs(100 * ccf_res[0])
    # get the FWHM value
    loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm()
    # set the source
    keys = [
        'AVERAGE_CCF', 'MAXCPP', 'RV', 'CONTRAST', 'FWHM', 'CCF_RES', 'CCF_FIT'
    ]
    loc.set_sources(keys, __NAME__ + '/main()')
    # ----------------------------------------------------------------------
    # log the stats
    wmsg = ('FP Correlation: C={0:.1f}[%] DRIFT={1:.5f}[km/s] '
            'FWHM={2:.4f}[km/s] maxcpp={3:.1f}')
    wargs = [loc['CONTRAST'], float(ccf_res[1]), loc['FWHM'], loc['MAXCPP']]
    WLOG(p, 'info', wmsg.format(*wargs))
    # ----------------------------------------------------------------------
    # rv ccf plot
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # Plot rv vs ccf (and rv vs ccf_fit)
        p['OBJNAME'] = 'FP'
        sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit)

    # TODO : Add QC of the FP CCF

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # get parameters ffrom p
    p['QC_RMS_LITTROW_MAX'] = p['QC_HC_RMS_LITTROW_MAX']
    p['QC_DEV_LITTROW_MAX'] = p['QC_HC_DEV_LITTROW_MAX']
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # ----------------------------------------------------------------------
    # quality control on sigma clip (sig1 > qc_hc_wave_sigma_max
    if loc['SIG1'] > p['QC_HC_WAVE_SIGMA_MAX']:
        fmsg = 'Sigma too high ({0:.5f} > {1:.5f})'
        fail_msg.append(fmsg.format(loc['SIG1'], p['QC_HC_WAVE_SIGMA_MAX']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(loc['SIG1'])
    qc_names.append('SIG1')
    qc_logic.append('SIG1 > {0:.2f}'.format(p['QC_HC_WAVE_SIGMA_MAX']))
    # ----------------------------------------------------------------------
    # check the difference between consecutive orders is always positive
    # get the differences
    wave_diff = loc['LL_FINAL'][1:] - loc['LL_FINAL'][:-1]
    if np.min(wave_diff) < 0:
        fmsg = 'Negative wavelength difference between orders'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(np.min(wave_diff))
    qc_names.append('MIN WAVE DIFF')
    qc_logic.append('MIN WAVE DIFF < 0')
    # ----------------------------------------------------------------------
    # check for infinites and NaNs in mean residuals from fit
    if ~np.isfinite(loc['X_MEAN_2']):
        # add failed message to the fail message list
        fmsg = 'NaN or Inf in X_MEAN_2'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(loc['X_MEAN_2'])
    qc_names.append('X_MEAN_2')
    qc_logic.append('X_MEAN_2 not finite')
    # ----------------------------------------------------------------------
    # iterate through Littrow test cut values
    lit_it = 2
    # checks every other value
    # TODO: This QC check (or set of QC checks needs re-writing it is
    # TODO:    nearly impossible to understand
    for x_it in range(1, len(loc['X_CUT_POINTS_' + str(lit_it)]), 2):
        # get x cut point
        x_cut_point = loc['X_CUT_POINTS_' + str(lit_it)][x_it]
        # get the sigma for this cut point
        sig_littrow = loc['LITTROW_SIG_' + str(lit_it)][x_it]
        # get the abs min and max dev littrow values
        min_littrow = abs(loc['LITTROW_MINDEV_' + str(lit_it)][x_it])
        max_littrow = abs(loc['LITTROW_MAXDEV_' + str(lit_it)][x_it])
        # get the corresponding order
        min_littrow_ord = loc['LITTROW_MINDEVORD_' + str(lit_it)][x_it]
        max_littrow_ord = loc['LITTROW_MAXDEVORD_' + str(lit_it)][x_it]
        # check if sig littrow is above maximum
        rms_littrow_max = p['QC_RMS_LITTROW_MAX']
        dev_littrow_max = p['QC_DEV_LITTROW_MAX']
        if sig_littrow > rms_littrow_max:
            fmsg = ('Littrow test (x={0}) failed (sig littrow = '
                    '{1:.2f} > {2:.2f})')
            fargs = [x_cut_point, sig_littrow, rms_littrow_max]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(sig_littrow)
        qc_names.append('sig_littrow')
        qc_logic.append('sig_littrow > {0:.2f}'.format(rms_littrow_max))
        # ----------------------------------------------------------------------
        # check if min/max littrow is out of bounds
        if np.max([max_littrow, min_littrow]) > dev_littrow_max:
            fmsg = ('Littrow test (x={0}) failed (min|max dev = '
                    '{1:.2f}|{2:.2f} > {3:.2f} for order {4}|{5})')
            fargs = [
                x_cut_point, min_littrow, max_littrow, dev_littrow_max,
                min_littrow_ord, max_littrow_ord
            ]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)

            # TODO: Should this be the QC header values?
            # TODO:   it does not change the outcome of QC (i.e. passed=False)
            # TODO:   So what is the point?
            # if sig was out of bounds, recalculate
            if sig_littrow > rms_littrow_max:
                # conditions
                check1 = min_littrow > dev_littrow_max
                check2 = max_littrow > dev_littrow_max
                # get the residuals
                respix = loc['LITTROW_YY_' + str(lit_it)][x_it]
                # check if both are out of bounds
                if check1 and check2:
                    # remove respective orders
                    worst_order = (min_littrow_ord, max_littrow_ord)
                    respix_2 = np.delete(respix, worst_order)
                    redo_sigma = True
                # check if min is out of bounds
                elif check1:
                    # remove respective order
                    worst_order = min_littrow_ord
                    respix_2 = np.delete(respix, worst_order)
                    redo_sigma = True
                # check if max is out of bounds
                elif check2:
                    # remove respective order
                    worst_order = max_littrow_ord
                    respix_2 = np.delete(respix, max_littrow_ord)
                    redo_sigma = True
                # else do not recalculate sigma
                else:
                    redo_sigma, respix_2, worst_order = False, None, None
                    wmsg = 'No outlying orders, sig littrow not recalculated'
                    fail_msg.append(wmsg.format())

                # if outlying order, recalculate stats
                if redo_sigma:
                    mean = np.nansum(respix_2) / len(respix_2)
                    mean2 = np.nansum(respix_2**2) / len(respix_2)
                    rms = np.sqrt(mean2 - mean**2)
                    if rms > rms_littrow_max:
                        fmsg = ('Littrow test (x={0}) failed (sig littrow = '
                                '{1:.2f} > {2:.2f} removing order {3})')
                        fargs = [
                            x_cut_point, rms, rms_littrow_max, worst_order
                        ]
                        fail_msg.append(fmsg.format(*fargs))
                    else:
                        wargs = [
                            x_cut_point, rms, rms_littrow_max, worst_order
                        ]
                        wmsg = ('Littrow test (x={0}) passed (sig littrow = '
                                '{1:.2f} > {2:.2f} removing order {3})')
                        fail_msg.append(wmsg.format(*wargs))
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(np.max([max_littrow, min_littrow]))
        qc_names.append('max or min littrow')
        qc_logic.append('max or min littrow > {0:.2f}'
                        ''.format(dev_littrow_max))
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # archive result in e2ds spectra
    # ------------------------------------------------------------------
    # get raw input file name(s)
    raw_infiles1 = []
    for hcfile in p['HCFILES']:
        raw_infiles1.append(os.path.basename(hcfile))
    raw_infile2 = os.path.basename(p['FPFILE'])
    # get wave filename
    wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA_2(p)
    wavefitsname = os.path.split(wavefits)[-1]
    # log progress
    wargs = [p['FIBER'], wavefits]
    wmsg = 'Write wavelength solution for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))
    # write solution to fitsfilename header
    # copy original keys
    hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'])
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='fpfile',
                                     values=p['FPFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE2'],
                                     dim1name='hcfile',
                                     values=p['HCFILES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add wave solution date
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_TIME1'],
                               value=p['MAX_TIME_HUMAN'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_TIME2'],
                               value=p['MAX_TIME_UNIX'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__)
    # add number of orders
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_ORD_N'],
                               value=loc['LL_PARAM_FINAL'].shape[0])
    # add degree of fit
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_LL_DEG'],
                               value=loc['LL_PARAM_FINAL'].shape[1] - 1)
    # add wave solution
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_WAVE_PARAM'],
                                     values=loc['LL_PARAM_FINAL'])

    # add FP CCF drift
    # target RV and width
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_TARG_RV'],
                               value=p['TARGET_RV'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_WIDTH'],
                               value=p['CCF_WIDTH'])
    # the rv step
    # rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1])
    # hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep)
    hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_STEP'], value=p['CCF_STEP'])

    # add ccf stats
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_DRIFT'],
                               value=loc['CCF_RES'][1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_FWHM'], value=loc['FWHM'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_CONTRAST'],
                               value=loc['CONTRAST'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_MAXCPP'],
                               value=loc['MAXCPP'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_MASK'], value=p['CCF_MASK'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_LINES'],
                               value=np.nansum(loc['TOT_LINE']))

    # write the wave "spectrum"
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    p = spirouImage.WriteImage(p, wavefits, loc['LL_FINAL'], hdict)

    # get filename for E2DS calibDB copy of FITSFILENAME
    e2dscopy_filename = spirouConfig.Constants.WAVE_E2DS_COPY(p)[0]
    wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]]
    wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))

    # make a copy of the E2DS file for the calibBD
    p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict)

    # only copy over if QC passed
    if p['QC']:
        # loop around hc files and update header with
        for hcfile in p['HCFILES']:
            raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile)
            p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath1)
        # update fp file
        raw_infilepath2 = os.path.join(p['ARG_FILE_DIR'], raw_infile2)
        p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath2)

    # ------------------------------------------------------------------
    # Save to result table
    # ------------------------------------------------------------------
    # calculate stats for table
    final_mean = 1000 * loc['X_MEAN_2']
    final_var = 1000 * loc['X_VAR_2']
    num_lines = int(np.nansum(loc['X_ITER_2'][:, 2]))  # loc['X_ITER_2']
    err = 1000 * np.sqrt(loc['X_VAR_2'] / num_lines)
    sig_littrow = 1000 * np.array(loc['LITTROW_SIG_' + str(lit_it)])
    # construct filename
    wavetbl = spirouConfig.Constants.WAVE_TBL_FILE_EA(p)
    wavetblname = os.path.basename(wavetbl)
    # construct and write table
    columnnames = [
        'night_name', 'file_name', 'fiber', 'mean', 'rms', 'N_lines', 'err',
        'rms_L500', 'rms_L1000', 'rms_L1500', 'rms_L2000', 'rms_L2500',
        'rms_L3000', 'rms_L3500'
    ]
    columnformats = [
        '{:20s}', '{:30s}', '{:3s}', '{:7.4f}', '{:6.2f}', '{:3d}', '{:6.3f}',
        '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}',
        '{:6.2f}'
    ]
    columnvalues = [[p['ARG_NIGHT_NAME']], [p['ARG_FILE_NAMES'][0]],
                    [p['FIBER']], [final_mean], [final_var],
                    [num_lines], [err], [sig_littrow[0]], [sig_littrow[1]],
                    [sig_littrow[2]], [sig_littrow[3]], [sig_littrow[4]],
                    [sig_littrow[5]], [sig_littrow[6]]]
    # make table
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # merge table
    wmsg = 'Global result summary saved in {0}'
    WLOG(p, '', wmsg.format(wavetblname))
    spirouImage.MergeTable(p, table, wavetbl, fmt='ascii.rst')

    # ----------------------------------------------------------------------
    # Save resolution and line profiles to file
    # ----------------------------------------------------------------------
    raw_infile = os.path.basename(p['FITSFILENAME'])
    # get wave filename
    resfits, tag3 = spirouConfig.Constants.WAVE_RES_FILE_EA(p)
    resfitsname = os.path.basename(resfits)
    WLOG(p, '', 'Saving wave resmap to {0}'.format(resfitsname))

    # make a copy of the E2DS file for the calibBD
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)

    # get res data in correct format
    resdata, hdicts = spirouTHORCA.GenerateResFiles(p, loc, hdict)
    # save to file
    p = spirouImage.WriteImageMulti(p, resfits, resdata, hdicts=hdicts)

    # ------------------------------------------------------------------
    # Save line list table file
    # ------------------------------------------------------------------
    # construct filename
    # TODO proper column values
    wavelltbl = spirouConfig.Constants.WAVE_LINE_FILE_EA(p)
    wavelltblname = os.path.split(wavelltbl)[-1]
    # construct and write table
    columnnames = ['order', 'll', 'dv', 'w', 'xi', 'xo', 'dvdx']
    columnformats = [
        '{:.0f}', '{:12.4f}', '{:13.5f}', '{:12.4f}', '{:12.4f}', '{:12.4f}',
        '{:8.4f}'
    ]

    columnvalues = []
    # construct column values (flatten over orders)
    for it in range(len(loc['X_DETAILS_2'])):
        for jt in range(len(loc['X_DETAILS_2'][it][0])):
            row = [
                float(it), loc['X_DETAILS_2'][it][0][jt],
                loc['LL_DETAILS_2'][it][0][jt], loc['X_DETAILS_2'][it][3][jt],
                loc['X_DETAILS_2'][it][1][jt], loc['X_DETAILS_2'][it][2][jt],
                loc['SCALE_2'][it][jt]
            ]
            columnvalues.append(row)

    # log saving
    wmsg = 'List of lines used saved in {0}'
    WLOG(p, '', wmsg.format(wavelltblname))

    # make table
    columnvalues = np.array(columnvalues).T
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    spirouImage.WriteTable(p, table, wavelltbl, fmt='ascii.rst')

    # ------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ------------------------------------------------------------------
    if p['QC']:
        # set the wave key
        keydb = 'WAVE_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, wavefits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR'])
        # set the hcref key
        keydb = 'HCREF_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, e2dscopy_filename)
        # update the master calib DB file with new key
        e2dscopyfits = os.path.split(e2dscopy_filename)[-1]
        spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR'])

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return p and loc
    return dict(locals())
Beispiel #10
0
def output_lsd_image(p, loc, hdict):
    """
    Function to set up and save output FITS image to store LSD analyis.
        
    :param p: parameter dictionary, ParamDict containing constants
    :param loc: parameter dictionary, ParamDict to store data
        Must contain at least:
            loc['LSDDATA']: numpy array (2D), LSD analysis data
    :param hdict: dictionary, header dictionary of keywordstores
                  each key is the HEADER key and each value is a list of
                  two values: [HEADER value, HEADER comment]

    :return lsdfits, lsdfitsfitsname:
        lsdfits:         string, output full path
        lsdfitsfitsname: string, output filename
    """

    # construct file names
    lsdfits, tag = spirouConfig.Constants.LSD_POL_FILE(p, loc)
    lsdfitsfitsname = os.path.split(lsdfits)[-1]

    columns = ['velocities', 'stokesI', 'stokesI_model', 'stokesVQU', 'Null']
    values = [loc['LSD_VELOCITIES'], loc['LSD_STOKESI'],
              loc['LSD_STOKESI_MODEL'], loc['LSD_STOKESVQU'],
              loc['LSD_NULL']]


    # save all data into a single array for output FITS
    loc['LSDDATA'] = []
    loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_VELOCITIES'])
    loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_STOKESI'])
    loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_STOKESI_MODEL'])
    loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_STOKESVQU'])
    loc['LSDDATA'] = np.append(loc['LSDDATA'], loc['LSD_NULL'])

    # add LSD parameters keywords to header
    # add input parameters for LSD analysis
    hdict = spirouImage.AddKey(p, hdict, p['KW_POL_STOKES'], value=loc['STOKES'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_MASK'],
                               value=loc['SELECTED_FILE_CCFLINES'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_V0'],
                               value=p['IC_POLAR_LSD_V0'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_VF'],
                               value=p['IC_POLAR_LSD_VF'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_NP'],
                               value=p['IC_POLAR_LSD_NP'])

    # add fitted values from gaussian fit to Stokes I LSD
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_FIT_RV'],
                               value=loc['LSD_FIT_RV'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_FIT_RESOL'],
                               value=loc['LSD_FIT_RESOL'])

    # add statistical quantities from LSD analysis
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_MEANPOL'],
                               value=loc['LSD_POL_MEAN'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_STDDEVPOL'],
                               value=loc['LSD_POL_STDDEV'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_MEDIANPOL'],
                               value=loc['LSD_POL_MEDIAN'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_MEDABSDEVPOL'],
                               value=loc['LSD_POL_MEDABSDEV'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_STOKESVQU_MEAN'],
                               value=loc['LSD_STOKESVQU_MEAN'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_STOKESVQU_STDDEV'],
                               value=loc['LSD_STOKESVQU_STDDEV'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_NULL_MEAN'],
                               value=loc['LSD_NULL_MEAN'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_NULL_STDDEV'],
                               value=loc['LSD_NULL_STDDEV'])
    # add information about the meaning of data columns
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL1'],
                               value=p['IC_POLAR_LSD_DATAINFO'][0])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL2'],
                               value=p['IC_POLAR_LSD_DATAINFO'][1])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL3'],
                               value=p['IC_POLAR_LSD_DATAINFO'][2])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL4'],
                               value=p['IC_POLAR_LSD_DATAINFO'][3])
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_LSD_COL5'],
                               value=p['IC_POLAR_LSD_DATAINFO'][4])

    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)

    # Store LSD analysis data in FITS TABLE
    table = spirouImage.MakeTable(p, columns, values)
    spirouImage.WriteTable(p, table, lsdfits, fmt='fits', header=hdict)
    # deal with output onto index.fits
    p = spirouImage.spirouFITS.write_output_dict(p, lsdfits, hdict)
    # Store LSD analysis data in file
    #p = spirouImage.WriteImage(p, lsdfits, loc['LSDDATA'], hdict)
    # return p, lsdfits and lsdfitsname
    return p, lsdfits, lsdfitsfitsname
def main(night_name=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    main_name = __NAME__ + '.main()'
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p, night_name, require_night_name=False)
    # ----------------------------------------------------------------------
    # find all directories if night name was None (ARG_NIGHT_NAME = '')
    files, dirs = find_all_reduced_files(p)
    # ----------------------------------------------------------------------
    # loop around each file
    # ----------------------------------------------------------------------
    for it in range(len(files)):
        # get file name for this iteration
        basefilename = os.path.basename(files[it])
        # Log process
        wmsg = 'Processing file {0} ({1}/{2})'
        wargs = [basefilename, it + 1, len(files)]
        WLOG(p, 'info', wmsg.format(*wargs))
        # get this iteration values
        p['FITSFILENAME'] = files[it]
        p['ARG_NIGHT_NAME'] = dirs[it]
        p['REDUCED_DIR'] = os.path.join(p['DRS_DATA_REDUC'], dirs[it])
        p['ARG_FILE_NAMES'] = [basefilename]
        p['DRS_TYPE'] = "REDUCED"
        # identify fiber
        if '_AB.fits' in os.path.basename(files[it]):
            p['FIBER'] = 'AB'
        elif '_AB.fits' in os.path.basename(files[it]):
            p['FIBER'] = 'A'
        elif '_AB.fits' in os.path.basename(files[it]):
            p['FIBER'] = 'B'
        elif '_C.fits' in os.path.basename(files[it]):
            p['FIBER'] = 'C'
        else:
            wmsg1 = 'Wrong fiber type found. This should happen. Skipping'
            wmsg2 = '\tFile = {0}'.format(files[it])
            WLOG(p, 'warning', [wmsg1, wmsg2])
            # skip
            continue
        # set sources
        source = ['FITSFILENAME', 'ARG_NIGHT_NAME', 'REDUCED_DIR', 'FIBER',
                  'ARG_FILE_NAMES']
        p.set_sources(source, main_name)
        # define loc storage parameter dictionary
        loc = ParamDict()

        # ---------------------------------------------------------------------
        # Read image file
        # ---------------------------------------------------------------------
        # read the image data
        p, data, hdr = spirouImage.ReadImageAndCombine(p, framemath='add')

        # ---------------------------------------------------------------------
        # Load calibDB for this file
        # ---------------------------------------------------------------------
        # as we need a different calibDB for each file
        p = spirouStartup.LoadCalibDB(p, header=hdr)

        # ------------------------------------------------------------------
        # Read wavelength solution
        # ------------------------------------------------------------------
        # force reading from calibDB
        p['CALIB_DB_FORCE_WAVESOL'] = True
        p.set_source('CALIB_DB_FORCE_WAVESOL', main_name)
        # set source of wave file
        wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
        # Force A and B to AB solution
        if p['FIBER'] in ['A', 'B']:
            wave_fiber = 'AB'
        else:
            wave_fiber = p['FIBER']
        # get wave image
        wout = spirouImage.GetWaveSolution(p, hdr=hdr, return_wavemap=True,
                                           return_filename=True,
                                           return_header=True, fiber=wave_fiber)
        loc['WAVEPARAMS'], loc['WAVE'], loc['WAVEFILE'] = wout[:3]
        loc['WAVEHDR'], loc['WSOURCE'] = wout[3:]
        source_names = ['WAVE', 'WAVEFILE', 'WAVEPARAMS', 'WAVEHDR', 'WSOURCE']
        loc.set_sources(source_names, wsource)

        # get dates
        loc['WAVE_ACQTIMES'] = spirouDB.GetTimes(p, loc['WAVEHDR'])
        loc.set_source('WAVE_ACQTIMES', __NAME__ + '.main()')
        # get the recipe that produced the wave solution
        if 'WAVECODE' in loc['WAVEHDR']:
            loc['WAVE_CODE'] = loc['WAVEHDR']['WAVECODE']
        else:
            loc['WAVE_CODE'] = 'UNKNOWN'
        loc.set_source('WAVE_CODE', __NAME__ + '.main()')

        # ------------------------------------------------------------------
        # Save file with new header
        # ------------------------------------------------------------------
        # log that we are saving E2DS spectrum
        wmsg = 'Saving E2DS spectrum of Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(p['FIBER'], basefilename))

        # add keys from original header file
        hdict = spirouImage.CopyOriginalKeys(hdr)
        # set the version
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
        # set the input files
        hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'],
                                   value=loc['WAVEFILE'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'],
                                   value=loc['WSOURCE'])
        # add wave solution date
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME1'],
                                   value=loc['WAVE_ACQTIMES'][0])
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME2'],
                                   value=loc['WAVE_ACQTIMES'][1])
        # add wave solution number of orders
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_ORD_N'],
                                   value=loc['WAVEPARAMS'].shape[0])
        # add wave solution degree of fit
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_LL_DEG'],
                                   value=loc['WAVEPARAMS'].shape[1] - 1)
        # add wave solution coefficients
        hdict = spirouImage.AddKey2DList(p, hdict, p['KW_WAVE_PARAM'],
                                         values=loc['WAVEPARAMS'])
        # write to file
        p = spirouImage.WriteImage(p, p['FITSFILENAME'], data, hdict)
    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p, outputs=None)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #12
0
def main(night_name=None, files=None):
    """
    pol_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
    pol_spirou.py [night_directory] [fitsfilename]

    :param night_name: string or None, the folder within data raw directory
                        containing files (also reduced directory) i.e.
                        /data/raw/20170710 would be "20170710" but
                        /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to process
                    (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """

    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    files,
                                    mainfitsdir='reduced')
    p = spirouStartup.InitialFileSetup(p, calibdb=True)

    # ----------------------------------------------------------------------
    # Loop through files, identify and sort files and identify fiber types
    # ----------------------------------------------------------------------
    # set up polar storage
    polardict = ParamDict()
    # sort files
    polardict = spirouPOLAR.SortPolarFiles(p, polardict)

    # ----------------------------------------------------------------------
    # Load the input polarimetry data and check if provided data are
    #    sufficient for polarimetry calculation
    # ----------------------------------------------------------------------
    # set up data storage
    loc = ParamDict()
    # load files
    p, loc = spirouPOLAR.LoadPolarData(p, polardict, loc)

    # ------------------------------------------------------------------
    # Read wavelength solution
    # ------------------------------------------------------------------
    # set source of wave file
    wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=loc['HDR'],
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    _, loc['WAVE'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVE', 'WAVEFILE', 'WSOURCE'], wsource)

    # ----------------------------------------------------------------------
    # Polarimetry computation
    # ----------------------------------------------------------------------
    loc = spirouPOLAR.CalculatePolarimetry(p, loc)

    # ----------------------------------------------------------------------
    # Stokes I computation
    # ----------------------------------------------------------------------
    loc = spirouPOLAR.CalculateStokesI(p, loc)

    # ----------------------------------------------------------------------
    # Calculate continuum (for plotting)
    # ----------------------------------------------------------------------
    loc = spirouPOLAR.CalculateContinuum(p, loc)

    # ----------------------------------------------------------------------
    # Plots
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive plot
        sPlt.start_interactive_session(p)
        # plot continuum plots
        sPlt.polar_continuum_plot(p, loc)
        # plot polarimetry results
        sPlt.polar_result_plot(p, loc)
        # plot total flux (Stokes I)
        sPlt.polar_stokes_i_plot(p, loc)
        # end interactive session
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Store polarimetry in file(s)
    # ------------------------------------------------------------------
    # construct file names
    degpolfits, tag1 = spirouConfig.Constants.DEG_POL_FILE(p, loc)
    degpolfitsname = os.path.split(degpolfits)[-1]
    stokes_ifits, tag2 = spirouConfig.Constants.STOKESI_POL_FILE(p, loc)
    stokes_ifitsname = os.path.split(stokes_ifits)[-1]
    nullpol1fits, tag3 = spirouConfig.Constants.NULL_POL1_FILE(p, loc)
    nullpol1fitsname = os.path.split(nullpol1fits)[-1]
    nullpol2fits, tag4 = spirouConfig.Constants.NULL_POL2_FILE(p, loc)
    nullpol2fitsname = os.path.split(nullpol2fits)[-1]

    # log that we are saving POL spectrum
    wmsg = 'Saving POL, STOKESI, NULL1, and NULL2 to {0}, {1}, {2}, {3}'
    wargs = [
        degpolfitsname, stokes_ifitsname, nullpol1fitsname, nullpol2fitsname
    ]
    WLOG(p, '', wmsg.format(*wargs))

    # construct header keywords for output products
    hdict, loc = spirouPOLAR.PolarHeader(p, loc, polardict, qc_params)

    # save POL data to file
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    p = spirouImage.WriteImageMulti(p, degpolfits, [loc['POL'], loc['POLERR']],
                                    hdict)
    # save NULL1 data to file
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)
    p = spirouImage.WriteImage(p, nullpol1fits, loc['NULL1'], hdict)

    # save NULL2 data to file
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
    p = spirouImage.WriteImage(p, nullpol2fits, loc['NULL2'], hdict)

    # add stokes parameter keyword to header
    hdict = spirouImage.AddKey(p, hdict, p['KW_POL_STOKES'], value="I")
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
    # save STOKESI data to file
    multi_image = [loc['STOKESI'], loc['STOKESIERR']]
    p = spirouImage.WriteImageMulti(p, stokes_ifits, multi_image, hdict)

    # ------------------------------------------------------------------
    if p['IC_POLAR_LSD_ANALYSIS']:
        # ------------------------------------------------------------------
        # LSD Analysis
        # ------------------------------------------------------------------
        loc = spirouPOLAR.LSDAnalysis(p, loc)

        if p['DRS_PLOT'] > 0:
            # plot LSD analysis
            sPlt.polar_lsd_plot(p, loc)

        #  save LSD analysis data to file
        p, lsdfits, lsdfitsfitsname = spirouPOLAR.OutputLSDimage(p, loc, hdict)

        # log that we are saving LSD analysis data
        wmsg = 'Saving LSD analysis data to {0}'.format(lsdfitsfitsname)
        WLOG(p, '', wmsg)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #13
0
def main(night_name=None, reffile=None):
    """
    cal_DRIFT_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_DRIFT_E2DS_spirou.py [night_directory] [reffile]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param reffile: string, the reference file to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with reference file being None (i.e. get from sys.argv)
    if reffile is None:
        customargs = spirouStartup.GetCustomFromRuntime(
            p, [0], [str], ['reffile'])
    else:
        customargs = dict(reffile=reffile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='reffile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE'])
    p['REFFILENAME'] = reffilename
    p.set_source('REFFILENAME', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    speref, hdr, nbo, nx = spirouImage.ReadData(p, reffilename)
    # add to loc
    loc = ParamDict()
    loc['SPEREF'] = speref
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['speref', 'number_orders'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       fiber=wave_fiber,
                                       return_wavemap=True,
                                       return_filename=True)
    _, loc['WAVE'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    source = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    loc.set_sources(['WAVE', 'WAVEFILE', 'WSOURCE'], source)
    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # get flat
    p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])

    # ----------------------------------------------------------------------
    # Background correction
    # ----------------------------------------------------------------------
    # log that we are performing background correction
    if p['IC_DRIFT_BACK_CORR']:
        WLOG(p, '', 'Perform background correction')
        # get the box size from constants
        bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
        # Loop around the orders
        for order_num in range(loc['NUMBER_ORDERS']):
            miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num],
                                                  bsize)
            loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny

    # ------------------------------------------------------------------
    # Compute photon noise uncertainty for reference file
    # ------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['SPEREF'], loc['WAVE']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))

    # ------------------------------------------------------------------
    # Reference plots
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        sPlt.drift_plot_selected_wave_ref(p, loc)
        # plot photon noise uncertainty
        sPlt.drift_plot_photon_uncertainty(p, loc)

    # ------------------------------------------------------------------
    # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from
    #    ref file
    # ------------------------------------------------------------------
    # get files
    listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr)
    # get the number of files
    nfiles = len(listfiles)
    # Log the number of files found
    wmsgs = [
        'Number of files found on directory = {0}'.format(nfiles),
        '\tExtensions allowed:'
    ]
    for listtype in listtypes:
        wmsgs.append('\t\t - {0}'.format(listtype))
    WLOG(p, 'info', wmsgs)

    # ------------------------------------------------------------------
    # Set up Extract storage for all files
    # ------------------------------------------------------------------
    # decide whether we need to skip (for large number of files)
    if len(listfiles) >= p['DRIFT_NLARGE']:
        skip = p['DRIFT_E2DS_FILE_SKIP']
        nfiles = int(nfiles / skip)
    else:
        skip = 1
    # set up storage
    loc['DRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['ERRDRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['DELTATIME'] = np.zeros(nfiles)
    # set loc sources
    keys = ['drift', 'errdrift', 'deltatime']
    loc.set_sources(keys, __NAME__ + '/main()()')

    # ------------------------------------------------------------------
    # Loop around all files: correct for dark, reshape, extract and
    #     calculate dvrms and meanpond
    # ------------------------------------------------------------------
    wref = 1
    for i_it in range(nfiles):
        # get file for this iteration
        fpfile = listfiles[::skip][i_it]
        # Log the file we are reading
        wmsg = 'Reading file {0}'
        WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1]))
        # ------------------------------------------------------------------
        # read e2ds files and get timestamp
        # ------------------------------------------------------------------
        # read data
        rout = spirouImage.ReadData(p, filename=fpfile, log=False)
        loc['SPE'], hdri, nxi, nyi = rout
        # get acqtime
        bjdspe = spirouImage.GetAcqTime(p,
                                        hdri,
                                        name='acqtime',
                                        return_value=1,
                                        kind='julian')
        # test whether we want to subtract background
        if p['IC_DRIFT_BACK_CORR']:
            # Loop around the orders
            for order_num in range(loc['NUMBER_ORDERS']):
                # get the box size from constants
                bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
                # Measurethe min and max flux
                miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num],
                                                      bsize)
                # subtract off the background (miny)
                loc['SPE'][order_num] = loc['SPE'][order_num] - miny

        # ------------------------------------------------------------------
        # Compute photon noise uncertainty for iteration file
        # ------------------------------------------------------------------
        # set up the arguments for DeltaVrms2D
        dargs = [loc['SPE'], loc['WAVE']]
        dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                       size=p['IC_DRIFT_BOXSIZE'],
                       threshold=p['IC_DRIFT_MAXFLUX'])
        # run DeltaVrms2D
        dvrmsspe, wmodespe = spirouRV.DeltaVrms2D(*dargs, **dkwargs)

        # ------------------------------------------------------------------
        # Compute the correction of the cosmics and re-normalisation by
        #   comparison with the reference spectrum
        # ------------------------------------------------------------------
        # correction of the cosmics and renomalisation by comparison with
        #   the reference spectrum
        dargs = [p, loc['SPEREF'], loc['SPE']]
        dkwargs = dict(threshold=p['IC_DRIFT_MAXFLUX'],
                       size=p['IC_DRIFT_BOXSIZE'],
                       cut=p['IC_DRIFT_CUT_E2DS'])
        spen, cfluxr, cpt = spirouRV.ReNormCosmic2D(*dargs, **dkwargs)

        # ------------------------------------------------------------------
        # Calculate the RV drift
        # ------------------------------------------------------------------
        dargs = [loc['SPEREF'], spen, loc['WAVE']]
        dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                       threshold=p['IC_DRIFT_MAXFLUX'],
                       size=p['IC_DRIFT_BOXSIZE'])
        rv = spirouRV.CalcRVdrift2D(*dargs, **dkwargs)
        # ------------------------------------------------------------------
        # Calculate delta time
        # ------------------------------------------------------------------
        # calculate the time from reference (in hours)
        deltatime = (bjdspe - bjdref) * 24
        # ------------------------------------------------------------------
        # Calculate RV properties
        # ------------------------------------------------------------------
        # calculate the mean flux ratio
        meanfratio = np.nanmean(cfluxr)
        # calculate the weighted mean radial velocity
        wref = 1.0 / dvrmsref
        meanrv = -1.0 * np.nansum(rv * wref) / np.nansum(wref)
        err_meanrv = np.sqrt(dvrmsref + dvrmsspe)
        merr = 1. / np.sqrt(np.nansum((1. / err_meanrv)**2))
        # Log the RV properties
        wmsg = (
            'Time from ref={0:.2f} h  - Drift mean= {1:.2f} +- {2:.3f} m/s '
            '- Flux ratio= {3:.3f} - Nb Comsic= {4}')
        WLOG(p, '', wmsg.format(deltatime, meanrv, merr, meanfratio, cpt))
        # add this iteration to storage
        loc['DRIFT'][i_it] = -1.0 * rv
        loc['ERRDRIFT'][i_it] = err_meanrv
        loc['DELTATIME'][i_it] = deltatime

    # ------------------------------------------------------------------
    # Calculate drift properties
    # ------------------------------------------------------------------
    # get the maximum number of orders to use
    nomax = nbo  # p['IC_DRIFT_N_ORDER_MAX']
    # ------------------------------------------------------------------
    # if use mean
    if p['DRIFT_TYPE_E2DS'].upper() == 'WEIGHTED MEAN':
        # mean radial velocity
        sumwref = np.nansum(wref[:nomax])
        meanrv = np.nansum(loc['DRIFT'][:, :nomax] * wref[:nomax], 1) / sumwref
        # error in mean radial velocity
        errdrift2 = loc['ERRDRIFT'][:, :nomax]**2
        meanerr = 1.0 / np.sqrt(np.nansum(1.0 / errdrift2, 1))
        # add to loc
        loc['MDRIFT'] = meanrv
        loc['MERRDRIFT'] = meanerr
    # else use median
    else:
        # median drift
        loc['MDRIFT'] = np.nanmedian(loc['DRIFT'][:, :nomax], 1)
        # median err drift
        loc['MERRDRIFT'] = np.nanmedian(loc['ERRDRIFT'][:, :nomax], 1)
    # ------------------------------------------------------------------
    # set source
    loc.set_sources(['mdrift', 'merrdrift'], __NAME__ + '/main()()')
    # ------------------------------------------------------------------
    # peak to peak drift
    driftptp = np.max(loc['MDRIFT']) - np.min(loc['MDRIFT'])
    driftrms = np.std(loc['MDRIFT'])
    # log th etotal drift peak-to-peak and rms
    wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in '
            '{2:.2f} hour')
    wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])]
    WLOG(p, '', wmsg.format(*wargs))

    # ------------------------------------------------------------------
    # Plot of mean drift
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot delta time against median drift
        sPlt.drift_plot_dtime_against_mdrift(p, loc, kind='e2ds')

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Save drift values to file
    # ------------------------------------------------------------------
    # get raw input file name
    raw_infile = os.path.basename(p['REFFILE'])
    # construct filename
    driftfits, tag = spirouConfig.Constants.DRIFT_E2DS_FITS_FILE(p)
    driftfitsname = os.path.split(driftfits)[-1]
    # log that we are saving drift values
    wmsg = 'Saving drift values of Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname))
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile)
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])

    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # save drift values
    p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict)

    # ------------------------------------------------------------------
    # print .tbl result
    # ------------------------------------------------------------------
    # construct filename
    drifttbl = spirouConfig.Constants.DRIFT_E2DS_TBL_FILE(p)
    drifttblname = os.path.split(drifttbl)[-1]
    # construct and write table
    columnnames = ['time', 'drift', 'drifterr']
    columnformats = ['7.4f', '6.2f', '6.3f']
    columnvalues = [loc['DELTATIME'], loc['MDRIFT'], loc['MERRDRIFT']]
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    wmsg = 'Average Drift saved in {0} Saved '
    WLOG(p, '', wmsg.format(drifttblname))
    spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst')

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #14
0
def main(night_name=None, files=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    files,
                                    mainfitsdir='reduced')
    p = spirouStartup.InitialFileSetup(p, calibdb=True)
    # set up function name
    main_name = __NAME__ + '.main()'

    # ----------------------------------------------------------------------
    # Load first file
    # ----------------------------------------------------------------------
    loc = ParamDict()
    rd = spirouImage.ReadImage(p, p['FITSFILENAME'])
    loc['DATA'], loc['DATAHDR'], loc['XDIM'], loc['YDIM'] = rd
    loc.set_sources(['DATA', 'DATAHDR', 'XDIM', 'YDIM'], main_name)

    # ----------------------------------------------------------------------
    # Get object name, airmass and berv
    # ----------------------------------------------------------------------
    # Get object name
    loc['OBJNAME'] = spirouImage.GetObjName(p, loc['DATAHDR'])
    # Get the airmass
    loc['AIRMASS'] = spirouImage.GetAirmass(p, loc['DATAHDR'])
    # Get the Barycentric correction from header
    p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, loc['DATAHDR'])
    # set sources
    source = main_name + '+ spirouImage.ReadParams()'
    loc.set_sources(['OBJNAME', 'AIRMASS'], source)
    loc.set_sources(['OBJNAME', 'AIRMASS'], source)

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # used for plotting only
    wout = spirouImage.GetWaveSolution(p,
                                       image=loc['DATA'],
                                       hdr=loc['DATAHDR'],
                                       return_wavemap=True,
                                       fiber=wave_fiber)
    _, loc['WAVE'], _ = wout
    loc.set_source('WAVE', main_name)

    # ----------------------------------------------------------------------
    # Get and Normalise the blaze
    # ----------------------------------------------------------------------
    p, loc = spirouTelluric.GetNormalizedBlaze(p, loc, loc['DATAHDR'])

    # ----------------------------------------------------------------------
    # Load transmission files
    # ----------------------------------------------------------------------
    transdata = spirouDB.GetDatabaseTellMap(p)
    trans_files = transdata[0]
    # make sure we have unique filenames for trans_files
    trans_files = np.unique(trans_files)

    # ----------------------------------------------------------------------
    # Start plotting
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive plot
        sPlt.start_interactive_session(p)

    # ----------------------------------------------------------------------
    # Load template (if available)
    # ----------------------------------------------------------------------
    # read filename from telluDB
    template_file = spirouDB.GetDatabaseObjTemp(p,
                                                loc['OBJNAME'],
                                                required=False)
    # if we don't have a template flag it
    if template_file is None:
        loc['FLAG_TEMPLATE'] = False
        loc['TEMPLATE'] = None
    else:
        loc['FLAG_TEMPLATE'] = True
        # load template
        template, _, _, _ = spirouImage.ReadImage(p, template_file)
        # add to loc
        loc['TEMPLATE'] = template
    # set the source for flag and template
    loc.set_sources(['FLAG_TEMPLATE', 'TEMPLATE'], main_name)

    # ----------------------------------------------------------------------
    # load the expected atmospheric transmission
    # ----------------------------------------------------------------------
    # read filename from telluDB
    tapas_file_names = spirouDB.GetDatabaseTellConv(p)
    tapas_file_name = tapas_file_names[-1]
    # load atmospheric transmission
    loc['TAPAS_ALL_SPECIES'] = np.load(tapas_file_name)
    loc.set_source('TAPAS_ALL_SPECIES', main_name)

    # ----------------------------------------------------------------------
    # Generate the absorption map
    # ----------------------------------------------------------------------
    # get number of files
    nfiles = len(trans_files)
    npc = p['TELLU_NUMBER_OF_PRINCIPLE_COMP']
    # check that we have enough files (greater than number of principle
    #    components)
    if nfiles <= npc:
        emsg1 = 'Not enough "TELL_MAP" files in telluDB to run PCA analysis'
        emsg2 = '\tNumber of files = {0}, number of PCA components = {1}'
        emsg3 = '\tNumber of files > number of PCA components'
        emsg4 = '\tAdd more files or reduce number of PCA components'
        WLOG(p, 'error', [emsg1, emsg2.format(nfiles, npc), emsg3, emsg4])

    # check whether we can used pre-saved abso
    filetime = spirouImage.GetMostRecent(trans_files)
    tout = spirouConfig.Constants.TELLU_ABSO_SAVE(p, filetime)
    abso_save_file, absoprefix = tout
    use_saved = os.path.exists(abso_save_file)
    # noinspection PyBroadException
    try:
        # try loading from file
        abso = np.load(abso_save_file)
        # log progress
        wmsg = 'Loaded abso from file {0}'.format(abso_save_file)
        WLOG(p, '', wmsg)
    except:
        # set up storage for the absorption
        abso = np.zeros([nfiles, np.product(loc['DATA'].shape)])
        # loop around outputfiles and add them to abso
        for it, filename in enumerate(trans_files):
            # load data
            data_it, _, _, _ = spirouImage.ReadImage(p, filename=filename)
            # push data into array
            abso[it, :] = data_it.reshape(np.product(loc['DATA'].shape))
        # log progres
        wmsg = 'Saving abso to file {0}'.format(abso_save_file)
        WLOG(p, '', wmsg)
        # remove all abso save files (only need most recent one)
        afolder = os.path.dirname(abso_save_file)
        afilelist = os.listdir(afolder)
        for afile in afilelist:
            if afile.startswith(absoprefix):
                os.remove(os.path.join(afolder, afile))
        # save to file for later use
        np.save(abso_save_file, abso)

    # filter out rows of all NaNs
    # TODO: Why are we getting all NaN e2ds files?
    abso_filtered = []
    for row in range(len(abso)):
        if np.sum(np.isnan(abso[row])) != len(abso[row]):
            abso_filtered.append(abso[row])
        else:
            wargs = [trans_files[row]]
            WLOG(p, '', 'Removing trans file {0} (all NaN)'.format(*wargs))
    abso = np.array(abso_filtered)

    # log the absorption cube
    with warnings.catch_warnings(record=True) as w:
        log_abso = np.log(abso)

    # ----------------------------------------------------------------------
    # Locate valid pixels for PCA
    # ----------------------------------------------------------------------
    # determining the pixels relevant for PCA construction
    keep = np.isfinite(np.sum(abso, axis=0))
    # log fraction of valid (non NaN) pixels
    fraction = np.nansum(keep) / len(keep)
    wmsg = 'Fraction of valid pixels (not NaNs) for PCA construction = {0:.3f}'
    WLOG(p, '', wmsg.format(fraction))
    # log fraction of valid pixels > 1 - (1/e)
    with warnings.catch_warnings(record=True) as w:
        keep &= np.min(log_abso, axis=0) > -1
    fraction = np.nansum(keep) / len(keep)
    wmsg = 'Fraction of valid pixels with transmission > 1 - (1/e) = {0:.3f}'
    WLOG(p, '', wmsg.format(fraction))

    # ----------------------------------------------------------------------
    # Perform PCA analysis on the log of the telluric absorption map
    # ----------------------------------------------------------------------
    # Requires p:
    #           TELLU_NUMBER_OF_PRINCIPLE_COMP
    #           ADD_DERIV_PC
    #           FIT_DERIV_PC
    # Requires loc:
    #           DATA
    # Returns loc:
    #           PC
    #           NPC
    #           FIT_PC
    loc = spirouTelluric.CalculateAbsorptionPCA(p, loc, log_abso, keep)

    # Plot PCA components
    # debug plot
    if p['DRS_PLOT'] and (p['DRS_DEBUG'] > 1):
        # plot the transmission map plot
        sPlt.tellu_pca_comp_plot(p, loc)

    # ----------------------------------------------------------------------
    # Get master wavelength grid for shifting
    # ----------------------------------------------------------------------
    # get master wave map
    loc['MASTERWAVEFILE'] = spirouDB.GetDatabaseMasterWave(p)
    loc.set_source('MASTERWAVEFILE', main_name)
    # log progress
    wmsg1 = 'Getting master wavelength grid'
    wmsg2 = '\tFile = {0}'.format(os.path.basename(loc['MASTERWAVEFILE']))
    WLOG(p, '', [wmsg1, wmsg2])
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # read master wave map
    mout = spirouImage.GetWaveSolution(p,
                                       filename=loc['MASTERWAVEFILE'],
                                       return_wavemap=True,
                                       quiet=True,
                                       fiber=wave_fiber)
    _, loc['MASTERWAVE'], _ = mout
    loc.set_source('MASTERWAVE', main_name)

    # ----------------------------------------------------------------------
    # Loop around telluric files
    # ----------------------------------------------------------------------
    for basefilename in p['ARG_FILE_NAMES']:

        # ------------------------------------------------------------------
        # Construct absolute file path
        # ------------------------------------------------------------------
        filename = os.path.join(p['ARG_FILE_DIR'], basefilename)
        # ------------------------------------------------------------------
        # Construct output file names
        # ------------------------------------------------------------------
        outfile1, tag1 = CONSTANTS.TELLU_FIT_OUT_FILE(p, filename)
        outfilename1 = os.path.basename(outfile1)
        outfile2, tag2 = CONSTANTS.TELLU_FIT_RECON_FILE(p, filename)
        outfilename2 = os.path.basename(outfile2)

        # ------------------------------------------------------------------
        # Read filename
        # ------------------------------------------------------------------
        # read image
        tdata, thdr, _, _ = spirouImage.ReadImage(p, filename)
        # normalise with blaze function
        loc['SP'] = tdata / loc['NBLAZE']
        loc.set_source('SP', main_name)

        # ------------------------------------------------------------------
        # check that file has valid DPRTYPE
        # ------------------------------------------------------------------
        # get FP_FP DPRTYPE
        p = spirouImage.ReadParam(p, thdr, 'KW_DPRTYPE', 'DPRTYPE', dtype=str)
        # if dprtype is incorrect skip
        if p['DPRTYPE'] not in p['ALLOWED_TELLURIC_DPRTYPES']:
            wmsg1 = 'Skipping file (DPRTYPE incorrect)'
            wmsg2 = '\t DPRTYPE = {0}'.format(p['DPRTYPE'])
            WLOG(p, 'warning', [wmsg1, wmsg2])
            continue

        # ------------------------------------------------------------------
        # Set storage
        # ------------------------------------------------------------------
        loc['RECON_ABSO'] = np.ones(np.product(loc['DATA'].shape))
        loc['AMPS_ABSOL_TOTAL'] = np.zeros(loc['NPC'])
        loc.set_sources(['RECON_ABSO', 'AMPS_ABSOL_TOTAL'], main_name)

        # ------------------------------------------------------------------
        # Read wavelength solution
        # ------------------------------------------------------------------
        # Force A and B to AB solution
        if p['FIBER'] in ['A', 'B']:
            wave_fiber = 'AB'
        else:
            wave_fiber = p['FIBER']
        # get wavelength solution
        wout = spirouImage.GetWaveSolution(p,
                                           image=tdata,
                                           hdr=thdr,
                                           return_wavemap=True,
                                           return_filename=True,
                                           fiber=wave_fiber)
        _, loc['WAVE_IT'], loc['WAVEFILE'], loc['WSOURCE'] = wout
        loc.set_sources(['WAVE_IT', 'WAVEFILE', 'WSOURCE'], main_name)
        # load wave keys
        loc = spirouImage.GetWaveKeys(p, loc, thdr)

        # ------------------------------------------------------------------
        # Interpolate at shifted wavelengths (if we have a template)
        # ------------------------------------------------------------------
        if loc['FLAG_TEMPLATE']:
            # Requires p:
            #           TELLU_FIT_KEEP_FRAC
            # Requires loc:
            #           DATA
            #           TEMPLATE
            #           WAVE_IT
            # Returns:
            #           TEMPLATE2
            loc = spirouTelluric.BervCorrectTemplate(p, loc, thdr)

            # debug plot
            if p['DRS_PLOT'] and (p['DRS_DEBUG'] > 1):
                # plot the transmission map plot
                sPlt.tellu_fit_tellu_spline_plot(p, loc)

        # store PC and TAPAS_ALL_SPECIES before shift
        loc['PC_PRESHIFT'] = np.array(loc['PC'])
        loc['TAPAS_ALL_PRESHIFT'] = np.array(loc['TAPAS_ALL_SPECIES'])
        loc.set_sources(['PC_PRESHIFT', 'TAPAS_ALL_PRESHIFT'], main_name)

        # ------------------------------------------------------------------
        # Shift the pca components to correct frame
        # ------------------------------------------------------------------
        # log process
        wmsg1 = 'Shifting PCA components from master wavelength grid'
        wmsg2 = '\tFile = {0}'.format(os.path.basename(loc['MASTERWAVEFILE']))
        WLOG(p, '', [wmsg1, wmsg2])
        # shift pca components (one by one)
        for comp in range(loc['NPC']):
            wargs = [p, loc['PC'][:, comp], loc['MASTERWAVE'], loc['WAVE_IT']]
            shift_pc = spirouTelluric.Wave2Wave(*wargs, reshape=True)
            loc['PC'][:, comp] = shift_pc.reshape(wargs[1].shape)

            wargs = [
                p, loc['FIT_PC'][:, comp], loc['MASTERWAVE'], loc['WAVE_IT']
            ]
            shift_fpc = spirouTelluric.Wave2Wave(*wargs, reshape=True)
            loc['FIT_PC'][:, comp] = shift_fpc.reshape(wargs[1].shape)

        # ------------------------------------------------------------------
        # Shift the tapas spectrum to correct frame
        # ------------------------------------------------------------------
        # log process
        wmsg1 = 'Shifting TAPAS spectrum from master wavelength grid'
        wmsg2 = '\tFile = {0}'.format(os.path.basename(loc['MASTERWAVEFILE']))
        WLOG(p, '', [wmsg1, wmsg2])
        # shift tapas
        for comp in range(len(loc['TAPAS_ALL_SPECIES'])):
            wargs = [
                p, loc['TAPAS_ALL_SPECIES'][comp], loc['MASTERWAVE'],
                loc['WAVE_IT']
            ]
            stapas = spirouTelluric.Wave2Wave(*wargs, reshape=True)
            loc['TAPAS_ALL_SPECIES'][comp] = stapas.reshape(wargs[1].shape)

        # Debug plot to test shifting
        if p['DRS_PLOT'] and p['DRS_DEBUG'] > 1:
            sPlt.tellu_fit_debug_shift_plot(p, loc)

        # ------------------------------------------------------------------
        # Calculate reconstructed absorption
        # ------------------------------------------------------------------
        # Requires p:
        #           TELLU_FIT_MIN_TRANSMISSION
        #           TELLU_FIT_NITER
        #           TELLU_LAMBDA_MIN
        #           TELLU_LAMBDA_MAX
        #           TELLU_FIT_VSINI
        #           TRANSMISSION_CUT
        #           FIT_DERIV_PC
        #           LOG_OPT
        # Requires loc:
        #           FLAG_TEMPLATE
        #           TAPAS_ALL_SPECIES
        #           AMPS_ABSOL_TOTAL
        #           WAVE_IT
        #           TEMPLATE2
        #           FIT_PC
        #           NPC
        #           PC
        # Returns loc:
        #           SP2
        #           TEMPLATE2
        #           RECON_ABSO
        #           AMPS_ABSOL_TOTAL
        loc = spirouTelluric.CalcReconAbso(p, loc)
        # debug plot
        if p['DRS_PLOT'] > 0:
            # plot the recon abso plot
            sPlt.tellu_fit_recon_abso_plot(p, loc)

        # ------------------------------------------------------------------
        # Get molecular absorption
        # ------------------------------------------------------------------
        # Requires p:
        #           TELLU_FIT_LOG_LIMIT
        # Requeres loc:
        #           RECON_ABSO
        #           TAPAS_ALL_SPECIES
        # Returns loc:
        #           TAPAS_{molecule}
        loc = spirouTelluric.CalcMolecularAbsorption(p, loc)

        # ----------------------------------------------------------------------
        # Quality control
        # ----------------------------------------------------------------------
        # set passed variable and fail message list
        passed, fail_msg = True, []
        qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
        # ----------------------------------------------------------------------
        # get SNR for each order from header
        nbo = loc['DATA'].shape[0]
        snr_order = p['QC_FIT_TELLU_SNR_ORDER']
        snr = spirouImage.Read1Dkey(p, thdr, p['kw_E2DS_SNR'][0], nbo)
        # check that SNR is high enough
        if snr[snr_order] < p['QC_FIT_TELLU_SNR_MIN']:
            fmsg = 'low SNR in order {0}: ({1:.2f} < {2:.2f})'
            fargs = [snr_order, snr[snr_order], p['QC_FIT_TELLU_SNR_MIN']]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(snr[snr_order])
        qc_name_str = 'SNR[{0}]'.format(snr_order)
        qc_names.append(qc_name_str)
        qc_logic.append('{0} < {1:.2f}'.format(qc_name_str,
                                               p['QC_FIT_TELLU_SNR_ORDER']))
        # ----------------------------------------------------------------------
        # finally log the failed messages and set QC = 1 if we pass the
        # quality control QC = 0 if we fail quality control
        if passed:
            WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
            p['QC'] = 1
            p.set_source('QC', __NAME__ + '/main()')
        else:
            for farg in fail_msg:
                wmsg = 'QUALITY CONTROL FAILED: {0}'
                WLOG(p, 'warning', wmsg.format(farg))
            p['QC'] = 0
            p.set_source('QC', __NAME__ + '/main()')
            continue
        # store in qc_params
        qc_params = [qc_names, qc_values, qc_logic, qc_pass]

        # ------------------------------------------------------------------
        # Get components amplitudes for header
        # ------------------------------------------------------------------
        # get raw file name
        raw_in_file = os.path.basename(p['FITSFILENAME'])
        # copy original keys
        hdict = spirouImage.CopyOriginalKeys(thdr)
        # add version number
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
        # set the input files
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBBLAZE'],
                                   value=p['BLAZFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBWAVE'],
                                   value=loc['WAVEFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVESOURCE'],
                                   value=loc['WSOURCE'])
        hdict = spirouImage.AddKey1DList(p,
                                         hdict,
                                         p['KW_INFILE1'],
                                         dim1name='file',
                                         values=p['ARG_FILE_NAMES'])
        # add qc parameters
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
        hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
        # set tellu keys
        npc = loc['NPC']
        hdict = spirouImage.AddKey(p, hdict, p['KW_TELLU_NPC'], value=npc)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_TELLU_FIT_DPC'],
                                   value=p['FIT_DERIV_PC'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_TELLU_ADD_DPC'],
                                   value=p['ADD_DERIV_PC'])
        if p['ADD_DERIV_PC']:
            values = loc['AMPS_ABSOL_TOTAL'][:npc - 2]
            hdict = spirouImage.AddKey1DList(p,
                                             hdict,
                                             p['KW_TELLU_AMP_PC'],
                                             values=values,
                                             dim1name='amp')
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_TELLU_DV_TELL1'],
                                       value=loc['AMPS_ABSOL_TOTAL'][npc - 2])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_TELLU_DV_TELL2'],
                                       value=loc['AMPS_ABSOL_TOTAL'][npc - 1])
        else:
            values = loc['AMPS_ABSOL_TOTAL'][:npc]
            hdict = spirouImage.AddKey1DList(p,
                                             hdict,
                                             p['KW_TELLU_AMP_PC'],
                                             values=values,
                                             dim1name='PC')

        # ------------------------------------------------------------------
        # Write corrected spectrum to E2DS
        # ------------------------------------------------------------------
        # reform the E2DS
        sp_out = loc['SP2'] / loc['RECON_ABSO']
        sp_out = sp_out.reshape(loc['DATA'].shape)
        # multiply by blaze
        sp_out = sp_out * loc['NBLAZE']
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        # log progress
        wmsg = 'Saving {0} to file'.format(outfilename1)
        WLOG(p, '', wmsg)
        # write sp_out to file
        p = spirouImage.WriteImage(p, outfile1, sp_out, hdict)

        # ------------------------------------------------------------------
        # 1-dimension spectral S1D (uniform in wavelength)
        # ------------------------------------------------------------------
        # get arguments for E2DS to S1D
        e2dsargs = [loc['WAVE'], sp_out, loc['BLAZE']]
        # get 1D spectrum
        xs1d1, ys1d1 = spirouImage.E2DStoS1D(p, *e2dsargs, wgrid='wave')
        # Plot the 1D spectrum
        if p['DRS_PLOT'] > 0:
            sPlt.ext_1d_spectrum_plot(p, xs1d1, ys1d1)
        # construct file name
        targs = [p, raw_in_file]
        s1dfile1, tag3 = spirouConfig.Constants.TELLU_FIT_S1D_FILE1(*targs)
        s1dfilename1 = os.path.basename(s1dfile1)
        # add header keys
        # set the version
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        # log writing to file
        wmsg = 'Saving 1D spectrum (uniform in wavelength) in {0}'
        WLOG(p, '', wmsg.format(s1dfilename1))
        # Write to file
        columns = ['wavelength', 'flux', 'eflux']
        values = [xs1d1, ys1d1, np.zeros_like(ys1d1)]
        units = ['nm', None, None]
        s1d1 = spirouImage.MakeTable(p, columns, values, units=units)
        spirouImage.WriteTable(p, s1d1, s1dfile1, header=hdict)

        # ------------------------------------------------------------------
        # 1-dimension spectral S1D (uniform in velocity)
        # ------------------------------------------------------------------
        # get arguments for E2DS to S1D
        e2dsargs = [loc['WAVE'], sp_out, loc['BLAZE']]
        # get 1D spectrum
        xs1d2, ys1d2 = spirouImage.E2DStoS1D(p, *e2dsargs, wgrid='velocity')
        # Plot the 1D spectrum
        if p['DRS_PLOT'] > 0:
            sPlt.ext_1d_spectrum_plot(p, xs1d2, ys1d2)
        # construct file name
        targs = [p, raw_in_file]
        s1dfile2, tag4 = spirouConfig.Constants.TELLU_FIT_S1D_FILE2(*targs)
        s1dfilename2 = os.path.basename(s1dfile2)
        # add header keys
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        # log writing to file
        wmsg = 'Saving 1D spectrum (uniform in velocity) in {0}'
        WLOG(p, '', wmsg.format(s1dfilename2))
        # Write to file
        columns = ['wavelength', 'flux', 'eflux']
        values = [xs1d2, ys1d2, np.zeros_like(ys1d2)]
        units = ['nm', None, None]
        s1d2 = spirouImage.MakeTable(p, columns, values, units=units)
        spirouImage.WriteTable(p, s1d2, s1dfile2, header=hdict)

        # ------------------------------------------------------------------
        # Write reconstructed absorption to E2DS
        # ------------------------------------------------------------------
        # set up empty storage
        recon_abso2 = np.zeros_like(loc['DATA'])
        # get dimensions of data
        ydim, xdim = loc['DATA'].shape
        # loop around orders
        for order_num in range(ydim):
            # get start and end points
            start, end = xdim * order_num, xdim * order_num + xdim
            # save to storage
            recon_abso2[order_num, :] = loc['RECON_ABSO'][start:end]
        # add molecular absorption to file
        for it, molecule in enumerate(p['TELLU_ABSORBERS'][1:]):
            # get molecule keyword store and key
            molkey = '{0}_{1}'.format(p['KW_TELLU_ABSO'][0], molecule.upper())
            molkws = [molkey, 0, 'Absorption in {0}'.format(molecule.upper())]
            # load into hdict
            hdict = spirouImage.AddKey(p, hdict, molkws, value=loc[molkey])
            # add water col
            if molecule == 'h2o':
                loc['WATERCOL'] = loc[molkey]
                # set source
                loc.set_source('WATERCOL', main_name)
        # add the tau keys
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_TAU_H2O'],
                                   value=loc['TAU_H2O'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_TAU_REST'],
                                   value=loc['TAU_REST'])
        # log progress
        wmsg = 'Saving {0} to file'.format(outfilename2)
        WLOG(p, '', wmsg)
        # write recon_abso to file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
        p = spirouImage.WriteImage(p, outfile2, recon_abso2, hdict)

        # ------------------------------------------------------------------
        # Update the Telluric database
        # ------------------------------------------------------------------
        if p['QC']:
            # add TELLU_OBJ to telluric database
            oparams = dict(objname=loc['OBJNAME'],
                           berv=loc['BERV'],
                           airmass=loc['AIRMASS'],
                           watercol=loc['WATERCOL'])
            spirouDB.UpdateDatabaseTellObj(p, outfilename1, **oparams)
            # copy file to database
            spirouDB.PutTelluFile(p, outfile1)
            # add TELLU_RECON to telluric database
            # add TELLU_OBJ to telluric database
            oparams = dict(objname=loc['OBJNAME'],
                           berv=loc['BERV'],
                           airmass=loc['AIRMASS'],
                           watercol=loc['WATERCOL'])
            spirouDB.UpdateDatabaseTellRecon(p, outfilename2, **oparams)
            # copy file to database
            spirouDB.PutTelluFile(p, outfile2)

    # ----------------------------------------------------------------------
    # End plotting
    # ----------------------------------------------------------------------
    # debug plot
    if p['DRS_PLOT'] > 0:
        # end interactive session
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #15
0
def main(night_name=None, flatfile=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with arguments being None (i.e. get from sys.argv)
    name, lname = ['flatfile'], ['Reference file']
    req, call, call_priority = [True], [flatfile], [True]
    # now get custom arguments
    customargs = spirouStartup.GetCustomFromRuntime(p, [0], [str], name, req,
                                                    call, call_priority, lname)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='flatfile')
    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, reffile = spirouStartup.SingleFileSetup(p, filename=p['FLATFILE'])

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Get the required fiber type from the constants file
    # ----------------------------------------------------------------------
    # get the fiber type (set to AB)
    p['FIBER'] = p['EM_FIB_TYPE']
    p['FIBER_TYPES'] = [p['EM_FIB_TYPE']]

    # ----------------------------------------------------------------------
    # Read flat image file
    # ----------------------------------------------------------------------
    # read the image data (for the header only)
    image, hdr, ny, nx = spirouImage.ReadData(p, reffile)

    # ----------------------------------------------------------------------
    # fix for un-preprocessed files
    # ----------------------------------------------------------------------
    image = spirouImage.FixNonPreProcess(p, image)

    # ----------------------------------------------------------------------
    # Get basic image properties
    # ----------------------------------------------------------------------
    # create loc
    loc = ParamDict()
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')

    # ----------------------------------------------------------------------
    # Resize flat image
    # ----------------------------------------------------------------------
    # rotate the image and convert from ADU/s to e-
    image2 = spirouImage.ConvertToE(spirouImage.FlipImage(p, image), p=p)
    # convert NaN to zeros
    image2 = np.where(~np.isfinite(image2), np.zeros_like(image2), image2)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    image2 = spirouImage.ResizeImage(p, image2, **bkwargs)
    # save flat to to loc and set source
    loc['IMAGE'] = image2
    loc.set_sources(['image'], __NAME__ + '/main()')
    # log change in data size
    wmsg = 'Image format changed to {0}x{1}'
    WLOG(p, '', wmsg.format(*image2.shape))

    # ----------------------------------------------------------------------
    # Read shape or tilt slit angle
    # ----------------------------------------------------------------------
    # set source of tilt file
    tsource = __NAME__ + '/main() + /spirouImage.ReadTiltFile'

    if p['IC_EXTRACT_TYPE'] in EXTRACT_SHAPE_TYPES:
        # log progress
        WLOG(p, '', 'Debananafying (straightening) image')
        # get the shape map
        p, loc['SHAPE'] = spirouImage.ReadShapeMap(p, hdr)
        loc.set_source('SHAPE', tsource)
    else:
        # get tilts
        p, loc['TILT'] = spirouImage.ReadTiltFile(p, hdr)
        loc.set_source('TILT', tsource)

    # ----------------------------------------------------------------------
    # Read blaze
    # ----------------------------------------------------------------------
    # get tilts
    p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hdr)
    loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile')
    # set number of orders from blaze file
    loc['NBO'] = loc['BLAZE'].shape[0]
    loc.set_source('NBO', __NAME__ + '/main()')

    # ------------------------------------------------------------------
    # Read wavelength solution
    # ------------------------------------------------------------------
    # set source of wave file
    wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    loc['WAVEPARAMS'], loc['WAVE'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVEPARAMS', 'WAVE', 'WAVEFILE', 'WSOURCE'], wsource)

    # ------------------------------------------------------------------
    # Get localisation coefficients
    # ------------------------------------------------------------------
    # storage for fiber parameters
    loc['ALL_ACC'] = OrderedDict()
    loc['ALL_ASS'] = OrderedDict()
    # get this fibers parameters
    for fiber in p['FIBER_TYPES']:
        p = spirouImage.FiberParams(p, fiber, merge=True)
        # get localisation fit coefficients
        p, loc = spirouLOCOR.GetCoeffs(p, hdr, loc=loc)
        # save all fibers
        loc['ALL_ACC'][fiber] = loc['ACC']
        loc['ALL_ASS'][fiber] = loc['ASS']

    # ------------------------------------------------------------------
    # Get telluric and telluric mask and add to loc
    # ------------------------------------------------------------------
    # log process
    wmsg = 'Loading telluric model and locating "good" tranmission'
    WLOG(p, '', wmsg)
    # load telluric and get mask (add to loc)
    loc = spirouExM.get_telluric(p, loc)

    # ------------------------------------------------------------------
    # Make 2D map of orders
    # ------------------------------------------------------------------
    # log progress
    WLOG(p, '', 'Making 2D map of order locations')
    # make the 2D wave-image
    loc = spirouExM.order_profile(p, loc)

    # ------------------------------------------------------------------
    # Make 2D map of wavelengths accounting for shape / tilt
    # ------------------------------------------------------------------
    # log progress
    WLOG(p, '', 'Mapping pixels on to wavelength grid')
    # make the 2D map of wavelength
    loc = spirouExM.create_wavelength_image(p, loc)

    # ------------------------------------------------------------------
    # Use spectra wavelength to create 2D image from wave-image
    # ------------------------------------------------------------------
    if p['EM_SAVE_MASK_MAP'] or p['EM_SAVE_TELL_SPEC']:
        # log progress
        WLOG(p, '', 'Creating image from wave-image interpolation')
        # create image from waveimage
        wkwargs = dict(x=loc['TELL_X'], y=loc['TELL_Y'])
        loc = spirouExM.create_image_from_waveimage(loc, **wkwargs)
    else:
        loc['SPE'] = np.zeros_like(image2).astype(float)

    # ------------------------------------------------------------------
    # Create 2D mask (min to max lambda + transmission threshold)
    # ------------------------------------------------------------------
    if p['EM_SAVE_MASK_MAP']:
        # log progress
        WLOG(p, '', 'Creating wavelength/tranmission mask')
        # create mask
        loc = spirouExM.create_mask(p, loc)
    else:
        loc['TELL_MASK_2D'] = np.zeros_like(image2).astype(bool)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Construct parameters for header
    # ------------------------------------------------------------------
    hdict = OrderedDict()
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    # set the input files
    if loc['SHAPE'] is not None:
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBSHAPE'],
                                   value=p['SHAPFILE'])
    else:
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBTILT'],
                                   value=p['TILTFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='file',
                                     values=p['FLATFILE'])
    # add name of the TAPAS y data
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_EM_TELLY'],
                               value=loc['TELLSPE'])
    # add name of the localisation fits file used
    hfile = os.path.basename(loc['LOCO_CTR_FILE'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_EM_LOCFILE'], value=hfile)
    # add the max and min wavelength threshold
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['kw_EM_MINWAVE'],
                               value=p['EM_MIN_LAMBDA'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['kw_EM_MAXWAVE'],
                               value=p['EM_MAX_LAMBDA'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add the transmission cut
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['kw_EM_TRASCUT'],
                               value=p['EM_TELL_THRESHOLD'])

    # ------------------------------------------------------------------
    # Deal with output preferences
    # ------------------------------------------------------------------
    # add bad pixel map (if required)
    if p['EM_COMBINED_BADPIX']:
        # get bad pix mask (True where bad)
        badpixmask, bhdr, badfile = spirouImage.GetBadPixMap(p, hdr)
        goodpixels = badpixmask == 0
        # apply mask (multiply)
        loc['TELL_MASK_2D'] = loc['TELL_MASK_2D'] & goodpixels.astype(bool)
    else:
        badfile = 'None'
    # add to hdict
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=badfile)

    # convert waveimage mask into float array
    loc['TELL_MASK_2D'] = loc['TELL_MASK_2D'].astype('float')

    # check EM_OUTPUT_TYPE and deal with set to "all"
    if p['EM_OUTPUT_TYPE'] not in ["drs", "raw", "preprocess", "all"]:
        emsg1 = '"EM_OUTPUT_TYPE" not understood'
        emsg2 = '   must be either "drs", "raw" or "preprocess"'
        emsg3 = '   currently EM_OUTPUT_TYPE="{0}"'.format(p['EM_OUTPUT_TYPE'])
        WLOG(p, 'error', [emsg1, emsg2, emsg3])
        outputs = []
    elif p['EM_OUTPUT_TYPE'] != 'all':
        outputs = [str(p['EM_OUTPUT_TYPE'])]
    else:
        outputs = ["drs", "raw", "preprocess"]

    # ----------------------------------------------------------------------
    # loop around output types
    # ----------------------------------------------------------------------
    for output in outputs:
        # log progress
        WLOG(p, '', 'Processing {0} outputs'.format(output))
        # change EM_OUTPUT_TYPE
        p['EM_OUTPUT_TYPE'] = output
        # copy arrays
        out_spe = np.array(loc['SPE'])
        out_wave = np.array(loc['WAVEIMAGE'])
        out_mask = np.array(loc['TELL_MASK_2D'])
        # change image size if needed
        if output in ["raw", "preprocess"]:
            kk = dict(xsize=image.shape[1], ysize=image.shape[0])
            if p['EM_SAVE_TELL_SPEC']:
                WLOG(p, '', 'Resizing/Flipping SPE')
                out_spe = spirouExM.unresize(p, out_spe, **kk)
                WLOG(p, '', 'Rescaling SPE')
                out_spe = out_spe / (p['GAIN'] * p['EXPTIME'])
            if p['EM_SAVE_WAVE_MAP']:
                WLOG(p, '', 'Resizing/Flipping WAVEIMAGE')
                out_wave = spirouExM.unresize(p, out_wave, **kk)
            if p['EM_SAVE_MASK_MAP']:
                WLOG(p, '', 'Resizing/Flipping TELL_MASK_2D')
                out_mask = spirouExM.unresize(p, out_mask, **kk)
        # if raw need to rotate (undo pre-processing)
        if output == "raw":
            if p['EM_SAVE_TELL_SPEC']:
                WLOG(p, '', 'Rotating SPE')
                out_spe = np.rot90(out_spe, 1)
            if p['EM_SAVE_WAVE_MAP']:
                WLOG(p, '', 'Rotating WAVEIMAGE')
                out_wave = np.rot90(out_wave, 1)
            if p['EM_SAVE_MASK_MAP']:
                WLOG(p, '', 'Rotating TELL_MASK_2D')
                out_mask = np.rot90(out_mask, 1)

        # ----------------------------------------------------------------------
        # save 2D spectrum, wavelength image and mask to file
        # ----------------------------------------------------------------------
        # save telluric spectrum
        if p['EM_SAVE_TELL_SPEC']:
            # construct spectrum filename
            specfitsfile, tag = spirouConfig.Constants.EM_SPE_FILE(p)
            specfilename = os.path.split(specfitsfile)[-1]
            # set the version
            hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_DRS_DATE'],
                                       value=p['DRS_DATE'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_DATE_NOW'],
                                       value=p['DATE_NOW'])
            hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
            # log progress
            wmsg = 'Writing spectrum to file {0}'
            WLOG(p, '', wmsg.format(specfilename))
            # write to file
            p = spirouImage.WriteImage(p, specfitsfile, out_spe, hdict=hdict)

        # ----------------------------------------------------------------------
        # save wave map
        if p['EM_SAVE_WAVE_MAP']:
            # construct waveimage filename
            wavefitsfile, tag = spirouConfig.Constants.EM_WAVE_FILE(p)
            wavefilename = os.path.split(wavefitsfile)[-1]
            # set the version
            hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_DRS_DATE'],
                                       value=p['DRS_DATE'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_DATE_NOW'],
                                       value=p['DATE_NOW'])
            hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
            # log progress
            wmsg = 'Writing wave image to file {0}'
            WLOG(p, '', wmsg.format(wavefilename))
            # write to file
            p = spirouImage.WriteImage(p, wavefitsfile, out_wave, hdict=hdict)

        # ----------------------------------------------------------------------
        # save mask file
        if p['EM_SAVE_MASK_MAP']:
            # construct tell mask 2D filename
            maskfitsfile, tag = spirouConfig.Constants.EM_MASK_FILE(p)
            maskfilename = os.path.split(maskfitsfile)[-1]
            # set the version
            hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_DRS_DATE'],
                                       value=p['DRS_DATE'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_DATE_NOW'],
                                       value=p['DATE_NOW'])
            hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
            # log progress
            wmsg = 'Writing telluric mask to file {0}'
            WLOG(p, '', wmsg.format(maskfilename))
            # convert boolean mask to integers
            writablemask = np.array(out_mask, dtype=float)
            # write to file
            p = spirouImage.WriteImage(p,
                                       maskfitsfile,
                                       writablemask,
                                       hdict=hdict)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, hcfile=None, fpfiles=None):
    """
    cal_SLIT_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_SLIT_spirou.py [night_directory] [files]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    if hcfile is None or fpfiles is None:
        names, types = ['hcfile', 'fpfiles'], [str, str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1],
                                                        types,
                                                        names,
                                                        last_multi=True)
    else:
        customargs = dict(hcfile=hcfile, fpfiles=fpfiles)

    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='fpfiles')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, hcfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['HCFILE'])
    p, fpfilenames = spirouStartup.MultiFileSetup(p, files=p['FPFILES'])
    # set fiber (it doesn't matter with the 2D image but we need this to get
    # the lamp type for FPFILES and HCFILES, AB == C
    p['FIBER'] = 'AB'
    p['FIB_TYP'] = [p['FIBER']]
    fsource = __NAME__ + '/main()'
    p.set_sources(['FIBER', 'FIB_TYP'], fsource)
    # set the hcfilename to the first hcfilenames
    fpfitsfilename = fpfilenames[0]

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # add a force plot off
    p['PLOT_PER_ORDER'] = PLOT_PER_ORDER
    p.set_source('PLOT_PER_ORDER', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Read FP and HC files
    # ----------------------------------------------------------------------
    # read and combine all FP files except the first (fpfitsfilename)
    rargs = [p, 'add', fpfitsfilename, fpfilenames[1:]]
    p, fpdata, fphdr = spirouImage.ReadImageAndCombine(*rargs)
    # read first file (hcfitsfilename)
    hcdata, hchdr, _, _ = spirouImage.ReadImage(p, hcfitsfilename)

    # add data and hdr to loc
    loc = ParamDict()
    loc['HCDATA'], loc['HCHDR'] = hcdata, hchdr
    loc['FPDATA'], loc['FPHDR'] = fpdata, fphdr
    # set the source
    sources = ['HCDATA', 'HCHDR']
    loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()')
    sources = ['FPDATA', 'FPHDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')

    # ---------------------------------------------------------------------
    # fix for un-preprocessed files
    # ----------------------------------------------------------------------
    hcdata = spirouImage.FixNonPreProcess(p, hcdata)
    fpdata = spirouImage.FixNonPreProcess(p, fpdata)

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, fphdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, fphdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, fphdr, name='gain')
    # get lamp parameters
    p = spirouTHORCA.GetLampParams(p, hchdr)

    # ----------------------------------------------------------------------
    # Correction of DARK
    # ----------------------------------------------------------------------
    # p, hcdatac = spirouImage.CorrectForDark(p, hcdata, hchdr)
    hcdatac = hcdata
    p['DARKFILE'] = 'None'

    # p, fpdatac = spirouImage.CorrectForDark(p, fpdata, fphdr)
    fpdatac = fpdata

    # ----------------------------------------------------------------------
    # Resize hc data
    # ----------------------------------------------------------------------
    # rotate the image and convert from ADU/s to e-
    hcdata = spirouImage.ConvertToE(spirouImage.FlipImage(p, hcdatac), p=p)
    # convert NaN to zeros
    hcdata0 = np.where(~np.isfinite(hcdata), np.zeros_like(hcdata), hcdata)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    hcdata2 = spirouImage.ResizeImage(p, hcdata0, **bkwargs)
    # log change in data size
    WLOG(p, '', ('HC Image format changed to '
                 '{0}x{1}').format(*hcdata2.shape))

    # ----------------------------------------------------------------------
    # Resize fp data
    # ----------------------------------------------------------------------
    # rotate the image and convert from ADU/s to e-
    fpdata = spirouImage.ConvertToE(spirouImage.FlipImage(p, fpdatac), p=p)
    # convert NaN to zeros
    fpdata0 = np.where(~np.isfinite(fpdata), np.zeros_like(fpdata), fpdata)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    fpdata2 = spirouImage.ResizeImage(p, fpdata0, **bkwargs)
    # log change in data size
    WLOG(p, '', ('FP Image format changed to '
                 '{0}x{1}').format(*fpdata2.shape))

    # ----------------------------------------------------------------------
    # Correct for the BADPIX mask (set all bad pixels to zero)
    # ----------------------------------------------------------------------
    # p, hcdata2 = spirouImage.CorrectForBadPix(p, hcdata2, hchdr)
    # p, fpdata2 = spirouImage.CorrectForBadPix(p, fpdata2, fphdr)
    p['BADPFILE'] = 'None'

    # save data to loc
    loc['HCDATA'] = hcdata2
    loc.set_source('HCDATA', __NAME__ + '/main()')

    # save data to loc
    loc['FPDATA'] = fpdata2
    loc.set_source('FPDATA', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Log the number of dead pixels
    # ----------------------------------------------------------------------
    # get the number of bad pixels
    n_bad_pix = np.nansum(hcdata2 <= 0)
    n_bad_pix_frac = n_bad_pix * 100 / np.product(hcdata2.shape)
    # Log number
    wmsg = 'Nb HC dead pixels = {0} / {1:.2f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # ----------------------------------------------------------------------
    # Log the number of dead pixels
    # ----------------------------------------------------------------------
    # get the number of bad pixels
    n_bad_pix = np.nansum(fpdata2 <= 0)
    n_bad_pix_frac = n_bad_pix * 100 / np.product(fpdata2.shape)
    # Log number
    wmsg = 'Nb FP dead pixels = {0} / {1:.2f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # ------------------------------------------------------------------
    # Get localisation coefficients
    # ------------------------------------------------------------------
    # original there is a loop but it is not used --> removed
    p = spirouImage.FiberParams(p, p['FIBER'], merge=True)
    # get localisation fit coefficients
    p, loc = spirouLOCOR.GetCoeffs(p, fphdr, loc)

    # ------------------------------------------------------------------
    # Get master wave solution map
    # ------------------------------------------------------------------
    # get master wave map
    masterwavefile = spirouDB.GetDatabaseMasterWave(p)
    # log process
    wmsg1 = 'Getting master wavelength grid'
    wmsg2 = '\tFile = {0}'.format(os.path.basename(masterwavefile))
    WLOG(p, '', [wmsg1, wmsg2])
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # read master wave map
    wout = spirouImage.GetWaveSolution(p,
                                       filename=masterwavefile,
                                       return_wavemap=True,
                                       quiet=True,
                                       return_header=True,
                                       fiber=wave_fiber)
    loc['MASTERWAVEP'], loc['MASTERWAVE'] = wout[:2]
    loc['MASTERWAVEHDR'], loc['WSOURCE'] = wout[2:]
    # set sources
    wsource = ['MASTERWAVEP', 'MASTERWAVE', 'MASTERWAVEHDR']
    loc.set_sources(wsource, 'spirouImage.GetWaveSolution()')

    # ----------------------------------------------------------------------
    # Read UNe solution
    # ----------------------------------------------------------------------
    wave_u_ne, amp_u_ne = spirouImage.ReadLineList(p)
    loc['LL_LINE'], loc['AMPL_LINE'] = wave_u_ne, amp_u_ne
    source = __NAME__ + '.main() + spirouImage.ReadLineList()'
    loc.set_sources(['LL_LINE', 'AMPL_LINE'], source)

    # ----------------------------------------------------------------------
    # Read cavity length file
    # ----------------------------------------------------------------------
    loc['CAVITY_LEN_COEFFS'] = spirouImage.ReadCavityLength(p)
    source = __NAME__ + '.main() + spirouImage.ReadCavityLength()'
    loc.set_source('CAVITY_LEN_COEFFS', source)

    # ------------------------------------------------------------------
    # Calculate shape map
    # ------------------------------------------------------------------
    loc = spirouImage.GetShapeMap(p, loc)

    # ------------------------------------------------------------------
    # Plotting
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plots setup: start interactive plot
        sPlt.start_interactive_session(p)
        # plot the shape process for one order
        sPlt.slit_shape_angle_plot(p, loc)
        # end interactive section
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # TODO: Decide on some quality control criteria?
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Writing DXMAP to file
    # ------------------------------------------------------------------
    # get the raw tilt file name
    raw_shape_file = os.path.basename(p['FITSFILENAME'])
    # construct file name and path
    shapefits, tag = spirouConfig.Constants.SLIT_XSHAPE_FILE(p)
    shapefitsname = os.path.basename(shapefits)
    # Log that we are saving tilt file
    wmsg = 'Saving shape information in file: {0}'
    WLOG(p, '', wmsg.format(shapefitsname))
    # Copy keys from fits file
    hdict = spirouImage.CopyOriginalKeys(fphdr)
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='hcfile',
                                     values=p['HCFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE2'],
                                     dim1name='fpfile',
                                     values=p['FPFILES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # write tilt file to file
    p = spirouImage.WriteImage(p, shapefits, loc['DXMAP'], hdict)

    # ------------------------------------------------------------------
    # Writing sanity check files
    # ------------------------------------------------------------------
    if p['SHAPE_DEBUG_OUTPUTS']:
        # log
        WLOG(p, '', 'Saving debug sanity check files')
        # construct file names
        input_fp_file, tag1 = spirouConfig.Constants.SLIT_SHAPE_IN_FP_FILE(p)
        output_fp_file, tag2 = spirouConfig.Constants.SLIT_SHAPE_OUT_FP_FILE(p)
        input_hc_file, tag3 = spirouConfig.Constants.SLIT_SHAPE_IN_HC_FILE(p)
        output_hc_file, tag4 = spirouConfig.Constants.SLIT_SHAPE_OUT_HC_FILE(p)
        overlap_file, tag5 = spirouConfig.Constants.SLIT_SHAPE_OVERLAP_FILE(p)
        # write input fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        p = spirouImage.WriteImage(p, input_fp_file, loc['FPDATA'], hdict)
        # write output fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
        p = spirouImage.WriteImage(p, output_fp_file, loc['FPDATA2'], hdict)
        # write input fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)
        p = spirouImage.WriteImage(p, input_hc_file, loc['HCDATA'], hdict)
        # write output fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
        p = spirouImage.WriteImage(p, output_hc_file, loc['HCDATA2'], hdict)
        # write overlap file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag5)
        p = spirouImage.WriteImage(p, overlap_file, loc['ORDER_OVERLAP'],
                                   hdict)

    # ----------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ----------------------------------------------------------------------
    if p['QC']:
        keydb = 'SHAPE'
        # copy shape file to the calibDB folder
        spirouDB.PutCalibFile(p, shapefits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, shapefitsname, fphdr)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, ufiles=None):
    """
    cal_preprocess_spirou.py main function, if night_name and files are
    None uses arguments from run time i.e.:
        cal_preprocess_spirou.py [night_directory] [fitsfilename]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param ufiles: string, list or None, the list of files to process
                  Note can include wildcard i.e. "*.fits"
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # need custom args (to accept full path or wild card
    if ufiles is None:
        names, types = ['ufiles'], [str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0], types, names,
                                                        last_multi=True)
    else:
        customargs = dict(ufiles=ufiles)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p, night_name, customargs=customargs,
                                    mainfitsdir='raw')

    # ----------------------------------------------------------------------
    # Get hot pixels for corruption check
    # ----------------------------------------------------------------------
    hotpixels = spirouImage.PPGetHotPixels(p)

    # ----------------------------------------------------------------------
    # Process files (including wildcards)
    # ----------------------------------------------------------------------
    # get raw folder (assume all files are in the root directory)
    rawdir = spirouConfig.Constants.RAW_DIR(p)
    try:
        ufiles = spirouFile.Paths(p['UFILES'], root=rawdir).abs_paths
    except PathException as e:
        WLOG(p, 'error', e)

    # log how many files were found
    wmsg = '{0} files found'
    WLOG(p, '', wmsg.format(len(ufiles)))

    # storage for output files
    p['OUTPUT_NAMES'] = []
    p.set_source('OUTPUT_NAMES', __NAME__ + '.main()')

    # loop around files
    for u_it, ufile in enumerate(ufiles):
        # log the file process
        wmsg = 'Processing file {0} ({1} of {2})'
        WLOG(p, '', spirouStartup.spirouStartup.HEADER)
        bfilename = os.path.basename(ufile)
        WLOG(p, 'info', wmsg.format(bfilename, u_it+1, len(ufiles)))
        WLOG(p, '', spirouStartup.spirouStartup.HEADER)

        # ------------------------------------------------------------------
        # Check that we can process file
        # ------------------------------------------------------------------
        # check if ufile exists
        if not os.path.exists(ufile):
            wmsg = 'File {0} does not exist... skipping'
            WLOG(p, 'warning', wmsg.format(ufile))
            continue
        # skip processed files
        elif p['PROCESSED_SUFFIX'] in bfilename:
            wmsg = 'File {0} has been processed... skipping'
            WLOG(p, 'warning', wmsg.format(ufile))
            continue
        # skip non-fits files
        elif '.fits' not in bfilename:
            wmsg = 'File {0} not a fits file... skipping'
            WLOG(p, 'warning', wmsg.format(ufile))
            continue
        # skip index file
        elif bfilename == spirouConfig.Constants.INDEX_OUTPUT_FILENAME():
            wmsg = 'Skipping index fits file'
            WLOG(p, 'warning', wmsg.format(ufile))
            continue

        # ------------------------------------------------------------------
        # Read image file
        # ------------------------------------------------------------------
        # read the image data
        rout = spirouImage.ReadImage(p, filename=ufile)
        image, hdr, nx, ny = rout

        # ------------------------------------------------------------------
        # Identify file (and update filename, header and comments)
        # ------------------------------------------------------------------
        ufile, hdr = spirouImage.IdentifyUnProFile(p, ufile, hdr)

        # ------------------------------------------------------------------
        # correct image
        # ------------------------------------------------------------------
        # correct for the top and bottom reference pixels
        WLOG(p, '', 'Correcting for top and bottom pixels')
        image = spirouImage.PPCorrectTopBottom(p, image)

        # correct by a median filter from the dark amplifiers
        wmsg = 'Correcting by the median filter from dark amplifiers'
        WLOG(p, '', wmsg)
        image = spirouImage.PPMedianFilterDarkAmps(p, image)

        # correct for the 1/f noise
        wmsg = 'Correcting for the 1/f noise'
        WLOG(p, '', wmsg)
        image = spirouImage.PPMedianOneOverfNoise2(p, image)

        # ------------------------------------------------------------------
        # Quality control to check for corrupt files
        # ------------------------------------------------------------------
        # set passed variable and fail message list
        passed, fail_msg = True, []
        qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
        # ----------------------------------------------------------------------
        # get pass condition
        cout = spirouImage.PPTestForCorruptFile(p, image, hotpixels)
        snr_hotpix, rms_list = cout
        # print out SNR hotpix value
        wmsg = 'Corruption check: SNR Hotpix value = {0:.5e}'
        WLOG(p, '', wmsg.format(snr_hotpix))
        #deal with printing corruption message
        if snr_hotpix < p['PP_CORRUPT_SNR_HOTPIX']:
            # add failed message to fail message list
            fargs = [snr_hotpix, p['PP_CORRUPT_SNR_HOTPIX'],ufile ]
            fmsg = ('File was found to be corrupted. (SNR_HOTPIX < threshold, '
                    '{0:.4e} < {1:.4e}). File will not be saved. '
                    'File = {2}'.format(*fargs))
            fail_msg.append(fmsg)
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(snr_hotpix)
        qc_names.append('snr_hotpix')
        qc_logic.append('snr_hotpix < {0:.5e}'
                        ''.format(p['PP_CORRUPT_SNR_HOTPIX']))
        # ----------------------------------------------------------------------
        if np.max(rms_list) > p['PP_CORRUPT_RMS_THRES']:
            # add failed message to fail message list
            fargs = [np.max(rms_list), p['PP_CORRUPT_RMS_THRES'], ufile]
            fmsg = ('File was found to be corrupted. (RMS < threshold, '
                    '{0:.4e} > {1:.4e}). File will not be saved. '
                    'File = {0}'.format(*fargs))
            fail_msg.append(fmsg)
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(np.max(rms_list))
        qc_names.append('max(rms_list)')
        qc_logic.append('max(rms_list) > {0:.4e}'
                        ''.format(p['PP_CORRUPT_RMS_THRES']))
        # ----------------------------------------------------------------------
        # finally log the failed messages and set QC = 1 if we pass the
        # quality control QC = 0 if we fail quality control
        if passed:
            WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
            p['QC'] = 1
            p.set_source('QC', __NAME__ + '/main()')
        else:
            for farg in fail_msg:
                wmsg = 'QUALITY CONTROL FAILED: {0}'
                WLOG(p, 'warning', wmsg.format(farg))
            p['QC'] = 0
            p.set_source('QC', __NAME__ + '/main()')
            WLOG(p, 'warning', '\tFile not written')
            continue
        # store in qc_params
        qc_params = [qc_names, qc_values, qc_logic, qc_pass]

        # ------------------------------------------------------------------
        # rotate image
        # ------------------------------------------------------------------
        # rotation to match HARPS orientation (expected by DRS)
        image = spirouImage.RotateImage(image, p['RAW_TO_PP_ROTATION'])

        # ------------------------------------------------------------------
        # Save rotated image
        # ------------------------------------------------------------------
        # construct rotated file name
        outfits = spirouConfig.Constants.PP_FILE(p, bfilename)
        outfitsname = os.path.basename(outfits)
        # log that we are saving rotated image
        WLOG(p, '', 'Saving Rotated Image in ' + outfitsname)
        # add keys from original header file
        hdict = spirouImage.CopyOriginalKeys(hdr)

        # set the version
        hdict = spirouImage.AddKey(p, hdict, p['KW_PPVERSION'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
        # set the inputs
        hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'],
                                         dim1name='file',
                                         values=[os.path.basename(ufile)])
        # add qc parameters
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
        hdict = spirouImage.AddKey1DList(p, hdict, p['KW_DRS_QC_NAME'],
                                         values=qc_names)
        hdict = spirouImage.AddQCKeys(p, hdict, qc_params)

        # set the DRS type (for file indexing)
        p['DRS_TYPE'] = 'RAW'
        p.set_source('DRS_TYPE', __NAME__ + '.main()')

        # write to file
        p = spirouImage.WriteImage(p, outfits, image, hdict)

        # index this file
        p = spirouStartup.End(p, outputs='pp', end=False)

        # ------------------------------------------------------------------
        # append to output storage in p
        # ------------------------------------------------------------------
        p['OUTPUT_NAMES'].append(outfitsname)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p, outputs=None)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, hcfile=None, fpfiles=None):
    """
    cal_SLIT_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_SLIT_spirou.py [night_directory] [files]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    if hcfile is None or fpfiles is None:
        names, types = ['hcfile', 'fpfiles'], [str, str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1],
                                                        types,
                                                        names,
                                                        last_multi=True)
    else:
        customargs = dict(hcfile=hcfile, fpfile=fpfiles)

    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='fpfiles')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, hcfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['HCFILE'])
    p, fpfitsfiles = spirouStartup.MultiFileSetup(p, files=p['FPFILES'])
    # set fiber (it doesn't matter with the 2D image but we need this to get
    # the lamp type for FPFILES and HCFILES, AB == C
    p['FIBER'] = 'AB'
    p['FIB_TYP'] = [p['FIBER']]
    fsource = __NAME__ + '/main()'
    p.set_sources(['FIBER', 'FIB_TYP'], fsource)

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # add a force plot off
    p['PLOT_PER_ORDER'] = PLOT_PER_ORDER
    p.set_source('PLOT_PER_ORDER', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Read FP and HC files
    # ----------------------------------------------------------------------
    # read input fp and hc data
    rkwargs = dict(filename=fpfitsfiles[0],
                   filenames=fpfitsfiles[1:],
                   framemath='add')
    p, fpdata, fphdr = spirouImage.ReadImageAndCombine(p, **rkwargs)

    hcdata, hchdr, _, _ = spirouImage.ReadImage(p, hcfitsfilename)

    # add data and hdr to loc
    loc = ParamDict()
    loc['HCDATA'], loc['HCHDR'] = hcdata, hchdr
    loc['FPDATA'], loc['FPHDR'] = fpdata, fphdr
    # set the source
    sources = ['HCDATA', 'HCHDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')
    sources = ['FPDATA', 'FPHDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')

    # ---------------------------------------------------------------------
    # fix for un-preprocessed files
    # ----------------------------------------------------------------------
    hcdata = spirouImage.FixNonPreProcess(p, hcdata)
    fpdata = spirouImage.FixNonPreProcess(p, fpdata)

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # add a force plot off
    p['PLOT_PER_ORDER'] = PLOT_PER_ORDER
    p.set_source('PLOT_PER_ORDER', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, fphdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, fphdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, fphdr, name='gain')
    # get lamp parameters
    p = spirouTHORCA.GetLampParams(p, hchdr)
    # get FP_FP DPRTYPE
    p = spirouImage.ReadParam(p, fphdr, 'KW_DPRTYPE', 'DPRTYPE', dtype=str)

    # ----------------------------------------------------------------------
    # Correction of reference FP
    # ----------------------------------------------------------------------
    # set the number of frames
    p['NBFRAMES'] = len(fpfitsfiles)
    p.set_source('NBFRAMES', __NAME__ + '.main()')
    # Correction of DARK
    p, fpdatac = spirouImage.CorrectForDark(p, fpdata, fphdr)
    # Resize hc data
    # rotate the image and convert from ADU/s to e-
    fpdata = spirouImage.ConvertToE(spirouImage.FlipImage(p, fpdatac), p=p)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    fpdata1 = spirouImage.ResizeImage(p, fpdata, **bkwargs)
    # log change in data size
    WLOG(p, '',
         ('FPref Image format changed to {0}x{1}').format(*fpdata1.shape))
    # Correct for the BADPIX mask (set all bad pixels to zero)
    bargs = [p, fpdata1, fphdr]
    p, fpdata1 = spirouImage.CorrectForBadPix(*bargs)
    p, badpixmask = spirouImage.CorrectForBadPix(*bargs, return_map=True)
    # log progress
    WLOG(p, '', 'Cleaning FPref hot pixels')
    # correct hot pixels
    fpdata1 = spirouEXTOR.CleanHotpix(fpdata1, badpixmask)
    # add to loc
    loc['FPDATA1'] = fpdata1
    loc.set_source('FPDATA1', __NAME__ + '.main()')
    # Log the number of dead pixels
    # get the number of bad pixels
    with warnings.catch_warnings(record=True) as _:
        n_bad_pix = np.nansum(fpdata1 <= 0)
        n_bad_pix_frac = n_bad_pix * 100 / np.product(fpdata1.shape)
    # Log number
    wmsg = 'Nb FPref dead pixels = {0} / {1:.2f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # ----------------------------------------------------------------------
    # Correction of HC
    # ----------------------------------------------------------------------
    # set the number of frames
    p['NBFRAMES'] = 1
    p.set_source('NBFRAMES', __NAME__ + '.main()')
    # Correction of DARK
    p, hcdatac = spirouImage.CorrectForDark(p, hcdata, hchdr)
    # Resize hc data
    # rotate the image and convert from ADU/s to e-
    hcdata = spirouImage.ConvertToE(spirouImage.FlipImage(p, hcdatac), p=p)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    hcdata1 = spirouImage.ResizeImage(p, hcdata, **bkwargs)
    # log change in data size
    WLOG(p, '', ('HC Image format changed to {0}x{1}').format(*hcdata1.shape))
    # Correct for the BADPIX mask (set all bad pixels to zero)
    bargs = [p, hcdata1, hchdr]
    p, hcdata1 = spirouImage.CorrectForBadPix(*bargs)
    p, badpixmask = spirouImage.CorrectForBadPix(*bargs, return_map=True)
    # log progress
    WLOG(p, '', 'Cleaning HC hot pixels')
    # correct hot pixels
    hcdata1 = spirouEXTOR.CleanHotpix(hcdata1, badpixmask)
    # add to loc
    loc['HCDATA1'] = hcdata1
    loc.set_source('HCDATA1', __NAME__ + '.main()')
    # Log the number of dead pixels
    # get the number of bad pixels
    with warnings.catch_warnings(record=True) as _:
        n_bad_pix = np.nansum(hcdata1 <= 0)
        n_bad_pix_frac = n_bad_pix * 100 / np.product(hcdata1.shape)
    # Log number
    wmsg = 'Nb HC dead pixels = {0} / {1:.2f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # -------------------------------------------------------------------------
    # get all FP_FP files
    # -------------------------------------------------------------------------
    fpfilenames = spirouImage.FindFiles(p,
                                        filetype=p['DPRTYPE'],
                                        allowedtypes=p['ALLOWED_FP_TYPES'])
    # convert filenames to a numpy array
    fpfilenames = np.array(fpfilenames)
    # julian date to know which file we need to
    # process together
    fp_time = np.zeros(len(fpfilenames))
    basenames, fp_exp, fp_pp_version, nightnames = [], [], [], []
    # log progress
    WLOG(p, '', 'Reading all fp file headers')
    # looping through the file headers
    for it in range(len(fpfilenames)):
        # log progress
        wmsg = '\tReading file {0} / {1}'
        WLOG(p, 'info', wmsg.format(it + 1, len(fpfilenames)))
        # get fp filename
        fpfilename = fpfilenames[it]
        # get night name
        night_name = os.path.dirname(fpfilenames[it]).split(p['TMP_DIR'])[-1]
        # read data
        data_it, hdr_it, _, _ = spirouImage.ReadImage(p, fpfilename)
        # get header
        hdr = spirouImage.ReadHeader(p, filepath=fpfilenames[it])
        # add MJDATE to dark times
        fp_time[it] = float(hdr[p['KW_ACQTIME'][0]])
        # add other keys (for tabular output)
        basenames.append(os.path.basename(fpfilenames[it]))
        nightnames.append(night_name)
        fp_exp.append(float(hdr[p['KW_EXPTIME'][0]]))
        fp_pp_version.append(hdr[p['KW_PPVERSION'][0]])

    # -------------------------------------------------------------------------
    # match files by date
    # -------------------------------------------------------------------------
    # log progress
    wmsg = 'Matching FP files by observation time (+/- {0} hrs)'
    WLOG(p, '', wmsg.format(p['DARK_MASTER_MATCH_TIME']))
    # get the time threshold
    time_thres = p['FP_MASTER_MATCH_TIME']
    # get items grouped by time
    matched_id = spirouImage.GroupFilesByTime(p, fp_time, time_thres)

    # -------------------------------------------------------------------------
    # construct the master fp file (+ correct for dark/badpix)
    # -------------------------------------------------------------------------
    cargs = [fpdata1, fpfilenames, matched_id]
    fpcube, transforms = spirouImage.ConstructMasterFP(p, *cargs)
    # log process
    wmsg1 = 'Master FP construction complete.'
    wmsg2 = '\tAdding {0} group images to form FP master image'
    WLOG(p, 'info', [wmsg1, wmsg2.format(len(fpcube))])
    # sum the cube to make fp data
    masterfp = np.sum(fpcube, axis=0)
    # add to loc
    loc['MASTERFP'] = masterfp
    loc.set_source('MASTERFP', __NAME__ + '.main()')

    # ------------------------------------------------------------------
    # Get localisation coefficients
    # ------------------------------------------------------------------
    # original there is a loop but it is not used --> removed
    p = spirouImage.FiberParams(p, p['FIBER'], merge=True)
    # get localisation fit coefficients
    p, loc = spirouLOCOR.GetCoeffs(p, fphdr, loc)

    # ------------------------------------------------------------------
    # Get master wave solution map
    # ------------------------------------------------------------------
    # get master wave map
    masterwavefile = spirouDB.GetDatabaseMasterWave(p)
    # log process
    wmsg1 = 'Getting master wavelength grid'
    wmsg2 = '\tFile = {0}'.format(os.path.basename(masterwavefile))
    WLOG(p, '', [wmsg1, wmsg2])
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # read master wave map
    wout = spirouImage.GetWaveSolution(p,
                                       filename=masterwavefile,
                                       return_wavemap=True,
                                       quiet=True,
                                       return_header=True,
                                       fiber=wave_fiber)
    loc['MASTERWAVEP'], loc['MASTERWAVE'] = wout[:2]
    loc['MASTERWAVEHDR'], loc['WSOURCE'] = wout[2:]
    # set sources
    wsource = ['MASTERWAVEP', 'MASTERWAVE', 'MASTERWAVEHDR']
    loc.set_sources(wsource, 'spirouImage.GetWaveSolution()')

    # ----------------------------------------------------------------------
    # Read UNe solution
    # ----------------------------------------------------------------------
    wave_u_ne, amp_u_ne = spirouImage.ReadLineList(p)
    loc['LL_LINE'], loc['AMPL_LINE'] = wave_u_ne, amp_u_ne
    source = __NAME__ + '.main() + spirouImage.ReadLineList()'
    loc.set_sources(['LL_LINE', 'AMPL_LINE'], source)

    # ----------------------------------------------------------------------
    # Read cavity length file
    # ----------------------------------------------------------------------
    loc['CAVITY_LEN_COEFFS'] = spirouImage.ReadCavityLength(p)
    source = __NAME__ + '.main() + spirouImage.ReadCavityLength()'
    loc.set_source('CAVITY_LEN_COEFFS', source)

    # ----------------------------------------------------------------------
    # Calculate shape map
    # ----------------------------------------------------------------------
    # calculate dx map
    loc = spirouImage.GetXShapeMap(p, loc)
    # if dx map is None we shouldn't continue
    if loc['DXMAP'] is None:
        fargs = [
            loc['MAXDXMAPINFO'][0], loc['MAXDXMAPINFO'][1], loc['MAXDXMAPSTD'],
            p['SHAPE_QC_DXMAP_STD']
        ]
        fmsg = ('The std of the dxmap for order {0} y-pixel {1} is too large.'
                ' std = {2} (limit = {3})'.format(*fargs))
        wmsg = 'QUALITY CONTROL FAILED: {0}'
        WLOG(p, 'warning', wmsg.format(fmsg))
        WLOG(p, 'warning', 'Cannot continue. Exiting.')
        # End Message
        p = spirouStartup.End(p)
        # return a copy of locally defined variables in the memory
        return dict(locals())

    # calculate dymap
    loc = spirouImage.GetYShapeMap(p, loc, fphdr)

    # ------------------------------------------------------------------
    # Need to straighten the dxmap
    # ------------------------------------------------------------------
    # copy it first
    loc['DXMAP0'] = np.array(loc['DXMAP'])
    # straighten it
    loc['DXMAP'] = spirouImage.EATransform(loc['DXMAP'], dymap=loc['DYMAP'])

    # ------------------------------------------------------------------
    # Need to straighten the hc data and fp data for debug
    # ------------------------------------------------------------------
    # log progress
    WLOG(p, '', 'Shape finding complete. Applying transforms.')
    # apply very last update of the debananafication
    tkwargs = dict(dxmap=loc['DXMAP'], dymap=loc['DYMAP'])
    loc['HCDATA2'] = spirouImage.EATransform(loc['HCDATA1'], **tkwargs)
    loc['FPDATA2'] = spirouImage.EATransform(loc['FPDATA1'], **tkwargs)
    loc.set_sources(['HCDATA2', 'FPDATA2'], __NAME__ + '.main()')

    # ------------------------------------------------------------------
    # Plotting
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plots setup: start interactive plot
        sPlt.start_interactive_session(p)
        # plot the shape process for one order
        sPlt.slit_shape_angle_plot(p, loc)
        # end interactive section
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # TODO: Decide on some quality control criteria?
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append(loc['MAXDXMAPSTD'])
    qc_names.append('DXMAP STD')
    qc_logic.append('DXMAP STD < {0}'.format(p['SHAPE_QC_DXMAP_STD']))
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Writing FP big table
    # ------------------------------------------------------------------
    # construct big fp table
    colnames = [
        'FILENAME', 'NIGHT', 'MJDATE', 'EXPTIME', 'PVERSION', 'GROUPID',
        'DXREF', 'DYREF', 'A', 'B', 'C', 'D'
    ]
    values = [
        basenames, nightnames, fp_time, fp_exp, fp_pp_version, matched_id,
        transforms[:, 0], transforms[:, 1], transforms[:, 2], transforms[:, 3],
        transforms[:, 4], transforms[:, 5]
    ]
    fptable = spirouImage.MakeTable(p, colnames, values)

    # ------------------------------------------------------------------
    # Writing DXMAP to file
    # ------------------------------------------------------------------
    # get the raw tilt file name
    raw_shape_file = os.path.basename(p['FITSFILENAME'])
    # construct file name and path
    shapexfits, tag = spirouConfig.Constants.SLIT_XSHAPE_FILE(p)
    shapexfitsname = os.path.basename(shapexfits)
    # Log that we are saving tilt file
    wmsg = 'Saving shape x information in file: {0}'
    WLOG(p, '', wmsg.format(shapexfitsname))
    # Copy keys from fits file
    hdict = spirouImage.CopyOriginalKeys(fphdr)
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='hcfile',
                                     values=p['HCFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE2'],
                                     dim1name='fpfile',
                                     values=p['FPFILES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # write tilt file to file
    p = spirouImage.WriteImageTable(p,
                                    shapexfits,
                                    image=loc['DXMAP'],
                                    table=fptable,
                                    hdict=hdict)

    # ------------------------------------------------------------------
    # Writing DYMAP to file
    # ------------------------------------------------------------------
    # get the raw tilt file name
    raw_shape_file = os.path.basename(p['FITSFILENAME'])
    # construct file name and path
    shapeyfits, tag = spirouConfig.Constants.SLIT_YSHAPE_FILE(p)
    shapeyfitsname = os.path.basename(shapeyfits)
    # Log that we are saving tilt file
    wmsg = 'Saving shape y information in file: {0}'
    WLOG(p, '', wmsg.format(shapeyfitsname))
    # Copy keys from fits file
    hdict = spirouImage.CopyOriginalKeys(fphdr)
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='hcfile',
                                     values=p['HCFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE2'],
                                     dim1name='fpfile',
                                     values=p['FPFILES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # write tilt file to file
    p = spirouImage.WriteImageTable(p,
                                    shapeyfits,
                                    image=loc['DYMAP'],
                                    table=fptable,
                                    hdict=hdict)

    # ------------------------------------------------------------------
    # Writing Master FP to file
    # ------------------------------------------------------------------
    # get the raw tilt file name
    raw_shape_file = os.path.basename(p['FITSFILENAME'])
    # construct file name and path
    fpmasterfits, tag = spirouConfig.Constants.SLIT_MASTER_FP_FILE(p)
    fpmasterfitsname = os.path.basename(fpmasterfits)
    # Log that we are saving tilt file
    wmsg = 'Saving master FP file: {0}'
    WLOG(p, '', wmsg.format(fpmasterfitsname))
    # Copy keys from fits file
    hdict = spirouImage.CopyOriginalKeys(fphdr)
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='hcfile',
                                     values=p['HCFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE2'],
                                     dim1name='fpfile',
                                     values=p['FPFILES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # write tilt file to file
    p = spirouImage.WriteImageTable(p,
                                    fpmasterfits,
                                    image=masterfp,
                                    table=fptable,
                                    hdict=hdict)

    # ------------------------------------------------------------------
    # Writing sanity check files
    # ------------------------------------------------------------------
    if p['SHAPE_DEBUG_OUTPUTS']:
        # log
        WLOG(p, '', 'Saving debug sanity check files')
        # construct file names
        input_fp_file, tag1 = spirouConfig.Constants.SLIT_SHAPE_IN_FP_FILE(p)
        output_fp_file, tag2 = spirouConfig.Constants.SLIT_SHAPE_OUT_FP_FILE(p)
        input_hc_file, tag3 = spirouConfig.Constants.SLIT_SHAPE_IN_HC_FILE(p)
        output_hc_file, tag4 = spirouConfig.Constants.SLIT_SHAPE_OUT_HC_FILE(p)
        bdxmap_file, tag5 = spirouConfig.Constants.SLIT_SHAPE_BDXMAP_FILE(p)
        # write input fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        p = spirouImage.WriteImage(p, input_fp_file, loc['FPDATA1'], hdict)
        # write output fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
        p = spirouImage.WriteImage(p, output_fp_file, loc['FPDATA2'], hdict)
        # write input fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)
        p = spirouImage.WriteImage(p, input_hc_file, loc['HCDATA1'], hdict)
        # write output fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
        p = spirouImage.WriteImage(p, output_hc_file, loc['HCDATA2'], hdict)
        # write overlap file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag5)
        p = spirouImage.WriteImage(p, bdxmap_file, loc['DXMAP0'], hdict)

    # ----------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ----------------------------------------------------------------------
    if p['QC']:
        # add shape x
        keydb = 'SHAPEX'
        # copy shape file to the calibDB folder
        spirouDB.PutCalibFile(p, shapexfits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, shapexfitsname, fphdr)
        # add shape y
        keydb = 'SHAPEY'
        # copy shape file to the calibDB folder
        spirouDB.PutCalibFile(p, shapeyfits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, shapeyfitsname, fphdr)
        # add fp master
        keydb = 'FPMASTER'
        # copy shape file to the calibDB folder
        spirouDB.PutCalibFile(p, fpmasterfits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, fpmasterfitsname, fphdr)
    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, files=None):
    """
    cal_shape_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_shape_spirou.py [night_directory] [fitsfilename]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p, night_name, files)
    p = spirouStartup.InitialFileSetup(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    p, data, hdr = spirouImage.ReadImageAndCombine(p, framemath='add')

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Get basic image properties for FP file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')

    # ----------------------------------------------------------------------
    # Correction of reference FP
    # ----------------------------------------------------------------------
    # set the number of frames
    p['NBFRAMES'] = 1
    p.set_source('NBFRAMES', __NAME__ + '.main()')
    # Correction of DARK
    p, datac = spirouImage.CorrectForDark(p, data, hdr)
    # Resize hc data
    # rotate the image and convert from ADU/s to e-
    data = spirouImage.ConvertToE(spirouImage.FlipImage(p, datac), p=p)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'], xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'], yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    data1 = spirouImage.ResizeImage(p, data, **bkwargs)
    # log change in data size
    WLOG(p, '',
         ('FPref Image format changed to {0}x{1}').format(*data1.shape))
    # Correct for the BADPIX mask (set all bad pixels to zero)
    bargs = [p, data1, hdr]
    p, data1 = spirouImage.CorrectForBadPix(*bargs)
    p, badpixmask = spirouImage.CorrectForBadPix(*bargs, return_map=True)
    # log progress
    WLOG(p, '', 'Cleaning FPref hot pixels')
    # correct hot pixels
    data1 = spirouEXTOR.CleanHotpix(data1, badpixmask)
    # Log the number of dead pixels
    # get the number of bad pixels
    with warnings.catch_warnings(record=True) as _:
        n_bad_pix = np.nansum(data1 <= 0)
        n_bad_pix_frac = n_bad_pix * 100 / np.product(data1.shape)
    # Log number
    wmsg = 'Nb FPref dead pixels = {0} / {1:.2f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # ----------------------------------------------------------------------
    # Get master FP file
    # ----------------------------------------------------------------------
    # log progress
    WLOG(p, '', 'Getting FP Master from calibDB')
    # get master fp
    p, masterfp = spirouImage.GetFPMaster(p, hdr)

    # ----------------------------------------------------------------------
    # Get transform parameters
    # ----------------------------------------------------------------------
    # log progress
    wargs = [p['ARG_FILE_NAMES'][0], p['FPMASTERFILE']]
    WLOG(p, 'info', 'Calculating transforming for {0} onto {1}'.format(*wargs))

    gout = spirouImage.GetLinearTransformParams(p, masterfp, data1)
    transform, xres, yres = gout

    # ------------------------------------------------------------------
    # Need to straighten the fp data for debug
    # ------------------------------------------------------------------
    p, shapem_x = spirouImage.GetShapeX(p, hdr)
    p, shapem_y = spirouImage.GetShapeY(p, hdr)
    data2 = spirouImage.EATransform(data1, transform, dxmap=shapem_x,
                                    dymap=shapem_y)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # ----------------------------------------------------------------------
    # if transform is None means the fp image quality was too poor
    if transform is None:
        fail_msg.append('FP Image quality too poor (sigma clip failed)')
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    qc_values.append('None')
    qc_names.append('Image Quality')
    qc_logic.append('Image too poor')
    # ----------------------------------------------------------------------
    # get residual qc parameter
    qc_res = p['SHAPE_QC_LINEAR_TRANS_RES_THRES']
    # assess quality of x residuals
    if xres > qc_res:
        fail_msg.append('x-resdiuals too high {0} > {1}'.format(xres, qc_res))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    qc_values.append(xres)
    qc_names.append('XRES')
    qc_logic.append('XRES > {0}'.format(qc_res))
    # assess quality of x residuals
    if yres > qc_res:
        fail_msg.append('y-resdiuals too high {0} > {1}'.format(yres, qc_res))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    qc_values.append(yres)
    qc_names.append('YRES')
    qc_logic.append('YRES > {0}'.format(qc_res))

    # ----------------------------------------------------------------------
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Writing shape to file
    # ------------------------------------------------------------------
    # get the raw tilt file name
    raw_shape_file = os.path.basename(p['FITSFILENAME'])
    # construct file name and path
    shapefits, tag = spirouConfig.Constants.SLIT_SHAPE_LOCAL_FILE(p)
    shapefitsname = os.path.basename(shapefits)
    # Log that we are saving tilt file
    wmsg = 'Saving shape information in file: {0}'
    WLOG(p, '', wmsg.format(shapefitsname))
    # Copy keys from fits file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBSHAPEX'],
                               value=p['SHAPEXFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBSHAPEY'],
                               value=p['SHAPEYFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFPMASTER'],
                               value=p['FPMASTERFILE'])
    hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='file',
                                     values=p['ARG_FILE_NAMES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add the transform parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_SHAPE_DX'], value=transform[0])
    hdict = spirouImage.AddKey(p, hdict, p['KW_SHAPE_DY'], value=transform[1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_SHAPE_A'], value=transform[2])
    hdict = spirouImage.AddKey(p, hdict, p['KW_SHAPE_B'], value=transform[3])
    hdict = spirouImage.AddKey(p, hdict, p['KW_SHAPE_C'], value=transform[4])
    hdict = spirouImage.AddKey(p, hdict, p['KW_SHAPE_D'], value=transform[5])
    # write tilt file to file
    p = spirouImage.WriteImage(p, shapefits, [transform], hdict)

    # ----------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ----------------------------------------------------------------------
    if p['QC']:
        # add shape
        keydb = 'SHAPE'
        # copy shape file to the calibDB folder
        spirouDB.PutCalibFile(p, shapefits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, shapefitsname, hdr)

    # ------------------------------------------------------------------
    # Writing sanity check files
    # ------------------------------------------------------------------
    if p['SHAPE_DEBUG_OUTPUTS']:
        # log
        WLOG(p, '', 'Saving debug sanity check files')
        # construct file names
        dargs = [p, p['ARG_FILE_NAMES'][0]]
        out1 = spirouConfig.Constants.SLIT_SHAPE_IN_FP_FILE(*dargs)
        input_fp_file, tag1= out1
        out2 = spirouConfig.Constants.SLIT_SHAPE_OUT_FP_FILE(*dargs)
        output_fp_file, tag2 = out2
        # write input fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        p = spirouImage.WriteImage(p, input_fp_file, data1, hdict)
        # write output fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
        p = spirouImage.WriteImage(p, output_fp_file, data2, hdict)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #20
0
def main(night_name=None, files=None):
    """
    cal_HC_E2DS.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_DARK_spirou.py [night_directory] [fitsfilename]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p, night_name, files, mainfitsdir='reduced')
    # setup files and get fiber
    p = spirouStartup.InitialFileSetup(p, calibdb=True)
    # set the fiber type
    p['FIB_TYP'] = [p['FIBER']]
    p.set_source('FIB_TYP', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read and combine all files
    p, hcdata, hchdr = spirouImage.ReadImageAndCombine(p, 'add')
    # add data and hdr to loc
    loc = ParamDict()
    loc['HCDATA'], loc['HCHDR'] = hcdata, hchdr
    # set the source
    sources = ['HCDATA', 'HCHDR']
    loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()')

    # ----------------------------------------------------------------------
    # Get basic parameters
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, loc['HCHDR'], name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, loc['HCHDR'], name='exptime')
    # get gain
    p = spirouImage.GetGain(p, loc['HCHDR'], name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, loc['HCHDR'], name='ACQTIME', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # get lamp parameters
    p = spirouTHORCA.GetLampParams(p, loc['HCHDR'])

    # get number of orders
    # we always get fibre A number because AB is doubled in constants file
    loc['NBO'] = p['QC_LOC_NBO_FPALL']['A']
    loc.set_source('NBO', __NAME__ + '.main()')
    # get number of pixels in x from hcdata size
    loc['NBPIX'] = loc['HCDATA'].shape[1]
    loc.set_source('NBPIX', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Read blaze
    # ----------------------------------------------------------------------
    # get tilts
    loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hchdr)
    loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile')

    # ----------------------------------------------------------------------
    # Read wave solution
    # ----------------------------------------------------------------------
    # wavelength file; we will use the polynomial terms in its header,
    # NOT the pixel values that would need to be interpolated
    # getting header info with wavelength polynomials

    # set source of wave file
    wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p, hdr=hchdr, return_wavemap=True,
                                       return_filename=True, fiber=wave_fiber)
    loc['WAVEPARAMS'], loc['WAVE_INIT'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVE_INIT', 'WAVEFILE', 'WAVEPARAMS', 'WSOURCE'], wsource)

    # ----------------------------------------------------------------------
    # Check that wave parameters are consistent with "ic_ll_degr_fit"
    # ----------------------------------------------------------------------
    loc = spirouImage.CheckWaveSolConsistency(p, loc)

    # ----------------------------------------------------------------------
    # Read UNe solution
    # ----------------------------------------------------------------------
    wave_u_ne, amp_u_ne = spirouImage.ReadLineList(p)
    loc['LL_LINE'], loc['AMPL_LINE'] = wave_u_ne, amp_u_ne
    source = __NAME__ + '.main() + spirouImage.ReadLineList()'
    loc.set_sources(['ll_line', 'ampl_line'], source)

    # ----------------------------------------------------------------------
    # Generate wave map from wave solution
    # ----------------------------------------------------------------------
    loc = spirouWAVE.generate_wave_map(p, loc)

    # ----------------------------------------------------------------------
    # Find Gaussian Peaks in HC spectrum
    # ----------------------------------------------------------------------
    loc = spirouWAVE.find_hc_gauss_peaks(p, loc)

    # ----------------------------------------------------------------------
    # Start plotting session
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive plot
        sPlt.start_interactive_session(p)

    # ----------------------------------------------------------------------
    # Fit Gaussian peaks (in triplets) to
    # ----------------------------------------------------------------------
    loc = spirouWAVE.fit_gaussian_triplets(p, loc)

    # ----------------------------------------------------------------------
    # Generate Resolution map and line profiles
    # ----------------------------------------------------------------------
    # log progress
    wmsg = 'Generating resolution map and '
    # generate resolution map
    loc = spirouWAVE.generate_resolution_map(p, loc)
    # map line profile map
    if p['DRS_PLOT'] > 0:
        sPlt.wave_ea_plot_line_profiles(p, loc)

    # ----------------------------------------------------------------------
    # End plotting session
    # ----------------------------------------------------------------------
    # end interactive session
    if p['DRS_PLOT'] > 0:
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []

    # quality control on sigma clip (sig1 > qc_hc_wave_sigma_max
    if loc['SIG1'] > p['QC_HC_WAVE_SIGMA_MAX']:
        fmsg = 'Sigma too high ({0:.5f} > {1:.5f})'
        fail_msg.append(fmsg.format(loc['SIG1'], p['QC_HC_WAVE_SIGMA_MAX']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(loc['SIG1'])
    qc_names.append('SIG1')
    qc_logic.append('SIG1 > {0:.2f}'.format(p['QC_HC_WAVE_SIGMA_MAX']))
    # ----------------------------------------------------------------------
    # check the difference between consecutive orders is always positive
    # get the differences
    wave_diff = loc['WAVE_MAP2'][1:]-loc['WAVE_MAP2'][:-1]
    if np.min(wave_diff) < 0:
        fmsg = 'Negative wavelength difference between orders'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(np.min(wave_diff))
    qc_names.append('MIN WAVE DIFF')
    qc_logic.append('MIN WAVE DIFF < 0')
    # ----------------------------------------------------------------------
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ----------------------------------------------------------------------
    # log the global stats
    # ----------------------------------------------------------------------

    # calculate catalog-fit residuals in km/s

    res_hc =[]
    sumres_hc = 0.0
    sumres2_hc = 0.0

    for order in range(loc['NBO']):
        # get HC line wavelengths for the order
        order_mask = loc['ORD_T'] == order
        hc_x_ord = loc['XGAU_T'][order_mask]
        hc_ll_ord = np.polyval(loc['POLY_WAVE_SOL'][order][::-1],hc_x_ord)
        hc_ll_cat = loc['WAVE_CATALOG'][order_mask]
        hc_ll_diff = hc_ll_ord - hc_ll_cat
        res_hc.append(hc_ll_diff*speed_of_light/hc_ll_cat)
        sumres_hc += np.nansum(res_hc[order])
        sumres2_hc += np.nansum(res_hc[order] ** 2)

    total_lines_hc = len(np.concatenate(res_hc))
    final_mean_hc = sumres_hc/total_lines_hc
    final_var_hc = (sumres2_hc/total_lines_hc) - (final_mean_hc ** 2)
    wmsg1 = 'On fiber {0} HC fit line statistic:'.format(p['FIBER'])
    wargs2 = [final_mean_hc * 1000.0, np.sqrt(final_var_hc) * 1000.0,
              total_lines_hc, 1000.0 * np.sqrt(final_var_hc / total_lines_hc)]
    wmsg2 = ('\tmean={0:.3f}[m/s] rms={1:.1f} {2} HC lines (error on mean '
             'value:{3:.4f}[m/s])'.format(*wargs2))
    WLOG(p, 'info', [wmsg1, wmsg2])

    # ----------------------------------------------------------------------
    # Save wave map to file
    # ----------------------------------------------------------------------
    # get base input filenames
    bfilenames = []
    for raw_file in p['ARG_FILE_NAMES']:
        bfilenames.append(os.path.basename(raw_file))
    # get wave filename
    wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA(p)
    wavefitsname = os.path.basename(wavefits)
    # log progress
    WLOG(p, '', 'Saving wave map to {0}'.format(wavefitsname))
    # log progress
    wargs = [p['FIBER'], wavefitsname]
    wmsg = 'Write wavelength solution for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))
    # write solution to fitsfilename header
    # copy original keys
    hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'])
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add wave solution date
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME1'],
                               value=p['MAX_TIME_HUMAN'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME2'],
                               value=p['MAX_TIME_UNIX'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'], value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='file',
                                     values=p['ARG_FILE_NAMES'])
    # add number of orders
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_ORD_N'],
                               value=loc['POLY_WAVE_SOL'].shape[0])
    # add degree of fit
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_LL_DEG'],
                               value=loc['POLY_WAVE_SOL'].shape[1]-1)
    # add wave solution
    hdict = spirouImage.AddKey2DList(p, hdict, p['KW_WAVE_PARAM'],
                                     values=loc['POLY_WAVE_SOL'])
    # write the wave "spectrum"
    p = spirouImage.WriteImage(p, wavefits, loc['WAVE_MAP2'], hdict)

    # get filename for E2DS calibDB copy of FITSFILENAME
    e2dscopy_filename, tag2 = spirouConfig.Constants.WAVE_E2DS_COPY(p)

    wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]]
    wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))

    # make a copy of the E2DS file for the calibBD
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
    p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict)

    # ----------------------------------------------------------------------
    # Save resolution and line profiles to file
    # ----------------------------------------------------------------------
    raw_infile = os.path.basename(p['FITSFILENAME'])
    # get wave filename
    resfits, tag3 = spirouConfig.Constants.WAVE_RES_FILE_EA(p)
    resfitsname = os.path.basename(resfits)
    WLOG(p, '', 'Saving wave resmap to {0}'.format(resfitsname))

    # make a copy of the E2DS file for the calibBD
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)

    # get res data in correct format
    resdata, hdicts = spirouTHORCA.GenerateResFiles(p, loc, hdict)
    # save to file
    p = spirouImage.WriteImageMulti(p, resfits, resdata, hdicts=hdicts)

    # ----------------------------------------------------------------------
    # Update calibDB
    # ----------------------------------------------------------------------
    if p['QC']:
        # set the wave key
        keydb = 'WAVE_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, wavefits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR'])

        # set the hcref key
        keydb = 'HCREF_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, e2dscopy_filename)
        # update the master calib DB file with new key
        e2dscopyfits = os.path.split(e2dscopy_filename)[-1]
        spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR'])

    # ----------------------------------------------------------------------
    # Update header of current files
    # ----------------------------------------------------------------------
    # only copy over if QC passed
    if p['QC']:
        rdir = os.path.dirname(wavefits)
        # loop around hc files and update header with
        for rawhcfile in p['ARG_FILE_NAMES']:
            hcfile = os.path.join(rdir, rawhcfile)
            raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile)
            p = spirouImage.UpdateWaveSolutionHC(p, loc, raw_infilepath1)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, files=None):
    """
    cal_loc_RAW_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_loc_RAW_spirou.py [night_name] [files]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p, night_name, files)
    p = spirouStartup.InitialFileSetup(p, calibdb=True)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    p, data, hdr = spirouImage.ReadImageAndCombine(p, framemath='add')

    # ----------------------------------------------------------------------
    # fix for un-preprocessed files
    # ----------------------------------------------------------------------
    data = spirouImage.FixNonPreProcess(p, data)

    # ----------------------------------------------------------------------
    # Get basic image properties
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')

    # ----------------------------------------------------------------------
    # Correction of DARK
    # ----------------------------------------------------------------------
    p, datac = spirouImage.CorrectForDark(p, data, hdr)

    # ----------------------------------------------------------------------
    #  Interpolation over bad regions (to fill in the holes)
    # ----------------------------------------------------------------------
    # log process
    # wmsg = 'Interpolating over bad regions'
    # WLOG(p, '', wmsg)
    # run interpolation
    # datac = spirouImage.InterpolateBadRegions(p, datac)

    # ----------------------------------------------------------------------
    # Resize image
    # ----------------------------------------------------------------------
    # rotate the image and convert from ADU/s to e-
    data = spirouImage.ConvertToE(spirouImage.FlipImage(p, datac), p=p)
    # convert NaN to zeros
    data0 = np.where(~np.isfinite(data), np.zeros_like(data), data)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    data2 = spirouImage.ResizeImage(p, data0, **bkwargs)
    # log change in data size
    WLOG(p, '', ('Image format changed to ' '{0}x{1}').format(*data2.shape))

    # ----------------------------------------------------------------------
    # Correct for the BADPIX mask (set all bad pixels to zero)
    # ----------------------------------------------------------------------
    p, data2 = spirouImage.CorrectForBadPix(p, data2, hdr)

    # ----------------------------------------------------------------------
    # Background computation
    # ----------------------------------------------------------------------
    if p['IC_DO_BKGR_SUBTRACTION']:
        # log that we are doing background measurement
        WLOG(p, '', 'Doing background measurement on raw frame')
        # get the bkgr measurement
        bargs = [p, data2, hdr]
        # background, xc, yc, minlevel = spirouBACK.MeasureBackgroundFF(*bargs)
        p, background = spirouBACK.MeasureBackgroundMap(*bargs)
    else:
        background = np.zeros_like(data2)
        p['BKGRDFILE'] = 'None'
        p.set_source('BKGRDFILE', __NAME__ + '.main()')
    # apply background correction to data
    data2 = data2 - background

    # ----------------------------------------------------------------------
    # Construct image order_profile
    # ----------------------------------------------------------------------
    # log that we are doing background measurement
    WLOG(p, '', 'Creating Order Profile')
    order_profile = spirouLOCOR.BoxSmoothedImage(data2, p['LOC_BOX_SIZE'])
    # data 2 is now set to the order profile
    data2o = data2.copy()
    data2 = order_profile.copy()

    # ----------------------------------------------------------------------
    # Write image order_profile to file
    # ----------------------------------------------------------------------
    # Construct folder and filename
    rawfits, tag1 = spirouConfig.Constants.LOC_ORDER_PROFILE_FILE(p)
    rawfitsname = os.path.split(rawfits)[-1]
    # log saving order profile
    wmsg = 'Saving processed raw frame in {0}'
    WLOG(p, '', wmsg.format(rawfitsname))
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    # write to file
    p = spirouImage.WriteImage(p, rawfits, order_profile, hdict)

    # ----------------------------------------------------------------------
    # Move order_profile to calibDB and update calibDB
    # ----------------------------------------------------------------------
    # set key for calibDB
    keydb = 'ORDER_PROFILE_{0}'.format(p['FIBER'])
    # copy dark fits file to the calibDB folder
    spirouDB.PutCalibFile(p, rawfits)
    # update the master calib DB file with new key
    spirouDB.UpdateCalibMaster(p, keydb, rawfitsname, hdr)

    # ######################################################################
    # Localization of orders on central column
    # ######################################################################
    # storage dictionary for localization parameters
    loc = ParamDict()
    # Plots setup: start interactive plot
    if p['DRS_PLOT'] > 0:
        sPlt.start_interactive_session(p)
    # ----------------------------------------------------------------------
    # Measurement and correction of background on the central column
    # ----------------------------------------------------------------------
    loc = spirouBACK.MeasureBkgrdGetCentPixs(p, loc, data2)
    # ----------------------------------------------------------------------
    # Search for order center on the central column - quick estimation
    # ----------------------------------------------------------------------
    # log progress
    WLOG(p, '', 'Searching order center on central column')
    # plot the minimum of ycc and ic_locseuil if in debug and plot mode
    if p['DRS_DEBUG'] > 0 and p['DRS_PLOT']:
        sPlt.debug_locplot_min_ycc_loc_threshold(p, loc['YCC'])
    # find the central positions of the orders in the central
    posc_all = spirouLOCOR.FindPosCentCol(loc['YCC'], p['IC_LOCSEUIL'])
    # depending on the fiber type we may need to skip some pixels and also
    # we need to add back on the ic_offset applied
    start = p['IC_FIRST_ORDER_JUMP']
    posc = posc_all[start:] + p['IC_OFFSET']
    # work out the number of orders to use (minimum of ic_locnbmaxo and number
    #    of orders found in 'LocateCentralOrderPositions')
    number_of_orders = np.min([p['IC_LOCNBMAXO'], len(posc)])
    # log the number of orders than have been detected
    wargs = [p['FIBER'], int(number_of_orders / p['NBFIB']), p['NBFIB']]
    WLOG(p, 'info', ('On fiber {0} {1} orders have been detected '
                     'on {2} fiber(s)').format(*wargs))

    # ----------------------------------------------------------------------
    # Search for order center and profile on specific columns
    # ----------------------------------------------------------------------
    # get fit polynomial orders for position and width
    fitpos, fitwid = p['IC_LOCDFITC'], p['IC_LOCDFITW']
    # Create arrays to store position and width of order for each order
    loc['CTRO'] = np.zeros((number_of_orders, data2.shape[1]), dtype=float)
    loc['SIGO'] = np.zeros((number_of_orders, data2.shape[1]), dtype=float)
    # Create arrays to store coefficients for position and width
    loc['ACC'] = np.zeros((number_of_orders, fitpos + 1))
    loc['ASS'] = np.zeros((number_of_orders, fitpos + 1))
    # Create arrays to store rms values for position and width
    loc['RMS_CENTER'] = np.zeros(number_of_orders)
    loc['RMS_FWHM'] = np.zeros(number_of_orders)
    # Create arrays to store point to point max value for position and width
    loc['MAX_PTP_CENTER'] = np.zeros(number_of_orders)
    loc['MAX_PTP_FRACCENTER'] = np.zeros(number_of_orders)
    loc['MAX_PTP_FWHM'] = np.zeros(number_of_orders)
    loc['MAX_PTP_FRACFWHM'] = np.zeros(number_of_orders)
    # Create arrays to store rejected points
    loc['MAX_RMPTS_POS'] = np.zeros(number_of_orders)
    loc['MAX_RMPTS_WID'] = np.zeros(number_of_orders)
    # set the central col centers in the cpos_orders array
    loc['CTRO'][:, p['IC_CENT_COL']] = posc[0:number_of_orders]
    # set source for all locs
    loc.set_all_sources(__NAME__ + '/main()')
    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    # storage for plotting
    loc['XPLOT'], loc['YPLOT'] = [], []
    # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    # loop around each order
    rorder_num = 0
    for order_num in range(number_of_orders):
        # find the row centers of the columns
        loc = spirouLOCOR.FindOrderCtrs(p, data2, loc, order_num)
        # only keep the orders with non-zero width
        mask = loc['SIGO'][order_num, :] != 0
        loc['X'] = np.arange(data2.shape[1])[mask]
        loc.set_source('X', __NAME__ + '/main()')
        # check that we have enough data points to fit data
        if len(loc['X']) > (fitpos + 1):
            # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            # initial fit params
            iofargs = [p, loc, mask, rorder_num]
            # initial fit for center positions for this order
            loc, cf_data = spirouLOCOR.InitialOrderFit(*iofargs, kind='center')
            # initial fit for widths for this order
            loc, wf_data = spirouLOCOR.InitialOrderFit(*iofargs, kind='fwhm')
            # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            # Log order number and fit at central pixel and width and rms
            wargs = [
                rorder_num, cf_data['cfitval'], wf_data['cfitval'],
                cf_data['rms']
            ]
            WLOG(p, '', ('ORDER: {0} center at pixel {1:.1f} width '
                         '{2:.1f} rms {3:.3f}').format(*wargs))
            # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            # sigma fit params
            sigfargs = [p, loc, cf_data, mask, order_num, rorder_num]
            # sigma clip fit for center positions for this order
            cf_data = spirouLOCOR.SigClipOrderFit(*sigfargs, kind='center')
            # load results into storage arrags for this order
            loc['ACC'][rorder_num] = cf_data['a']
            loc['RMS_CENTER'][rorder_num] = cf_data['rms']
            loc['MAX_PTP_CENTER'][rorder_num] = cf_data['max_ptp']
            loc['MAX_PTP_FRACCENTER'][rorder_num] = cf_data['max_ptp_frac']
            loc['MAX_RMPTS_POS'][rorder_num] = cf_data['max_rmpts']

            # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            # sigma fit params
            sigfargs = [p, loc, wf_data, mask, order_num, rorder_num]
            # sigma clip fit for width positions for this order
            wf_data = spirouLOCOR.SigClipOrderFit(*sigfargs, kind='fwhm')
            # load results into storage arrags for this order
            loc['ASS'][rorder_num] = wf_data['a']
            loc['RMS_FWHM'][rorder_num] = wf_data['rms']
            loc['MAX_PTP_FWHM'][rorder_num] = wf_data['max_ptp']
            loc['MAX_PTP_FRACFWHM'][rorder_num] = wf_data['max_ptp_frac']
            loc['MAX_RMPTS_WID'][rorder_num] = wf_data['max_rmpts']
            # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            # increase the roder_num iterator
            rorder_num += 1
        # else log that the order is unusable
        else:
            WLOG(p, '', 'Order found too much incomplete, discarded')
    # ----------------------------------------------------------------------
    # Plot the image (ready for fit points to be overplotted later)
    if p['DRS_PLOT'] > 0:
        # get saturation threshold
        satseuil = p['IC_SATSEUIL'] * p['GAIN'] * p['NBFRAMES']
        # plot image above saturation threshold
        sPlt.locplot_im_sat_threshold(p, loc, data2, satseuil)
    # ----------------------------------------------------------------------

    # Log that order geometry has been measured
    WLOG(p, 'info', ('On fiber {0} {1} orders geometry have been '
                     'measured').format(p['FIBER'], rorder_num))
    # Get mean rms
    mean_rms_center = np.nansum(
        loc['RMS_CENTER'][:rorder_num]) * 1000 / rorder_num
    mean_rms_fwhm = np.nansum(loc['RMS_FWHM'][:rorder_num]) * 1000 / rorder_num
    # Log mean rms values
    wmsg = 'Average uncertainty on {0}: {1:.2f} [mpix]'
    WLOG(p, 'info', wmsg.format('position', mean_rms_center))
    WLOG(p, 'info', wmsg.format('width', mean_rms_fwhm))

    # ----------------------------------------------------------------------
    # Plot of RMS for positions and widths
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        sPlt.locplot_order_number_against_rms(p, loc, rorder_num)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # ----------------------------------------------------------------------
    # check that max number of points rejected in center fit is below threshold
    if np.nansum(loc['MAX_RMPTS_POS']) > p['QC_LOC_MAXLOCFIT_REMOVED_CTR']:
        fmsg = 'abnormal points rejection during ctr fit ({0:.2f} > {1:.2f})'
        fail_msg.append(
            fmsg.format(np.nansum(loc['MAX_RMPTS_POS']),
                        p['QC_LOC_MAXLOCFIT_REMOVED_CTR']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(np.nansum(loc['MAX_RMPTS_POS']))
    qc_names.append('sum(MAX_RMPTS_POS)')
    qc_logic.append('sum(MAX_RMPTS_POS) > {0:.2f}'
                    ''.format(p['QC_LOC_MAXLOCFIT_REMOVED_CTR']))
    # ----------------------------------------------------------------------
    # check that max number of points rejected in width fit is below threshold
    if np.nansum(loc['MAX_RMPTS_WID']) > p['QC_LOC_MAXLOCFIT_REMOVED_WID']:
        fmsg = 'abnormal points rejection during width fit ({0:.2f} > {1:.2f})'
        fail_msg.append(
            fmsg.format(np.nansum(loc['MAX_RMPTS_WID']),
                        p['QC_LOC_MAXLOCFIT_REMOVED_WID']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(np.nansum(loc['MAX_RMPTS_WID']))
    qc_names.append('sum(MAX_RMPTS_WID)')
    qc_logic.append('sum(MAX_RMPTS_WID) > {0:.2f}'
                    ''.format(p['QC_LOC_MAXLOCFIT_REMOVED_WID']))
    # ----------------------------------------------------------------------
    # check that the rms in center fit is lower than qc threshold
    if mean_rms_center > p['QC_LOC_RMSMAX_CENTER']:
        fmsg = 'too high rms on center fitting ({0:.2f} > {1:.2f})'
        fail_msg.append(fmsg.format(mean_rms_center,
                                    p['QC_LOC_RMSMAX_CENTER']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(mean_rms_center)
    qc_names.append('mean_rms_center')
    qc_logic.append('mean_rms_center > {0:.2f}'
                    ''.format(p['QC_LOC_RMSMAX_CENTER']))
    # ----------------------------------------------------------------------
    # check that the rms in center fit is lower than qc threshold
    if mean_rms_fwhm > p['QC_LOC_RMSMAX_FWHM']:
        fmsg = 'too high rms on profile fwhm fitting ({0:.2f} > {1:.2f})'
        fail_msg.append(fmsg.format(mean_rms_fwhm, p['QC_LOC_RMSMAX_CENTER']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(mean_rms_fwhm)
    qc_names.append('mean_rms_fwhm')
    qc_logic.append('mean_rms_fwhm > {0:.2f}'
                    ''.format(p['QC_LOC_RMSMAX_CENTER']))
    # ----------------------------------------------------------------------
    # check for abnormal number of identified orders
    if rorder_num != p['QC_LOC_NBO']:
        fmsg = ('abnormal number of identified orders (found {0:.2f} '
                'expected {1:.2f})')
        fail_msg.append(fmsg.format(rorder_num, p['QC_LOC_NBO']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(rorder_num)
    qc_names.append('rorder_num')
    qc_logic.append('rorder_num != {0:.2f}'.format(p['QC_LOC_NBO']))
    # ----------------------------------------------------------------------
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ----------------------------------------------------------------------
    # Save and record of image of localization with order center and keywords
    # ----------------------------------------------------------------------
    raw_loco_file = os.path.basename(p['FITSFILENAME'])
    # construct filename
    locofits, tag2 = spirouConfig.Constants.LOC_LOCO_FILE(p)
    locofitsname = os.path.split(locofits)[-1]
    # log that we are saving localization file
    WLOG(p, '', ('Saving localization information '
                 'in file: {0}').format(locofitsname))
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # define new keys to add
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=raw_loco_file)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCD_SIGDET'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCD_CONAD'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOCO_BCKGRD'],
                               value=loc['MEAN_BACKGRD'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_LOCO_NBO'], value=rorder_num)
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOCO_DEG_C'],
                               value=p['IC_LOCDFITC'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOCO_DEG_W'],
                               value=p['IC_LOCDFITW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_LOCO_DEG_E'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_LOCO_DELTA'])

    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOC_MAXFLX'],
                               value=float(loc['MAX_SIGNAL']))
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOC_SMAXPTS_CTR'],
                               value=np.nansum(loc['MAX_RMPTS_POS']))
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOC_SMAXPTS_WID'],
                               value=np.nansum(loc['MAX_RMPTS_WID']))
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOC_RMS_CTR'],
                               value=mean_rms_center)
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOC_RMS_WID'],
                               value=mean_rms_fwhm)
    # write 2D list of position fit coefficients
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_LOCO_CTR_COEFF'],
                                     values=loc['ACC'][0:rorder_num])
    # write 2D list of width fit coefficients
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_LOCO_FWHM_COEFF'],
                                     values=loc['ASS'][0:rorder_num])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # write center fits and add header keys (via hdict)
    center_fits = spirouLOCOR.CalcLocoFits(loc['ACC'], data2.shape[1])
    p = spirouImage.WriteImage(p, locofits, center_fits, hdict)

    # ----------------------------------------------------------------------
    # Save and record of image of sigma
    # ----------------------------------------------------------------------
    # construct filename
    locofits2, tag3 = spirouConfig.Constants.LOC_LOCO_FILE2(p)
    locofits2name = os.path.split(locofits2)[-1]

    # log that we are saving localization file
    wmsg = 'Saving FWHM information in file: {0}'
    WLOG(p, '', wmsg.format(locofits2name))
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # define new keys to add
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBACK'], value=p['BKGRDFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='file',
                                     values=p['ARG_FILE_NAMES'])
    # add outputs
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCD_SIGDET'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCD_CONAD'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_LOCO_NBO'], value=rorder_num)
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOCO_DEG_C'],
                               value=p['IC_LOCDFITC'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOCO_DEG_W'],
                               value=p['IC_LOCDFITW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_LOCO_DEG_E'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOC_MAXFLX'],
                               value=float(loc['MAX_SIGNAL']))
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOC_SMAXPTS_CTR'],
                               value=np.nansum(loc['MAX_RMPTS_POS']))
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOC_SMAXPTS_WID'],
                               value=np.nansum(loc['MAX_RMPTS_WID']))
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOC_RMS_CTR'],
                               value=mean_rms_center)
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_LOC_RMS_WID'],
                               value=mean_rms_fwhm)
    # write 2D list of position fit coefficients
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_LOCO_CTR_COEFF'],
                                     values=loc['ACC'][0:rorder_num])
    # write 2D list of width fit coefficients
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_LOCO_FWHM_COEFF'],
                                     values=loc['ASS'][0:rorder_num])
    # add quality control
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    # write image and add header keys (via hdict)
    width_fits = spirouLOCOR.CalcLocoFits(loc['ASS'], data2.shape[1])
    p = spirouImage.WriteImage(p, locofits2, width_fits, hdict)

    # ----------------------------------------------------------------------
    # Save and Record of image of localization
    # ----------------------------------------------------------------------
    if p['IC_LOCOPT1']:
        # construct filename
        locofits3, tag4 = spirouConfig.Constants.LOC_LOCO_FILE3(p)
        locofits3name = os.path.split(locofits3)[-1]
        # log that we are saving localization file
        wmsg1 = 'Saving localization image with superposition of orders in '
        wmsg2 = 'file: {0}'.format(locofits3name)
        WLOG(p, '', [wmsg1, wmsg2])
        # superpose zeros over the fit in the image
        data4 = spirouLOCOR.ImageLocSuperimp(data2o, loc['ACC'][0:rorder_num])
        # save this image to file
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_FIBER'], value=p['FIBER'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBDARK'],
                                   value=p['DARKFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBBAD'],
                                   value=p['BADPFILE'])
        p = spirouImage.WriteImage(p, locofits3, data4, hdict)

    # ----------------------------------------------------------------------
    # Update the calibration database
    # ----------------------------------------------------------------------
    if p['QC'] == 1:
        keydb = 'LOC_' + p['FIBER']
        # copy localisation file to the calibDB folder
        spirouDB.PutCalibFile(p, locofits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, locofitsname, hdr)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(filetype='DARK_DARK'):
    """
    cal_DARK_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_DARK_spirou.py [night_directory] [fitsfilename]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # set up function name
    main_name = __NAME__ + '.main()'
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)

    # now get custom arguments
    pos, fmt = [0], [str]
    names, call = ['filetype'], [filetype]
    customargs = spirouStartup.GetCustomFromRuntime(p, pos, fmt, names,
                                                    calls=call,
                                                    require_night_name=False)
    p = spirouStartup.LoadArguments(p, None, customargs=customargs,
                                    mainfitsdir='tmp',
                                    require_night_name=False)
    # set the DRS type (for file indexing)
    p['DRS_TYPE'] = 'RAW'
    p.set_source('DRS_TYPE', __NAME__ + '.main()')
    # -------------------------------------------------------------------------
    # find all "filetype" objects
    filenames = spirouImage.FindFiles(p, filetype=p['FILETYPE'],
                                      allowedtypes=p['ALLOWED_DARK_TYPES'])
    # convert filenames to a numpy array
    filenames = np.array(filenames)
    # -------------------------------------------------------------------------
    # julian date to know which file we need to
    # process together
    dark_time = np.zeros(len(filenames))
    dark_exp, dark_pp_version, dark_wt_temp = [], [], []
    basenames, nightnames, dark_cass_temp, dark_humidity = [], [], [], []
    # log progress
    WLOG(p, '', 'Reading all dark file headers')
    # looping through the file headers
    for it in range(len(filenames)):
        # get night name
        night_name = os.path.dirname(filenames[it]).split(p['TMP_DIR'])[-1]
        # get header
        hdr = spirouImage.ReadHeader(p, filepath=filenames[it])
        # add MJDATE to dark times
        dark_time[it] = float(hdr[p['KW_ACQTIME'][0]])
        # add other keys (for tabular output)
        basenames.append(os.path.basename(filenames[it]))
        nightnames.append(night_name)
        dark_exp.append(float(hdr[p['KW_EXPTIME'][0]]))
        dark_pp_version.append(hdr[p['KW_PPVERSION'][0]])
        dark_wt_temp.append(float(hdr[p['KW_WEATHER_TOWER_TEMP'][0]]))
        dark_cass_temp.append(float(hdr[p['KW_CASS_TEMP'][0]]))
        dark_humidity.append(float(hdr[p['KW_HUMIDITY'][0]]))

    # -------------------------------------------------------------------------
    # match files by date
    # -------------------------------------------------------------------------
    # log progress
    wmsg = 'Matching dark files by observation time (+/- {0} hrs)'
    WLOG(p, '', wmsg.format(p['DARK_MASTER_MATCH_TIME']))
    # get the time threshold
    time_thres = p['DARK_MASTER_MATCH_TIME']
    # get items grouped by time
    matched_id = spirouImage.GroupFilesByTime(p, dark_time, time_thres)
    # -------------------------------------------------------------------------
    # get the most recent position
    lastpos = np.argmax(dark_time)
    # load up the most recent dark
    rout = spirouImage.ReadImage(p, filenames[lastpos], log=False)
    data_ref, hdr_ref, nx, ny = rout
    # set the night name and update the reduced directory
    p['ARG_NIGHT_NAME'] = nightnames[lastpos]
    p.set_source('ARG_NIGHT_NAME', __NAME__ + '.main()')
    p['REDUCED_DIR'] = spirouConfig.Constants.REDUCED_DIR(p)
    p.set_source('REDUCED_DIR', __NAME__ + '.main()')

    # -------------------------------------------------------------------------
    # Read individual files and sum groups
    # -------------------------------------------------------------------------
    # log process
    WLOG(p, '', 'Reading Dark files and combining groups')
    # Find all unique groups
    u_groups = np.unique(matched_id)
    # currently number of bins == number of groups
    num_bins = len(u_groups)
    # storage of dark cube
    dark_cube = np.zeros([num_bins, ny, nx])
    bin_cube = np.zeros(num_bins)
    # loop through groups
    for g_it, group_num in enumerate(u_groups):
        # log progress
        WLOG(p, '', '\tGroup {0} of {1}'.format(g_it + 1, len(u_groups)))
        # find all files for this group
        dark_ids = filenames[matched_id == group_num]
        # load this groups files into a cube
        cube = []
        for filename in dark_ids:
            # read data
            data_it, _, _, _ = spirouImage.ReadImage(p, filename, log=False)
            # add to cube
            cube.append(data_it)
        # median dark cube
        groupdark = np.nanmedian(cube, axis=0)
        # sum within each bin
        dark_cube[g_it % num_bins] += groupdark
        # record the number of cubes that are going into this bin
        bin_cube[g_it % num_bins] += 1

    # need to normalize if we have more than 1 cube per bin
    for bin_it in range(num_bins):
        dark_cube[bin_it] /= bin_cube[bin_it]
    # -------------------------------------------------------------------------
    # we perform a median filter over a +/- "med_size" pixel box
    # -------------------------------------------------------------------------
    # log process
    WLOG(p, '', 'Performing median filter for {0} bins'.format(num_bins))
    # get med_size from p
    med_size = p['DARK_MASTER_MED_SIZE']
    # storage of output dark cube
    dark_cube1 = np.zeros([num_bins, ny, nx])
    # loop around the bins
    for bin_it in range(num_bins):
        # get the dark for this bin
        bindark = dark_cube[bin_it]
        # performing a median filter of the image with [-med_size, med_size]
        #     box in x and 1 pixel wide in y. Skips the pixel considered,
        #     so this is equivalent of a 2*med_size boxcar
        tmp = []
        for jt in range(-med_size, med_size + 1):
            if jt != 0:
                tmp.append(np.roll(bindark, [0, jt]))
        # low frequency image
        lf_dark = np.nanmedian(tmp, axis=0)
        # high frequency image
        dark_cube1[bin_it] = bindark - lf_dark
    # -------------------------------------------------------------------------
    # median the dark cube to create the master dark
    master_dark = np.nanmedian(dark_cube1, axis=0)
    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # ----------------------------------------------------------------------
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ----------------------------------------------------------------------
    # Save master dark to file
    # ----------------------------------------------------------------------
    # set reference filename
    reffile = filenames[lastpos]
    # construct folder and filename
    darkmasterfits, tag = spirouConfig.Constants.DARK_FILE_MASTER(p, reffile)
    darkmasterfitsname = os.path.basename(darkmasterfits)
    # log writing of file
    WLOG(p, '', 'Saving master dark to {0}'.format(darkmasterfitsname))
    # construct big dark table
    colnames = ['FILENAME', 'NIGHT', 'MJDATE', 'EXPTIME', 'WEATHER_TEMP',
                'CASS_TEMP', 'RELHUMID', 'PVERSION', 'GROUPID']
    values = [basenames, nightnames, dark_time, dark_exp, dark_wt_temp,
              dark_cass_temp, dark_humidity, dark_pp_version, matched_id]
    darktable = spirouImage.MakeTable(p, colnames, values)
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr_ref)
    # define new keys to add
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # write master dark + dark table to file
    p = spirouImage.WriteImageTable(p, darkmasterfits, image=master_dark,
                                    table=darktable, hdict=hdict)
    # ----------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ----------------------------------------------------------------------
    if p['QC']:
        # set dark master key
        keydb = 'DARKM'
        # copy dark fits file to the calibDB folder
        spirouDB.PutCalibFile(p, darkmasterfits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, darkmasterfitsname, hdr_ref)
    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #23
0
def part2test(p, loc):
    # ------------------------------------------------------------------
    # Fit wavelength solution on identified lines (using Littrow)
    # ------------------------------------------------------------------
    # log message
    wmsg = ('On fiber {0} fitting wavelength solution on identified '
            'lines: (second pass)')
    WLOG(p, '', wmsg.format(p['FIBER']))
    # fit lines
    start, end = p['IC_HC_N_ORD_START_2'], p['IC_HC_N_ORD_FINAL_2']
    lls = loc['LITTROW_EXTRAP_SOL_1'][start:end]
    loc = spirouTHORCA.Fit1DSolution(p, loc, lls, iteration=2)

    # ------------------------------------------------------------------
    # Littrow test
    # ------------------------------------------------------------------
    ckwargs = dict(ll=loc['LL_OUT_2'], iteration=2, log=True)
    loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs)

    # ------------------------------------------------------------------
    # Plot wave solution littrow check
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_check_plot(p, loc, iteration=2)
    # ------------------------------------------------------------------

    # ------------------------------------------------------------------
    # extrapolate Littrow solution
    # ------------------------------------------------------------------
    ekwargs = dict(ll=loc['LL_OUT_2'], iteration=2)
    loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs)

    # ------------------------------------------------------------------
    # Plot littrow solution
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_extrap_plot(p, loc, iteration=2)

    # ------------------------------------------------------------------
    # Join 0-24 and 25-36 solutions
    # ------------------------------------------------------------------
    loc = spirouTHORCA.JoinOrders(p, loc)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    # check for infinites and NaNs in X_MEAN_2
    if ~np.isfinite(loc['X_MEAN_2']):
        # add failed message to the fail message list
        fmsg = 'NaN or Inf in X_MEAN_2'
        fail_msg.append(fmsg)
        passed = False
    # iterate through Littrow test cut values
    # for x_it in range(len(loc['X_CUT_POINTS_2'])):
    for x_it in range(1, len(loc['X_CUT_POINTS_2']), 2):
        # get x cut point
        x_cut_point = loc['X_CUT_POINTS_2'][x_it]
        # get the sigma for this cut point
        sig_littrow = loc['LITTROW_SIG_2'][x_it]
        # get the abs min and max dev littrow values
        min_littrow = abs(loc['LITTROW_MINDEV_2'][x_it])
        max_littrow = abs(loc['LITTROW_MAXDEV_2'][x_it])
        # check if sig littrow is above maximum
        rms_littrow_max = p['QC_RMS_LITTROW_MAX']
        dev_littrow_max = p['QC_DEV_LITTROW_MAX']
        if sig_littrow > rms_littrow_max:
            fmsg = ('Littrow test (x={0}) failed (sig littrow = '
                    '{1:.2f} > {2:.2f})')
            fargs = [x_cut_point, sig_littrow, rms_littrow_max]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
        # check if min/max littrow is out of bounds
        if np.max([max_littrow, min_littrow]) > dev_littrow_max:
            fmsg = ('Littrow test (x={0}) failed (min|max dev = '
                    '{1:.2f}|{2:.2f} > {3:.2f})')
            fargs = [x_cut_point, min_littrow, max_littrow, dev_littrow_max]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')

    # ------------------------------------------------------------------
    # archive result in e2ds spectra
    # ------------------------------------------------------------------
    # get raw input file name
    raw_infile1 = os.path.basename(p['HCFILES'][0])
    raw_infile2 = os.path.basename(p['FPFILE'])
    # get wave filename
    wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_FP(p)
    wavefitsname = os.path.split(wavefits)[-1]
    WLOG(p, '', wavefits)

    # log progress
    wargs = [p['FIBER'], wavefitsname]
    wmsg = 'Write wavelength solution for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))
    # write solution to fitsfilename header
    # copy original keys
    hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'])
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    # add quality control
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    # add number of orders
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_ORD_N'],
                               value=loc['LL_PARAM_FINAL'].shape[0])
    # add degree of fit
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_LL_DEG'],
                               value=loc['LL_PARAM_FINAL'].shape[1] - 1)
    # add wave solution
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_WAVE_PARAM'],
                                     values=loc['LL_PARAM_FINAL'])
    # write original E2DS file and add header keys (via hdict)
    # spirouImage.WriteImage(p['FITSFILENAME'], loc['HCDATA'], hdict)

    # write the wave "spectrum"
    p = spirouImage.WriteImage(p, wavefits, loc['LL_FINAL'], hdict)

    # get filename for E2DS calibDB copy of FITSFILENAME
    e2dscopy_filename, tag2 = spirouConfig.Constants.WAVE_E2DS_COPY(p)

    wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]]
    wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))

    # make a copy of the E2DS file for the calibBD
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
    p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict)

    # ------------------------------------------------------------------
    # Save to result table
    # ------------------------------------------------------------------
    # calculate stats for table
    final_mean = 1000 * loc['X_MEAN_2']
    final_var = 1000 * loc['X_VAR_2']
    num_iterations = int(np.nansum(loc['X_ITER_2'][:, 2]))
    err = 1000 * np.sqrt(final_var / num_iterations)
    sig_littrow = 1000 * np.array(loc['LITTROW_SIG_2'])
    # construct filename
    wavetbl = spirouConfig.Constants.WAVE_TBL_FILE_FP(p)
    wavetblname = os.path.split(wavetbl)[-1]
    # construct and write table
    columnnames = [
        'night_name', 'file_name', 'fiber', 'mean', 'rms', 'N_lines', 'err',
        'rms_L0', 'rms_L1', 'rms_L2'
    ]
    columnformats = [
        '{:20s}', '{:30s}', '{:3s}', '{:7.4f}', '{:6.2f}', '{:3d}', '{:6.3f}',
        '{:6.2f}', '{:6.2f}', '{:6.2f}'
    ]
    columnvalues = [[p['ARG_NIGHT_NAME']], [p['ARG_FILE_NAMES'][0]],
                    [p['FIBER']], [final_mean], [final_var], [num_iterations],
                    [err], [sig_littrow[0]], [sig_littrow[1]],
                    [sig_littrow[2]]]
    # make table
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # merge table
    wmsg = 'Global result summary saved in {0}'
    WLOG(p, '', wmsg.format(wavetblname))
    spirouImage.MergeTable(p, table, wavetbl, fmt='ascii.rst')

    # ------------------------------------------------------------------
    # Save line list table file
    # ------------------------------------------------------------------
    # construct filename
    wavelltbl = spirouConfig.Constants.WAVE_LINE_FILE(p)
    wavelltblname = os.path.split(wavelltbl)[-1]
    # construct and write table
    columnnames = ['order', 'll', 'dv', 'w', 'xi', 'xo', 'dvdx']
    columnformats = [
        '{:.0f}', '{:12.4f}', '{:13.5f}', '{:12.4f}', '{:12.4f}', '{:12.4f}',
        '{:8.4f}'
    ]
    columnvalues = []
    # construct column values (flatten over orders)
    for it in range(len(loc['X_DETAILS_2'])):
        for jt in range(len(loc['X_DETAILS_2'][it][0])):
            row = [
                float(it), loc['X_DETAILS_2'][it][0][jt],
                loc['LL_DETAILS_2'][it][0][jt], loc['X_DETAILS_2'][it][3][jt],
                loc['X_DETAILS_2'][it][1][jt], loc['X_DETAILS_2'][it][2][jt],
                loc['SCALE_2'][it][jt]
            ]
            columnvalues.append(row)

    # log saving
    wmsg = 'List of lines used saved in {0}'
    WLOG(p, '', wmsg.format(wavelltblname))

    # make table
    columnvalues = np.array(columnvalues).T
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    spirouImage.WriteTable(p, table, wavelltbl, fmt='ascii.rst')

    # ------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ------------------------------------------------------------------
    # if p['QC']:
    #     # set the wave key
    #     keydb = 'WAVE_{0}'.format(p['FIBER'])
    #     # copy wave file to calibDB folder
    #     spirouDB.PutFile(p, wavefits)
    #     # update the master calib DB file with new key
    #     spirouDB.UpdateMaster(p, keydb, wavefitsname, loc['HCHDR'])
    #
    #     # set the hcref key
    #     keydb = 'HCREF_{0}'.format(p['FIBER'])
    #     # copy wave file to calibDB folder
    #     spirouDB.PutFile(p, e2dscopy_filename)
    #     # update the master calib DB file with new key
    #     e2dscopyfits = os.path.split(e2dscopy_filename)[-1]
    #     spirouDB.UpdateMaster(p, keydb, e2dscopyfits, loc['HCHDR'])

    # return p and loc
    return p, loc
def main(night_name=None, files=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    files,
                                    mainfitsdir='reduced')
    p = spirouStartup.InitialFileSetup(p, calibdb=True)
    # set up function name
    main_name = __NAME__ + '.main()'

    # ----------------------------------------------------------------------
    # load up first file
    # ----------------------------------------------------------------------
    # construct loc parameter dictionary for storing data
    loc = ParamDict()
    # read first file and assign values
    rdata = spirouImage.ReadImage(p, p['FITSFILENAME'])
    loc['DATA'], loc['DATAHDR'] = rdata[:2]

    # Get object name and airmass
    loc['OBJNAME'] = spirouImage.GetObjName(p, loc['DATAHDR'])
    loc.set_source('OBJNAME', main_name)
    loc['AIRMASS'] = spirouImage.GetAirmass(p, loc['DATAHDR'])
    # set source
    source = main_name + '+ spirouImage.ReadParams()'
    loc.set_sources(['OBJNAME', 'AIRMASS'], source)

    # ----------------------------------------------------------------------
    # Get and Normalise the blaze
    # ----------------------------------------------------------------------
    p, loc = spirouTelluric.GetNormalizedBlaze(p, loc, loc['DATAHDR'])

    # ----------------------------------------------------------------------
    # Get database files
    # ----------------------------------------------------------------------
    # get current telluric maps from telluDB
    tellu_db_data = spirouDB.GetDatabaseTellObj(p, required=False)
    tellu_db_files, tellu_db_names = tellu_db_data[0], tellu_db_data[1]

    # sort files by name
    # sortmask = spirouImage.SortByName(tellu_db_files)
    # tellu_db_files = np.array(tellu_db_files)[sortmask]
    # tellu_db_names = np.array(tellu_db_names)[sortmask]

    # filter by object name (only keep OBJNAME objects) and only keep
    #   unique filenames
    tell_files, tell_names = [], []
    for it in range(len(tellu_db_files)):
        # check that objname is correct
        cond1 = loc['OBJNAME'] in tellu_db_names[it]
        # check that filename is not already used
        cond2 = tellu_db_files[it] not in tell_files
        # append to file list if criteria correct
        if cond1 and cond2:
            tell_files.append(tellu_db_files[it])
            tell_names.append(tellu_db_names[it])

    # log if we have no files
    if len(tell_files) == 0:
        wmsg = 'No "TELL_OBJ" files found for object ="{0}" skipping'
        WLOG(p, 'warning', wmsg.format(loc['OBJNAME']))
        # End Message
        wmsg = 'Recipe {0} has been successfully completed'
        WLOG(p, 'info', wmsg.format(p['PROGRAM']))
        # return a copy of locally defined variables in the memory
        return dict(locals())
    else:
        # log how many found
        wmsg = 'N={0} "TELL_OBJ" files found for object ="{1}"'
        WLOG(p, 'info', wmsg.format(len(tell_files), loc['OBJNAME']))

    # ----------------------------------------------------------------------
    # Set up storage for cubes (NaN arrays)
    # ----------------------------------------------------------------------
    # set up flat size
    dims = [loc['DATA'].shape[0], loc['DATA'].shape[1], len(tell_files)]
    flatsize = np.product(dims)
    # create NaN filled storage
    big_cube = np.repeat([np.nan], flatsize).reshape(*dims)
    big_cube0 = np.repeat([np.nan], flatsize).reshape(*dims)

    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
        # get master wave map
        loc['MASTERWAVEFILE'] = spirouDB.GetDatabaseMasterWave(p)
    # read master wave map
    mout = spirouImage.GetWaveSolution(p,
                                       filename=loc['MASTERWAVEFILE'],
                                       return_wavemap=True,
                                       quiet=True,
                                       fiber=wave_fiber)
    loc['MASTERWAVEPARAMS'], loc['MASTERWAVE'], loc['WSOURCE'] = mout
    keys = ['MASTERWAVEPARAMS', 'MASTERWAVE', 'MASTERWAVEFILE', 'WSOURCE']
    loc.set_sources(keys, main_name)

    # ----------------------------------------------------------------------
    # Compile a median SNR for rejection of bad files
    # ----------------------------------------------------------------------
    snr_all = []
    # choose snr to check
    snr_order = p['QC_FIT_TELLU_SNR_ORDER']
    # loop through files
    for it, filename in enumerate(tell_files):
        header = spirouImage.ReadHeader(p, filename)
        # get the SNR from header
        nbo = spirouImage.ReadParam(p,
                                    header,
                                    'KW_WAVE_ORD_N',
                                    dtype=int,
                                    return_value=True)
        snr = spirouImage.Read1Dkey(p, header, p['kw_E2DS_SNR'][0], nbo)
        # append snr_all
        snr_all.append(snr[snr_order])

    # work our bad snr (less than half the median SNR)
    snr_thres = np.nanmedian(snr_all) / 2.0
    bad_snr_objects = np.where(snr_all < snr_thres)[0]

    # ----------------------------------------------------------------------
    # Loop through input files
    # ----------------------------------------------------------------------
    # empty lists for storage
    loc['BASE_ROWNUM'], loc['BASE_FILELIST'] = [], []
    loc['BASE_OBJNAME'], loc['BASE_OBJECT'] = [], []
    loc['BASE_BERVLIST'], loc['BASE_WAVELIST'] = [], []
    loc['BASE_SNRLIST_{0}'.format(snr_order)] = []
    loc['BASE_DATELIST'], loc['BASE_VERSION'] = [], []
    loc['BASE_DARKFILE'], loc['BASE_BADFILE'] = [], []
    loc['BASE_LOCOFILE'], loc['BASE_BLAZFILE'] = [], []
    loc['BASE_FLATFILE'], loc['BASE_SHAPEFILE'] = [], []

    # loop through files
    for it, filename in enumerate(tell_files):
        # get base filenmae
        basefilename = os.path.basename(filename)
        # ------------------------------------------------------------------
        # skip if in bad snr objects
        if it in bad_snr_objects:
            wargs = [it + 1, len(tell_files), snr_all[it], snr_thres]
            wmsg1 = ('Skipping file {0} of {1} due to bad SNR ({2:.3f} < '
                     '{3:.3f})'.format(*wargs))
            wmsg2 = '\tFile = {0}'.format(basefilename)
            WLOG(p, 'warning', [wmsg1, wmsg2])
            continue
        # ------------------------------------------------------------------
        # append basename to file list
        loc['BASE_FILELIST'].append(basefilename)
        # ------------------------------------------------------------------
        # create image for storage
        image = np.repeat([np.nan], np.product(loc['DATA'].shape))
        image = image.reshape(loc['DATA'].shape)
        # ------------------------------------------------------------------
        # Load the data for this file
        tdata0, thdr, _, _ = spirouImage.ReadImage(p, filename)
        nbo, npix = tdata0.shape
        # Correct for the blaze
        tdata = tdata0 / loc['NBLAZE']

        # get berv and add to list
        if p['KW_BERV'][0] in thdr:
            loc['BASE_BERVLIST'].append('{0}'.format(thdr[p['KW_BERV'][0]]))
        else:
            loc['BASE_BERVLIST'].append('UNKNOWN')

        # ------------------------------------------------------------------
        # Get parameters from header
        snr = snr_all[it]
        dateobs = spirouImage.ReadParam(p,
                                        thdr,
                                        'KW_DATE_OBS',
                                        dtype=str,
                                        return_value=True)
        utcobs = spirouImage.ReadParam(p,
                                       thdr,
                                       'KW_UTC_OBS',
                                       dtype=str,
                                       return_value=True)
        tobjname = spirouImage.ReadParam(p,
                                         thdr,
                                         'KW_OBJNAME',
                                         dtype=str,
                                         return_value=True)
        tobject = spirouImage.ReadParam(p,
                                        thdr,
                                        'KW_OBJECT',
                                        dtype=str,
                                        return_value=True)
        tversion = spirouImage.ReadParam(p,
                                         thdr,
                                         'KW_version',
                                         dtype=str,
                                         return_value=True)
        tdarkfile = spirouImage.ReadParam(p,
                                          thdr,
                                          'KW_CDBDARK',
                                          dtype=str,
                                          return_value=True)
        tbadfile = spirouImage.ReadParam(p,
                                         thdr,
                                         'KW_CDBBAD',
                                         dtype=str,
                                         return_value=True)
        tlocofile = spirouImage.ReadParam(p,
                                          thdr,
                                          'KW_CDBLOCO',
                                          dtype=str,
                                          return_value=True)
        tblazfile = spirouImage.ReadParam(p,
                                          thdr,
                                          'KW_CDBBLAZE',
                                          dtype=str,
                                          return_value=True)
        tflatfile = spirouImage.ReadParam(p,
                                          thdr,
                                          'KW_CDBFLAT',
                                          dtype=str,
                                          return_value=True)
        tshapfile = spirouImage.ReadParam(p,
                                          thdr,
                                          'KW_CDBSHAPE',
                                          dtype=str,
                                          return_value=True)
        # append to lists
        loc['BASE_ROWNUM'].append(it)
        loc['BASE_SNRLIST_{0}'.format(snr_order)].append(snr_all[it])
        loc['BASE_DATELIST'].append('{0}_{1}'.format(dateobs, utcobs))
        loc['BASE_OBJNAME'].append(tobjname)
        loc['BASE_OBJECT'].append(tobject)
        loc['BASE_VERSION'].append(tversion)
        loc['BASE_DARKFILE'].append(tdarkfile)
        loc['BASE_BADFILE'].append(tbadfile)
        loc['BASE_LOCOFILE'].append(tlocofile)
        loc['BASE_BLAZFILE'].append(tblazfile)
        loc['BASE_FLATFILE'].append(tflatfile)
        loc['BASE_SHAPEFILE'].append(tshapfile)

        # ------------------------------------------------------------------
        # Get the wave solution for this file
        # ------------------------------------------------------------------
        # Force A and B to AB solution
        if p['FIBER'] in ['A', 'B']:
            wave_fiber = 'AB'
        else:
            wave_fiber = p['FIBER']
        # need to reload calibDB
        # as we have custom arguments need to load the calibration database
        calib_db = dict(p['CALIBDB'])
        del p['CALIBDB']
        p = spirouStartup.LoadCalibDB(p, header=thdr)
        # get wave solution
        wout = spirouImage.GetWaveSolution(p,
                                           image=tdata,
                                           hdr=thdr,
                                           return_wavemap=True,
                                           fiber=wave_fiber,
                                           return_filename=True)
        _, loc['WAVE'], loc['WAVEFILE'], _ = wout
        loc.set_sources(['WAVE', 'WAVEFILE'], main_name)

        # add wave to wave list
        loc['BASE_WAVELIST'].append(loc['WAVEFILE'])

        # readd original calibDB to p
        p['CALIBDB'] = dict(calib_db)

        # ------------------------------------------------------------------
        # Get the Barycentric correction from header
        dv, _, _ = spirouImage.GetBERV(p, thdr)
        # ------------------------------------------------------------------
        # log stats
        wmsg = 'Processing file {0} of {1} file={2} dv={3}'
        wargs = [it + 1, len(tell_files), basefilename, dv]
        WLOG(p, 'info', wmsg.format(*wargs))
        # ------------------------------------------------------------------
        # shift to correct berv
        dvshift = spirouMath.relativistic_waveshift(dv, units='km/s')

        image = spirouTelluric.Wave2Wave(p, tdata, loc['WAVE'] * dvshift,
                                         loc['MASTERWAVE'])
        # ------------------------------------------------------------------
        # loop around orders
        for order_num in range(loc['DATA'].shape[0]):
            # normalise the tdata
            tdata[order_num, :] /= np.nanmedian(tdata[order_num, :])
            image[order_num, :] /= np.nanmedian(image[order_num, :])
        # ------------------------------------------------------------------
        # add to cube storage
        big_cube[:, :, it] = image
        big_cube0[:, :, it] = tdata

    # ----------------------------------------------------------------------
    # log if we have no files
    if len(loc['BASE_FILELIST']) == 0:
        wmsg = 'No good files found for object ="{0}" skipping'
        WLOG(p, 'warning', wmsg.format(loc['OBJNAME']))
        # End Message
        wmsg = 'Recipe {0} has been successfully completed'
        WLOG(p, 'info', wmsg.format(p['PROGRAM']))
        # return a copy of locally defined variables in the memory
        return dict(locals())

    # ----------------------------------------------------------------------
    # make median image
    with warnings.catch_warnings(record=True) as _:
        big_cube_med = np.nanmedian(big_cube, axis=2)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ----------------------------------------------------------------------
    # Write Cube median (the template) to file
    # ----------------------------------------------------------------------
    # get raw file name
    raw_in_file = os.path.basename(p['FITSFILENAME'])
    # construct filename
    outfile, tag = spirouConfig.Constants.OBJTELLU_TEMPLATE_FILE(p, loc)
    outfilename = os.path.basename(outfile)

    # hdict is first file keys
    hdict = spirouImage.CopyOriginalKeys(loc['DATAHDR'])
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['MASTERWAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='file',
                                     values=p['ARG_FILE_NAMES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add wave solution coefficients
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_WAVE_PARAM'],
                                     values=loc['MASTERWAVEPARAMS'])
    # write to file
    p = spirouImage.WriteImage(p, outfile, big_cube_med, hdict)

    # ----------------------------------------------------------------------
    # Update the telluric database with the template
    # ----------------------------------------------------------------------
    spirouDB.UpdateDatabaseObjTemp(p, outfilename, loc['OBJNAME'],
                                   loc['DATAHDR'])
    # put file in telluDB
    spirouDB.PutTelluFile(p, outfile)

    # ----------------------------------------------------------------------
    # Save cubes to file
    # ----------------------------------------------------------------------
    # make big cube table
    big_table = spirouTelluric.ConstructBigTable(p, loc)
    # construct file names
    outfile1, tag1 = spirouConfig.Constants.OBJTELLU_TEMPLATE_CUBE_FILE1(
        p, loc)
    outfile2, tag2 = spirouConfig.Constants.OBJTELLU_TEMPLATE_CUBE_FILE2(
        p, loc)
    # log big cube 1
    wmsg1 = 'Saving bigcube to file {0}'.format(os.path.basename(outfile1))
    # save big cube 1
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    big_cube_s = np.swapaxes(big_cube, 1, 2)
    p = spirouImage.WriteImageTable(p,
                                    outfile1,
                                    image=big_cube_s,
                                    table=big_table,
                                    hdict=hdict)
    # log big cube 0
    wmsg = 'Saving bigcube0 to file {0}'.format(os.path.basename(outfile2))
    # save big cube 0
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
    big_cube_s0 = np.swapaxes(big_cube0, 1, 2)
    p = spirouImage.WriteImageTable(p,
                                    outfile2,
                                    image=big_cube_s0,
                                    table=big_table,
                                    hdict=hdict)

    # # mega plot
    # nfiles = big_cube_s0.shape[1]
    # ncols = int(np.ceil(np.sqrt(nfiles)))
    # nrows = int(np.ceil(nfiles/ncols))
    # fig, frames = plt.subplots(ncols=ncols, nrows=nrows)
    # for it in range(big_cube_s0.shape[1]):
    #     jt, kt = it // ncols, it % ncols
    #     frame = frames[jt][kt]
    #     frame.imshow(big_cube_s0[:, it, :], origin='lower')
    #     frame.set(xlim=(2030, 2060))

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #25
0
def measure_background_from_map(p, image, header):
    func_name = __NAME__ + '.measure_background_from_map()'
    # get constants from parameter dictionary
    width = p['IC_BKGR_BOXSIZE']
    amp_ker = p['IC_BKGR_KER_AMP']
    # ------------------------------------------------------------------------
    # measure local background
    scattered_light = measure_local_background(p, image)
    # we extract a median order profile for the center of the image
    local_background_correction = scattered_light / amp_ker
    # correct the image for local background
    image1 = image - local_background_correction

    # -------------------------------------------------------------------------
    # get badpixmask
    p, bmap, bhdr = spirouImage.GetBackgroundMap(p, header)
    # create mask from badpixmask
    bmap = np.array(bmap, dtype=bool)
    # copy image
    image2 = np.array(image1)
    # set to NAN all "illuminated" (non-background) pixels
    image2[~bmap] = np.nan
    # -------------------------------------------------------------------------
    # create the box centers
    # we construct a binned-down version of the full image with the estimate
    # of the background for each x+y "center". This image will be up-scaled to
    # the size of the full science image and subtracted

    # x and y centers for each background calculation
    xc = np.arange(width, image2.shape[0], width)
    yc = np.arange(width, image2.shape[1], width)
    # background map (binned-down for now)
    background_image = np.zeros((len(xc), len(yc)))
    # loop around all boxes with centers xc and yc
    # and find pixels within a given widths
    # around these centers in the full image
    for i_it in range(len(xc)):
        for j_it in range(len(yc)):
            xci, yci = xc[i_it], yc[j_it]
            # get the pixels for this box
            subframe = image2[xci - width:xci + width, yci - width:yci + width]
            subframe = subframe.ravel()
            # get the (2*size)th minimum pixel
            with warnings.catch_warnings(record=True) as _:
                # do not use the nanpercentile, just a median
                # as we masked non-background pixels with NaNs
                value = np.nanmedian(subframe)

            if np.isfinite(value):
                background_image[i_it, j_it] = value
            else:
                background_image[i_it, j_it] = 0.0

    # define a mapping grid from size of background_image (image1[0]/width) by
    #    (image1[1]/width)
    # get shapes
    gridshape = background_image.shape
    imageshape = image2.shape
    # get fractional positions of the full image
    indices = np.indices(imageshape)
    fypix = indices[0]/imageshape[0]
    fxpix = indices[1]/imageshape[1]
    # scalge fraction positions to size of background image
    sypix = (gridshape[0]-1) * fypix
    sxpix = (gridshape[1]-1) * fxpix
    # coords for mapping
    coords = np.array([sypix, sxpix])
    # expand image onto the grid that matches the size of the input image
    background_image_full = mapc(background_image, coords,
                                 order=2, cval=np.nan, output=float,
                                 mode='constant')

    # ----------------------------------------------------------------------
    # Produce DEBUG plot
    # ----------------------------------------------------------------------
    data1 = image - background_image_full
    # construct debug background file name
    debug_background, tag = spirouConfig.Constants.BACKGROUND_CORRECT_FILE(p)
    # construct images
    dimages = [data1, image, image1, image2, local_background_correction,
               background_image_full, background_image]
    # construct hdicts
    hdict = spirouImage.CopyOriginalKeys(header)
    drsname = ['EXTDESC', None, 'Extension description']
    hdict1 = spirouImage.AddKey(p, hdict, drsname, value='Corrected')
    hdict2 = spirouImage.AddKey(p, hdict, drsname, value='Original')
    hdict3 = spirouImage.AddKey(p, hdict, drsname, value='Locally corrected')
    hdict4 = spirouImage.AddKey(p, hdict, drsname, value='LC NaN filled')
    hdict5 = spirouImage.AddKey(p, hdict, drsname, value='Local Background')
    hdict6 = spirouImage.AddKey(p, hdict, drsname, value='Global Background')
    hdict7 = spirouImage.AddKey(p, hdict, drsname,
                                value='Global Background Binned')
    dheaders = [hdict1, hdict2, hdict3, hdict4, hdict5, hdict6, hdict7]
    # write debug to file
    _ = spirouImage.WriteImageMulti(p, debug_background, dimages,
                                    hdicts=dheaders)
    # ----------------------------------------------------------------------
    return p, background_image_full
Beispiel #26
0
def main(night_name=None, e2dsfiles=None):
    """
    cal_CCF_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_CCF_E2DS_spirou.py [night_directory] [E2DSfilename] [mask] [RV]
                               [width] [step]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param e2dsfiles: list of string, the E2DS files to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # need custom args (to accept full path or wild card
    if e2dsfiles is None:
        names, types = ['e2dsfiles'], [str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0],
                                                        types,
                                                        names,
                                                        last_multi=True)
    else:
        customargs = dict(e2dsfiles=e2dsfiles)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Process files (including wildcards)
    # ----------------------------------------------------------------------
    try:
        e2dsfiles = spirouFile.Paths(p['E2DSFILES'],
                                     root=p['ARG_FILE_DIR']).abs_paths
    except PathException as e:
        WLOG(p, 'error', e)

    # loop around files
    for it, e2dsfile in enumerate(e2dsfiles):
        # get the base file name
        e2dsfilename = os.path.basename(e2dsfile)
        # log the file process
        wargs = [e2dsfilename, it + 1, len(e2dsfiles)]
        wmsg = ' * Processing file {0} ({1} of {2})'.format(*wargs)
        WLOG(p, '', spirouStartup.spirouStartup.HEADER)
        WLOG(p, '', wmsg)
        WLOG(p, '', spirouStartup.spirouStartup.HEADER)

        # ------------------------------------------------------------------
        # Check that we can process file
        # ------------------------------------------------------------------
        # check if ufile exists
        if not os.path.exists(e2dsfile):
            wmsg = 'File {0} does not exist... skipping'
            WLOG(p, 'warning', wmsg.format(e2dsfilename))
            continue
        elif ('e2ds' not in e2dsfilename) and ('e2dsff' not in e2dsfilename):
            wmsg = 'File {0} not a valid E2DS or E2DSFF file'
            WLOG(p, 'warning', wmsg.format(e2dsfilename))
            continue
        elif '.fits' not in e2dsfilename:
            wmsg = 'File {0} not a fits file... skipping'
            WLOG(p, 'warning', wmsg.format(e2dsfilename))
            continue

        # ----------------------------------------------------------------------
        # Read image file
        # ----------------------------------------------------------------------
        # read the image data
        e2ds, hdr, nbo, nx = spirouImage.ReadData(p, e2dsfile)
        # add to loc
        loc = ParamDict()
        loc['E2DS'] = e2ds
        loc['NUMBER_ORDERS'] = nbo
        loc.set_sources(['E2DS', 'number_orders'], __NAME__ + '/main()')

        # ----------------------------------------------------------------------
        # Get basic image properties for reference file
        # ----------------------------------------------------------------------
        # get sig det value
        p = spirouImage.GetSigdet(p, hdr, name='sigdet')
        # get exposure time
        p = spirouImage.GetExpTime(p, hdr, name='exptime')
        # get gain
        p = spirouImage.GetGain(p, hdr, name='gain')
        # get acquisition time
        p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')

        # ----------------------------------------------------------------------
        # Read star parameters
        # ----------------------------------------------------------------------
        p = spirouImage.ReadParam(p, hdr, 'KW_OBJRA', dtype=str)
        p = spirouImage.ReadParam(p, hdr, 'KW_OBJDEC', dtype=str)
        p = spirouImage.ReadParam(p, hdr, 'KW_OBJEQUIN')
        p = spirouImage.ReadParam(p, hdr, 'KW_OBJRAPM')
        p = spirouImage.ReadParam(p, hdr, 'KW_OBJDECPM')
        p = spirouImage.ReadParam(p, hdr, 'KW_DATE_OBS', dtype=str)
        p = spirouImage.ReadParam(p, hdr, 'KW_UTC_OBS', dtype=str)

        # -----------------------------------------------------------------------
        #  Earth Velocity calculation
        # -----------------------------------------------------------------------
        if p['IC_IMAGE_TYPE'] == 'H4RG':
            loc = spirouImage.EarthVelocityCorrection(p,
                                                      loc,
                                                      method=p['CCF_BERVMODE'])
        else:
            loc['BERV'], loc['BJD'] = 0.0, 0.0
            loc['BERV_MAX'], loc['BERV_SOURCE'] = 0.0, 'None'
            loc.set_sources(['BERV', 'BJD', 'BERV_MAX'], __NAME__ + '.main()')

        # ----------------------------------------------------------------------
        # archive ccf to fits file
        # ----------------------------------------------------------------------
        outfilename = str(e2dsfile)
        # add keys
        hdict = spirouImage.CopyOriginalKeys(hdr)

        # add berv values
        hdict = spirouImage.AddKey(p, hdict, p['KW_BERV'], value=loc['BERV'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_BJD'], value=loc['BJD'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_BERV_MAX'],
                                   value=loc['BERV_MAX'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_BERV_SOURCE'],
                                   value=loc['BERV_SOURCE'])

        # write image and add header keys (via hdict)
        p = spirouImage.WriteImage(p, outfilename, e2ds, hdict)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, files=None, fiber_type=None, **kwargs):
    """
    cal_DRIFT_E2DS_spirou.py main function, if night_name and files are
    None uses arguments from run time i.e.:
        cal_DRIFT_E2DS_spirou.py [night_directory] [files]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)
    :param fiber_type: string, if None does all fiber types (defined in
                       constants_SPIROU FIBER_TYPES (default is AB, A, B, C
                       if defined then only does this fiber type (but must
                       be in FIBER_TYPES)
    :param kwargs: any keyword to overwrite constant in param dict "p"

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p, night_name, files)
    p = spirouStartup.InitialFileSetup(p, calibdb=True)
    # deal with fiber type
    if fiber_type is None:
        fiber_type = p['FIBER_TYPES']
    if type(fiber_type) == str:
        if fiber_type.upper() == 'ALL':
            fiber_type = p['FIBER_TYPES']
        elif fiber_type in p['FIBER_TYPES']:
            fiber_type = [fiber_type]
        else:
            emsg = 'fiber_type="{0}" not understood'
            WLOG(p, 'error', emsg.format(fiber_type))
    # set fiber type
    p['FIB_TYPE'] = fiber_type
    p.set_source('FIB_TYPE', __NAME__ + '__main__()')
    # Overwrite keys from source
    for kwarg in kwargs:
        p[kwarg] = kwargs[kwarg]

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    p, data, hdr = spirouImage.ReadImageAndCombine(p, framemath='add')

    # ----------------------------------------------------------------------
    # fix for un-preprocessed files
    # ----------------------------------------------------------------------
    data = spirouImage.FixNonPreProcess(p, data)

    # ----------------------------------------------------------------------
    # Get basic image properties
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # now change the value of sigdet if require
    if p['IC_EXT_SIGDET'] > 0:
        p['SIGDET'] = float(p['IC_EXT_SIGDET'])
    # get DPRTYPE from header (Will have it if valid)
    p = spirouImage.ReadParam(p, hdr, 'KW_DPRTYPE', required=False, dtype=str)
    # check the DPRTYPE is not None
    if (p['DPRTYPE'] == 'None') or (['DPRTYPE'] is None):
        emsg1 = 'Error: {0} is not set in header for file {1}'
        eargs = [p['KW_DPRTYPE'][0], p['FITSFILENAME']]
        emsg2 = '\tPlease run pre-processing on file.'
        emsg3 = ('\tIf pre-processing fails or skips file, file is not '
                 'currrently as valid DRS fits file.')
        WLOG(p, 'error', [emsg1.format(*eargs), emsg2, emsg3])
    else:
        p['DPRTYPE'] = p['DPRTYPE'].strip()

    # ----------------------------------------------------------------------
    # Correction of DARK
    # ----------------------------------------------------------------------
    p, datac = spirouImage.CorrectForDark(p, data, hdr)

    # ----------------------------------------------------------------------
    # Resize image
    # ----------------------------------------------------------------------
    # rotate the image and convert from ADU/s to ADU
    data = spirouImage.ConvertToADU(spirouImage.FlipImage(p, datac), p=p)
    # convert NaN to zeros
    data0 = np.where(~np.isfinite(data), np.zeros_like(data), data)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    data1 = spirouImage.ResizeImage(p, data0, **bkwargs)
    # log change in data size
    wmsg = 'Image format changed to {1}x{0}'
    WLOG(p, '', wmsg.format(*data1.shape))

    # ----------------------------------------------------------------------
    # Correct for the BADPIX mask (set all bad pixels to zero)
    # ----------------------------------------------------------------------
    p, data1 = spirouImage.CorrectForBadPix(p, data1, hdr)

    # ----------------------------------------------------------------------
    # Log the number of dead pixels
    # ----------------------------------------------------------------------
    # get the number of bad pixels
    n_bad_pix = np.sum(~np.isfinite(data1))
    n_bad_pix_frac = n_bad_pix * 100 / np.product(data1.shape)
    # Log number
    wmsg = 'Nb dead pixels = {0} / {1:.4f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # ----------------------------------------------------------------------
    # Get the miny, maxy and max_signal for the central column
    # ----------------------------------------------------------------------
    # get the central column
    y = data1[p['IC_CENT_COL'], :]
    # get the min max and max signal using box smoothed approach
    miny, maxy, max_signal, diff_maxmin = spirouBACK.MeasureMinMaxSignal(p, y)
    # Log max average flux/pixel
    wmsg = 'Maximum average flux/pixel in the spectrum: {0:.1f} [ADU]'
    WLOG(p, 'info', wmsg.format(max_signal / p['NBFRAMES']))

    # ----------------------------------------------------------------------
    # Background computation
    # ----------------------------------------------------------------------
    if p['IC_DO_BKGR_SUBTRACTION']:
        # log that we are doing background measurement
        WLOG(p, '', 'Doing background measurement on raw frame')
        # get the bkgr measurement
        bargs = [p, data1, hdr]
        # background, xc, yc, minlevel = spirouBACK.MeasureBackgroundFF(*bargs)
        p, background = spirouBACK.MeasureBackgroundMap(*bargs)
    else:
        background = np.zeros_like(data1)
        p['BKGRDFILE'] = 'None'
        p.set_source('BKGRDFILE', __NAME__ + '.main()')
    # apply background correction to data (and set to zero where negative)
    data1 = data1 - background

    # ----------------------------------------------------------------------
    # Read tilt slit angle
    # ----------------------------------------------------------------------
    # define loc storage parameter dictionary
    loc = ParamDict()
    # get tilts (if the mode requires it)
    if p['IC_EXTRACT_TYPE'] not in EXTRACT_SHAPE_TYPES:
        p, loc['TILT'] = spirouImage.ReadTiltFile(p, hdr)
        loc.set_source('TILT',
                       __NAME__ + '/main() + /spirouImage.ReadTiltFile')
    else:
        loc['TILT'] = None
        loc.set_source('TILT', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    #  Earth Velocity calculation
    # ----------------------------------------------------------------------
    if p['IC_IMAGE_TYPE'] == 'H4RG':
        p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr)

    # ----------------------------------------------------------------------
    # Get all fiber data (for all fibers)
    # ----------------------------------------------------------------------
    # TODO: This is temp solution for options 5a and 5b
    loc_fibers = spirouLOCOR.GetFiberData(p, hdr)

    # ------------------------------------------------------------------
    # Deal with debananafication
    # ------------------------------------------------------------------
    # if mode 4a or 4b we need to straighten in x only
    if p['IC_EXTRACT_TYPE'] in ['4a', '4b']:
        # get the shape parameters
        p, shapem_x = spirouImage.GetShapeX(p, hdr)
        p, shape_local = spirouImage.GetShapeLocal(p, hdr)
        # log progress
        WLOG(p, '', 'Debananafying (straightening) image')
        # apply shape transforms
        targs = dict(lin_transform_vect=shape_local, dxmap=shapem_x)
        data2 = spirouImage.EATransform(data1, **targs)

    # if mode 5a or 5b we need to straighten in x and y using the
    #     polynomial fits for location
    elif p['IC_EXTRACT_TYPE'] in ['5a', '5b']:
        # get the shape parameters
        p, shapem_x = spirouImage.GetShapeX(p, hdr)
        p, shapem_y = spirouImage.GetShapeY(p, hdr)
        p, shape_local = spirouImage.GetShapeLocal(p, hdr)
        p, fpmaster = spirouImage.GetFPMaster(p, hdr)
        # get the bad pixel map
        bkwargs = dict(return_map=True, quiet=True)
        p, badpix = spirouImage.CorrectForBadPix(p, data1, hdr, **bkwargs)
        # log progress
        WLOG(p, '', 'Cleaning image')
        # clean the image
        data1 = spirouEXTOR.CleanHotpix(data1, badpix)
        # log progress
        WLOG(p, '', 'Debananafying (straightening) image')
        # apply shape transforms
        targs = dict(lin_transform_vect=shape_local,
                     dxmap=shapem_x,
                     dymap=shapem_y)
        data2 = spirouImage.EATransform(data1, **targs)
    # in any other mode we do not straighten
    else:
        data2 = np.array(data1)

    # ----------------------------------------------------------------------
    # Fiber loop
    # ----------------------------------------------------------------------
    # loop around fiber types
    for fiber in p['FIB_TYPE']:
        # set fiber
        p['FIBER'] = fiber
        p.set_source('FIBER', __NAME__ + '/main()()')

        # ------------------------------------------------------------------
        # Read wavelength solution
        # ------------------------------------------------------------------
        # set source of wave file
        wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
        # Force A and B to AB solution
        if fiber in ['A', 'B']:
            wave_fiber = 'AB'
        else:
            wave_fiber = fiber
        # get wave image
        wkwargs = dict(hdr=hdr,
                       return_wavemap=True,
                       return_filename=True,
                       return_header=True,
                       fiber=wave_fiber)
        wout = spirouImage.GetWaveSolution(p, **wkwargs)
        loc['WAVEPARAMS'], loc['WAVE'], loc['WAVEFILE'] = wout[:3]
        loc['WAVEHDR'], loc['WSOURCE'] = wout[3:]
        source_names = ['WAVE', 'WAVEFILE', 'WAVEPARAMS', 'WAVEHDR']
        loc.set_sources(source_names, wsource)
        # get dates
        loc['WAVE_ACQTIMES'] = spirouDB.GetTimes(p, loc['WAVEHDR'])
        loc.set_source('WAVE_ACQTIMES', __NAME__ + '.main()')
        # get the recipe that produced the wave solution
        if 'WAVECODE' in loc['WAVEHDR']:
            loc['WAVE_CODE'] = loc['WAVEHDR']['WAVECODE']
        else:
            loc['WAVE_CODE'] = 'UNKNOWN'
        loc.set_source('WAVE_CODE', __NAME__ + '.main()')

        # ----------------------------------------------------------------------
        # Get WFP keys
        # ----------------------------------------------------------------------
        # Read the WFP keys - if they don't exist set to None and deal
        #    with later
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_DRIFT',
                                  name='WFP_DRIFT',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_FWHM',
                                  name='WFP_FWHM',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_CONTRAST',
                                  name='WFP_CONTRAST',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_MAXCPP',
                                  name='WFP_MAXCPP',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_MASK',
                                  name='WFP_MASK',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_LINES',
                                  name='WFP_LINES',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_TARG_RV',
                                  name='WFP_TARG_RV',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_WIDTH',
                                  name='WFP_WIDTH',
                                  required=False)
        p = spirouImage.ReadParam(p,
                                  loc['WAVEHDR'],
                                  'KW_WFP_STEP',
                                  name='WFP_STEP',
                                  required=False)

        # ----------------------------------------------------------------------
        # Read Flat file
        # ----------------------------------------------------------------------
        fout = spirouImage.ReadFlatFile(p, hdr, return_header=True)
        p, loc['FLAT'], flathdr = fout
        loc.set_source('FLAT',
                       __NAME__ + '/main() + /spirouImage.ReadFlatFile')
        # get flat extraction mode
        if p['KW_E2DS_EXTM'][0] in flathdr:
            flat_ext_mode = flathdr[p['KW_E2DS_EXTM'][0]]
        else:
            flat_ext_mode = None

        # ------------------------------------------------------------------
        # Check extraction method is same as flat extraction method
        # ------------------------------------------------------------------
        # get extraction method and function
        extmethod, extfunc = spirouEXTOR.GetExtMethod(p, p['IC_EXTRACT_TYPE'])
        if not DEBUG:
            # compare flat extraction mode to extraction mode
            spirouEXTOR.CompareExtMethod(p, flat_ext_mode, extmethod, 'FLAT',
                                         'EXTRACTION')
        # ------------------------------------------------------------------
        # Read Blaze file
        # ------------------------------------------------------------------
        p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hdr)
        blazesource = __NAME__ + '/main() + /spirouImage.ReadBlazeFile'
        loc.set_source('BLAZE', blazesource)

        # ------------------------------------------------------------------
        # Get fiber specific parameters from loc_fibers
        # ------------------------------------------------------------------
        # get this fibers parameters
        p = spirouImage.FiberParams(p, p['FIBER'], merge=True)
        # get localisation parameters
        for key in loc_fibers[fiber]:
            loc[key] = loc_fibers[fiber][key]
            loc.set_source(key, loc_fibers[fiber].sources[key])
        # get locofile source
        p['LOCOFILE'] = loc['LOCOFILE']
        p.set_source('LOCOFILE', loc.sources['LOCOFILE'])
        # get the order_profile
        order_profile = loc_fibers[fiber]['ORDER_PROFILE']

        # ------------------------------------------------------------------
        # Set up Extract storage
        # ------------------------------------------------------------------
        # Create array to store extraction (for each order and each pixel
        # along order)
        loc['E2DS'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1]))
        loc['E2DSFF'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1]))
        loc['E2DSLL'] = []
        loc['SPE1'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1]))
        loc['SPE3'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1]))
        loc['SPE4'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1]))
        loc['SPE5'] = np.zeros((loc['NUMBER_ORDERS'], data2.shape[1]))
        # Create array to store the signal to noise ratios for each order
        loc['SNR'] = np.zeros(loc['NUMBER_ORDERS'])

        # ------------------------------------------------------------------
        # Extract orders
        # ------------------------------------------------------------------
        # source for parameter dictionary
        source = __NAME__ + '/main()'
        # get limits of order extraction
        valid_orders = spirouEXTOR.GetValidOrders(p, loc)
        # loop around each order
        for order_num in valid_orders:
            # -------------------------------------------------------------
            # IC_EXTRACT_TYPE decides the extraction routine
            # -------------------------------------------------------------
            eargs = [p, loc, data2, order_num]
            ekwargs = dict(mode=p['IC_EXTRACT_TYPE'],
                           order_profile=order_profile)
            with warnings.catch_warnings(record=True) as w:
                eout = spirouEXTOR.Extraction(*eargs, **ekwargs)
            # deal with different return
            if p['IC_EXTRACT_TYPE'] in EXTRACT_LL_TYPES:
                e2ds, e2dsll, cpt = eout
            else:
                e2ds, cpt = eout
                e2dsll = None
            # -------------------------------------------------------------
            # calculate the noise
            range1, range2 = p['IC_EXT_RANGE1'], p['IC_EXT_RANGE2']
            # set the noise
            noise = p['SIGDET'] * np.sqrt(range1 + range2)
            # get window size
            blaze_win1 = int(data2.shape[0] / 2) - p['IC_EXTFBLAZ']
            blaze_win2 = int(data2.shape[0] / 2) + p['IC_EXTFBLAZ']
            # get average flux per pixel
            flux = np.nansum(
                e2ds[blaze_win1:blaze_win2]) / (2 * p['IC_EXTFBLAZ'])
            # calculate signal to noise ratio = flux/sqrt(flux + noise^2)
            snr = flux / np.sqrt(flux + noise**2)
            # log the SNR RMS
            wmsg = 'On fiber {0} order {1}: S/N= {2:.1f} Nbcosmic= {3}'
            wargs = [p['FIBER'], order_num, snr, cpt]
            WLOG(p, '', wmsg.format(*wargs))
            # add calculations to storage
            loc['E2DS'][order_num] = e2ds
            loc['E2DSFF'][order_num] = e2ds / loc['FLAT'][order_num]
            loc['SNR'][order_num] = snr
            # save the longfile
            if p['IC_EXTRACT_TYPE'] in EXTRACT_LL_TYPES:
                loc['E2DSLL'].append(e2dsll)
            # set sources
            loc.set_sources(['e2ds', 'SNR'], source)
            # Log if saturation level reached
            satvalue = (flux / p['GAIN']) / (range1 + range2)
            if satvalue > (p['QC_LOC_FLUMAX'] * p['NBFRAMES']):
                wmsg = 'SATURATION LEVEL REACHED on Fiber {0} order={1}'
                WLOG(p, 'warning', wmsg.format(fiber, order_num))

        # ------------------------------------------------------------------
        # Thermal correction
        # ------------------------------------------------------------------
        # get fiber type
        if fiber in ['AB', 'A', 'B']:
            fibertype = p['DPRTYPE'].split('_')[0]
        else:
            fibertype = p['DPRTYPE'].split('_')[1]

        # apply thermal correction based on fiber type
        if fibertype in p['THERMAL_CORRECTION_TYPE1']:
            # log progress
            wmsg = 'Correcting thermal background for {0}={1} mode={2}'
            wargs = [fiber, fibertype, 1]
            WLOG(p, 'info', wmsg.format(*wargs))
            # correct E2DS
            tkwargs = dict(image=loc['E2DS'], mode=1, fiber=fiber, hdr=hdr)
            p, loc['E2DS'] = spirouBACK.ThermalCorrect(p, **tkwargs)
            # correct E2DSFF
            tkwargs = dict(image=loc['E2DSFF'],
                           mode=1,
                           fiber=fiber,
                           hdr=hdr,
                           flat=loc['FLAT'])
            p, loc['E2DSFF'] = spirouBACK.ThermalCorrect(p, **tkwargs)
        elif fibertype in p['THERMAL_CORRECTION_TYPE2']:
            # log progress
            wmsg = 'Correcting thermal background for {0}={1} mode={2}'
            wargs = [fiber, fibertype, 2]
            WLOG(p, 'info', wmsg.format(*wargs))
            # correct E2DS
            tkwargs = dict(image=loc['E2DS'], mode=2, fiber=fiber, hdr=hdr)
            p, loc['E2DS'] = spirouBACK.ThermalCorrect(p, **tkwargs)
            # correct E2DSFF
            tkwargs = dict(image=loc['E2DSFF'],
                           mode=2,
                           fiber=fiber,
                           hdr=hdr,
                           flat=loc['FLAT'])
            p, loc['E2DSFF'] = spirouBACK.ThermalCorrect(p, **tkwargs)
        else:
            # log progress
            wmsg = 'Not correcting thermal background for {0}={1}'
            wargs = [fiber, fibertype]
            WLOG(p, 'info', wmsg.format(*wargs))
            # set filename for output
            outfile = 'THERMALFILE_{0}'.format(fiber)
            p[outfile] = 'None'
            p.set_source(outfile, __NAME__ + '.main()')

        # ------------------------------------------------------------------
        # Plots
        # ------------------------------------------------------------------
        if p['DRS_PLOT'] > 0:
            # start interactive session if needed
            sPlt.start_interactive_session(p)
            # plot all orders or one order
            if p['IC_FF_PLOT_ALL_ORDERS']:
                # plot image with all order fits (slower)
                sPlt.ext_aorder_fit(p, loc, data1, max_signal / 10.)
            else:
                # plot image with selected order fit and edge fit (faster)
                sPlt.ext_sorder_fit(p, loc, data1, max_signal / 10.)
            # plot e2ds against wavelength
            sPlt.ext_spectral_order_plot(p, loc)

            if p['IC_EXTRACT_TYPE'] in EXTRACT_SHAPE_TYPES:
                sPlt.ext_debanana_plot(p, loc, data2, max_signal / 10.)

        # ----------------------------------------------------------------------
        # Quality control
        # ----------------------------------------------------------------------
        passed, fail_msg = True, []
        qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
        # ----------------------------------------------------------------------
        # if array is completely NaNs it shouldn't pass
        if np.sum(np.isfinite(loc['E2DS'])) == 0:
            fail_msg.append('E2DS image is all NaNs')
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append('NaN')
        qc_names.append('image')
        qc_logic.append('image is all NaN')
        # ----------------------------------------------------------------------
        # saturation check: check that the max_signal is lower than
        # qc_max_signal
        max_qcflux = p['QC_MAX_SIGNAL'] * p['NBFRAMES']
        if max_signal > max_qcflux:
            fmsg = 'Too much flux in the image ({0:.2f} > {1:.2f})'
            fail_msg.append(fmsg.format(max_signal, max_qcflux))
            passed = False
            # Question: Why is this test ignored?
            # For some reason this test is ignored in old code
            passed = True
            WLOG(p, 'info', fail_msg[-1])
            qc_pass.append(0)
        else:
            qc_pass.append(1)

        # add to qc header lists
        qc_values.append(max_signal)
        qc_names.append('max_signal')
        qc_logic.append('QC_MAX_SIGNAL > {0:.3f}'.format(max_qcflux))

        # finally log the failed messages and set QC = 1 if we pass the
        # quality control QC = 0 if we fail quality control
        if passed:
            WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
            p['QC'] = 1
            p.set_source('QC', __NAME__ + '/main()')
        else:
            for farg in fail_msg:
                wmsg = 'QUALITY CONTROL FAILED: {0}'
                WLOG(p, 'warning', wmsg.format(farg))
            p['QC'] = 0
            p.set_source('QC', __NAME__ + '/main()')
        # store in qc_params
        qc_params = [qc_names, qc_values, qc_logic, qc_pass]

        # ------------------------------------------------------------------
        # Store extraction in file(s)
        # ------------------------------------------------------------------
        raw_ext_file = os.path.basename(p['FITSFILENAME'])
        # construct filename
        e2dsfits, tag1 = spirouConfig.Constants.EXTRACT_E2DS_FILE(p)
        e2dsfitsname = os.path.split(e2dsfits)[-1]
        e2dsfffits, tag2 = spirouConfig.Constants.EXTRACT_E2DSFF_FILE(p)
        e2dsfffitsname = os.path.split(e2dsfffits)[-1]
        e2dsllfits, tag4 = spirouConfig.Constants.EXTRACT_E2DSLL_FILE(p)
        e2dsfllitsname = os.path.split(e2dsllfits)[-1]
        # log that we are saving E2DS spectrum
        wmsg = 'Saving E2DS spectrum of Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(p['FIBER'], e2dsfitsname))
        wmsg = 'Saving E2DSFF spectrum of Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(p['FIBER'], e2dsfffitsname))
        # add keys from original header file
        hdict = spirouImage.CopyOriginalKeys(hdr)
        # set the version
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_FIBER'], value=p['FIBER'])

        # set the input files
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBDARK'],
                                   value=p['DARKFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBBAD'],
                                   value=p['BADPFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBLOCO'],
                                   value=p['LOCOFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBBACK'],
                                   value=p['BKGRDFILE'])
        if p['IC_EXTRACT_TYPE'] not in EXTRACT_SHAPE_TYPES:
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_CDBTILT'],
                                       value=p['TILTFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBBLAZE'],
                                   value=p['BLAZFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBFLAT'],
                                   value=p['FLATFILE'])
        if p['IC_EXTRACT_TYPE'] in EXTRACT_SHAPE_TYPES:
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_CDBSHAPEX'],
                                       value=p['SHAPEXFILE'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_CDBSHAPEY'],
                                       value=p['SHAPEYFILE'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_CDBSHAPE'],
                                       value=p['SHAPEFILE'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_CDBFPMASTER'],
                                       value=p['FPMASTERFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBTHERMAL'],
                                   value=p['THERMALFILE_{0}'.format(fiber)])

        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBWAVE'],
                                   value=loc['WAVEFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVESOURCE'],
                                   value=loc['WSOURCE'])
        hdict = spirouImage.AddKey1DList(p,
                                         hdict,
                                         p['KW_INFILE1'],
                                         dim1name='file',
                                         values=p['ARG_FILE_NAMES'])
        # construct loco filename
        locofile, _ = spirouConfig.Constants.EXTRACT_LOCO_FILE(p)
        locofilename = os.path.basename(locofile)
        # add barycentric keys to header
        hdict = spirouImage.AddKey(p, hdict, p['KW_BERV'], value=loc['BERV'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_BJD'], value=loc['BJD'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_BERV_MAX'],
                                   value=loc['BERV_MAX'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_B_OBS_HOUR'],
                                   value=loc['BERVHOUR'])
        # add barycentric estimate keys to header
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_BERV_EST'],
                                   value=loc['BERV_EST'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_BJD_EST'],
                                   value=loc['BJD_EST'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_BERV_MAX_EST'],
                                   value=loc['BERV_MAX_EST'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_BERV_SOURCE'],
                                   value=loc['BERV_SOURCE'])
        # add qc parameters
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
        hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
        # copy extraction method and function to header
        #     (for reproducibility)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_E2DS_EXTM'],
                                   value=extmethod)
        hdict = spirouImage.AddKey(p, hdict, p['KW_E2DS_FUNC'], value=extfunc)
        # add localization file name to header
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_LOCO_FILE'],
                                   value=locofilename)
        # add wave solution date
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_TIME1'],
                                   value=loc['WAVE_ACQTIMES'][0])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_TIME2'],
                                   value=loc['WAVE_ACQTIMES'][1])
        # add wave solution number of orders
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_ORD_N'],
                                   value=loc['WAVEPARAMS'].shape[0])
        # add wave solution degree of fit
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_LL_DEG'],
                                   value=loc['WAVEPARAMS'].shape[1] - 1)
        # -------------------------------------------------------------------------
        # add keys of the wave solution FP CCF
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_FILE'],
                                   value=loc['WAVEFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_DRIFT'],
                                   value=p['WFP_DRIFT'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_FWHM'],
                                   value=p['WFP_FWHM'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_CONTRAST'],
                                   value=p['WFP_CONTRAST'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_MAXCPP'],
                                   value=p['WFP_MAXCPP'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_MASK'],
                                   value=p['WFP_MASK'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_LINES'],
                                   value=p['WFP_LINES'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_TARG_RV'],
                                   value=p['WFP_TARG_RV'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_WIDTH'],
                                   value=p['WFP_WIDTH'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_STEP'],
                                   value=p['WFP_STEP'])

        # write 1D list of the SNR
        hdict = spirouImage.AddKey1DList(p,
                                         hdict,
                                         p['KW_E2DS_SNR'],
                                         values=loc['SNR'])
        # add localization file keys to header
        root = p['KW_ROOT_DRS_LOC'][0]
        hdict = spirouImage.CopyRootKeys(p, hdict, locofile, root=root)
        # add wave solution coefficients
        hdict = spirouImage.AddKey2DList(p,
                                         hdict,
                                         p['KW_WAVE_PARAM'],
                                         values=loc['WAVEPARAMS'])
        # Save E2DS file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        p = spirouImage.WriteImage(p, e2dsfits, loc['E2DS'], hdict)
        # Save E2DSFF file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        p = spirouImage.WriteImage(p, e2dsfffits, loc['E2DSFF'], hdict)
        # Save E2DSLL file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        if p['IC_EXTRACT_TYPE'] in EXTRACT_LL_TYPES:
            llstack = np.vstack(loc['E2DSLL'])
            p = spirouImage.WriteImage(p, e2dsllfits, llstack, hdict)

        # ------------------------------------------------------------------
        # 1-dimension spectral S1D (uniform in wavelength)
        # ------------------------------------------------------------------
        # get arguments for E2DS to S1D
        e2dsargs = [loc['WAVE'], loc['E2DSFF'], loc['BLAZE']]
        # get 1D spectrum
        xs1d1, ys1d1 = spirouImage.E2DStoS1D(p, *e2dsargs, wgrid='wave')
        # Plot the 1D spectrum
        if p['DRS_PLOT'] > 0:
            sPlt.ext_1d_spectrum_plot(p, xs1d1, ys1d1)
        # construct file name
        s1dfile1, tag3 = spirouConfig.Constants.EXTRACT_S1D_FILE1(p)
        s1dfilename1 = os.path.basename(s1dfile1)
        # add header keys
        # set the version
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        # log writing to file
        wmsg = 'Saving 1D spectrum (uniform in wavelength) for Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(p['FIBER'], s1dfilename1))
        # Write to file
        columns = ['wavelength', 'flux', 'eflux']
        values = [xs1d1, ys1d1, np.zeros_like(ys1d1)]
        units = ['nm', None, None]
        s1d1 = spirouImage.MakeTable(p, columns, values, units=units)
        spirouImage.WriteTable(p, s1d1, s1dfile1, header=hdict)

        # ------------------------------------------------------------------
        # 1-dimension spectral S1D (uniform in velocity)
        # ------------------------------------------------------------------
        # get arguments for E2DS to S1D
        e2dsargs = [loc['WAVE'], loc['E2DSFF'], loc['BLAZE']]
        # get 1D spectrum
        xs1d2, ys1d2 = spirouImage.E2DStoS1D(p, *e2dsargs, wgrid='velocity')
        # Plot the 1D spectrum
        if p['DRS_PLOT'] > 0:
            sPlt.ext_1d_spectrum_plot(p, xs1d2, ys1d2)
        # construct file name
        s1dfile2, tag4 = spirouConfig.Constants.EXTRACT_S1D_FILE2(p)
        s1dfilename2 = os.path.basename(s1dfile2)
        # add header keys
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_EXT_TYPE'],
                                   value=p['DPRTYPE'])
        # log writing to file
        wmsg = 'Saving 1D spectrum (uniform in velocity) for Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(p['FIBER'], s1dfilename2))
        # Write to file
        columns = ['wavelength', 'flux', 'eflux']
        values = [xs1d2, ys1d2, np.zeros_like(ys1d2)]
        units = ['nm', None, None]
        s1d2 = spirouImage.MakeTable(p, columns, values, units=units)
        spirouImage.WriteTable(p, s1d2, s1dfile2, header=hdict)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, files=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p, night_name, files,
                                    mainfitsdir='reduced')
    p = spirouStartup.InitialFileSetup(p, calibdb=True)
    # set up function name
    main_name = __NAME__ + '.main()'

    # ------------------------------------------------------------------
    # Load first file
    # ------------------------------------------------------------------
    loc = ParamDict()
    rd = spirouImage.ReadImage(p, p['FITSFILENAME'])
    loc['DATA'], loc['DATAHDR'], loc['YDIM'], loc['XDIM'] = rd
    loc.set_sources(['DATA', 'DATAHDR', 'XDIM', 'YDIM'], main_name)

    # ------------------------------------------------------------------
    # Get the wave solution
    # ------------------------------------------------------------------
    wout = spirouImage.GetWaveSolution(p, image=loc['DATA'], hdr=loc['DATAHDR'],
                                       return_wavemap=True,
                                       return_filename=True)
    _, loc['WAVE'], loc['WAVEFILE'], _ = wout
    loc.set_sources(['WAVE', 'WAVEFILE'], main_name)
    # get the wave keys
    loc = spirouImage.GetWaveKeys(p, loc, loc['DATAHDR'])

    # ------------------------------------------------------------------
    # Get and Normalise the blaze
    # ------------------------------------------------------------------
    p, loc = spirouTelluric.GetNormalizedBlaze(p, loc, loc['DATAHDR'])

    # ------------------------------------------------------------------
    # Construct convolution kernels
    # ------------------------------------------------------------------
    loc = spirouTelluric.ConstructConvKernel1(p, loc)
    loc = spirouTelluric.ConstructConvKernel2(p, loc, vsini=p['TELLU_VSINI'])

    # ------------------------------------------------------------------
    # Get molecular telluric lines
    # ------------------------------------------------------------------
    loc = spirouTelluric.GetMolecularTellLines(p, loc)
    # if TAPAS FNAME is not None we generated a new file so should add to tellDB
    if loc['TAPAS_FNAME'] is not None:
        # add to the telluric database
        spirouDB.UpdateDatabaseTellConv(p, loc['TAPAS_FNAME'], loc['DATAHDR'])
        # put file in telluDB
        spirouDB.PutTelluFile(p, loc['TAPAS_ABSNAME'])

    # ------------------------------------------------------------------
    # Get master wave solution map
    # ------------------------------------------------------------------
    # get master wave map
    masterwavefile = spirouDB.GetDatabaseMasterWave(p)
    # log process
    wmsg1 = 'Shifting transmission map on to master wavelength grid'
    wmsg2 = '\tFile = {0}'.format(os.path.basename(masterwavefile))
    WLOG(p, '', [wmsg1, wmsg2])
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # read master wave map
    mout = spirouImage.GetWaveSolution(p, filename=masterwavefile,
                                       return_wavemap=True, quiet=True,
                                       return_header=True, fiber=wave_fiber)
    masterwavep, masterwave, masterwaveheader, mwsource = mout
    # get wave acqtimes
    master_acqtimes = spirouDB.GetTimes(p, masterwaveheader)

    # ------------------------------------------------------------------
    # Loop around the files
    # ------------------------------------------------------------------
    # construct extension
    tellu_ext = '{0}_{1}.fits'
    # get current telluric maps from telluDB
    tellu_db_data = spirouDB.GetDatabaseTellMap(p, required=False)
    tellu_db_files = tellu_db_data[0]
    # storage for valid output files
    loc['OUTPUTFILES'] = []
    # loop around the files
    for basefilename in p['ARG_FILE_NAMES']:

        # ------------------------------------------------------------------
        # Get absolute path of filename
        # ------------------------------------------------------------------
        filename = os.path.join(p['ARG_FILE_DIR'], basefilename)

        # ------------------------------------------------------------------
        # Read obj telluric file and correct for blaze
        # ------------------------------------------------------------------
        # get image
        sp, shdr, _, _ = spirouImage.ReadImage(p, filename)
        # divide my blaze
        sp = sp / loc['BLAZE']

        # ------------------------------------------------------------------
        # Get the wave solution
        # ------------------------------------------------------------------
        wout = spirouImage.GetWaveSolution(p, image=sp, hdr=shdr,
                                           return_wavemap=True,
                                           return_filename=True)
        _, loc['WAVE_IT'], loc['WAVEFILE_IT'], _ = wout
        loc.set_sources(['WAVE_IT', 'WAVEFILE_IT'], main_name)

        # ------------------------------------------------------------------
        # Shift data to master wave file
        # ------------------------------------------------------------------
        # shift map
        wargs = [p, sp, loc['WAVE_IT'], masterwave]
        sp = spirouTelluric.Wave2Wave(*wargs)
        loc['SP'] = np.array(sp)
        loc.set_source('SP', main_name)

        # ------------------------------------------------------------------
        # get output transmission filename
        outfile, tag1 = spirouConfig.Constants.TELLU_TRANS_MAP_FILE(p, filename)
        outfilename = os.path.basename(outfile)
        loc['OUTPUTFILES'].append(outfile)

        # if we already have the file skip it
        if outfile in tellu_db_files:
            wmsg = 'File {0} exists in telluDB, skipping'
            WLOG(p, '', wmsg.format(outfilename))
            continue
        else:
            # log processing file
            wmsg = 'Processing file {0}'
            WLOG(p, '', wmsg.format(outfilename))

        # Get object name and airmass
        loc['OBJNAME'] = spirouImage.GetObjName(p, shdr)
        loc['AIRMASS'] = spirouImage.GetAirmass(p, shdr)
        # set source
        source = main_name + '+ spirouImage.ReadParams()'
        loc.set_sources(['OBJNAME', 'AIRMASS'], source)

        # ------------------------------------------------------------------
        # Check that basefile is not in blacklist
        # ------------------------------------------------------------------
        blacklist_check = spirouTelluric.CheckBlackList(loc['OBJNAME'])
        if blacklist_check:
            # log black list file found
            wmsg = 'File {0} is blacklisted (OBJNAME={1}). Skipping'
            wargs = [basefilename, loc['OBJNAME']]
            WLOG(p, 'warning', wmsg.format(*wargs))
            # skip this file
            continue

        # ------------------------------------------------------------------
        # loop around the orders
        # ------------------------------------------------------------------
        # define storage for the transmission map
        transmission_map = np.zeros_like(loc['DATA'])
        # define storage for measured rms within expected clean domains
        exp_clean_rms = np.zeros(loc['DATA'].shape[0])
        # loop around the orders
        for order_num in range(loc['DATA'].shape[0]):
            # start and end
            start = order_num * loc['XDIM']
            end = (order_num * loc['XDIM']) + loc['XDIM']
            # get this orders combined tapas transmission
            trans = loc['TAPAS_ALL_SPECIES'][0, start:end]
            # keep track of the pixels that are considered valid for the SED
            #    determination
            mask1 = trans > p['TRANSMISSION_CUT']
            mask1 &= np.isfinite(loc['NBLAZE'][order_num, :])
            # normalise the spectrum
            sp[order_num, :] /= np.nanmedian(sp[order_num, :])
            # create a float mask
            fmask = np.array(mask1, dtype=float)
            # set up an SED to fill
            sed = np.ones(loc['XDIM'])
            # sigma clip until limit
            ww = None
            for it in range(p['N_ITER_SED_HOTSTAR']):
                # copy the spectrum
                sp2 = np.array(sp[order_num, :])
                # flag Nans
                nanmask = ~np.isfinite(sp2)
                # set all NaNs to zero so that it does not propagate when
                #     we convlve by KER2 - must set sp2[bad] to zero as
                #     NaN * 0.0 = NaN and we want 0.0!
                sp2[nanmask] = 0.0
                # trace the invalid points
                fmask[nanmask] = 0.0
                # multiple by the float mask
                sp2 *= fmask
                # convolve with the second kernel
                sp2b = np.convolve(sp2 / sed, loc['KER2'], mode='same')
                # convolve with mask to get weights
                ww = np.convolve(fmask, loc['KER2'], mode='same')
                # normalise the spectrum by the weights
                with warnings.catch_warnings(record=True) as w:
                    sp2bw = sp2b / ww
                # set zero pixels to 1
                sp2bw[sp2b == 0] = 1
                # recalculate the mask using the deviation from original
                with warnings.catch_warnings(record=True) as _:
                    dev = (sp2bw - sp[order_num, :] / sed)
                    dev /= np.nanmedian(np.abs(dev))
                    mask = mask1 * (np.abs(dev) < p['TELLU_SIGMA_DEV'])
                # update the SED with the corrected spectrum
                sed *= sp2bw
            # identify bad pixels
            with warnings.catch_warnings(record=True) as _:
                bad = (sp[order_num, :] / sed[:] > 1.2)
                sed[bad] = np.nan

            # debug plot
            if p['DRS_PLOT'] and (p['DRS_DEBUG'] > 1) and FORCE_PLOT_ON:
                # start non-interactive plot
                sPlt.plt.ioff()
                # plot the transmission map plot
                pargs = [order_num, mask1, sed, trans, sp, ww, outfilename]
                sPlt.tellu_trans_map_plot(p, loc, *pargs)
                # show and close
                sPlt.plt.show()
                sPlt.plt.close()

            # set all values below a threshold to NaN
            sed[ww < p['TELLU_NAN_THRESHOLD']] = np.nan
            # save the spectrum (normalised by the SED) to the tranmission map
            transmission_map[order_num, :] = sp[order_num, :] / sed

            # get expected clean rms
            fmaskb = np.array(fmask).astype(bool)
            with warnings.catch_warnings(record=True):
                zerotrans = np.abs(transmission_map[order_num, fmaskb]-1)
                ec_rms = np.nanmedian(zerotrans)
                exp_clean_rms[order_num] = ec_rms

            # log the rms
            wmsg = 'Order {0}: Fractional RMS in telluric free domain = {1:.3f}'
            wargs = [order_num, ec_rms]
            WLOG(p, '', wmsg.format(*wargs))

        # ---------------------------------------------------------------------
        # Quality control
        # ---------------------------------------------------------------------
        # set passed variable and fail message list
        passed, fail_msg = True, []
        qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
        # ----------------------------------------------------------------------
        # get SNR for each order from header
        nbo = loc['DATA'].shape[0]
        snr_order = p['QC_MK_TELLU_SNR_ORDER']
        snr = spirouImage.Read1Dkey(p, shdr, p['kw_E2DS_SNR'][0], nbo)
        # check that SNR is high enough
        if snr[snr_order] < p['QC_MK_TELLU_SNR_MIN']:
            fmsg = 'low SNR in order {0}: ({1:.2f} < {2:.2f})'
            fargs = [snr_order, snr[snr_order], p['QC_MK_TELLU_SNR_MIN']]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            # add to qc header lists
            qc_values.append(snr[snr_order])
            qc_name_str = 'SNR[{0}]'.format(snr_order)
            qc_names.append(qc_name_str)
            qc_logic.append('{0} < {1:.2f}'.format(qc_name_str,
                                                   p['QC_MK_TELLU_SNR_ORDER']))
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # ----------------------------------------------------------------------
        # check that the RMS is not too low
        if exp_clean_rms[snr_order] > p['QC_TELLU_CLEAN_RMS_MAX']:
            fmsg = ('Expected clean RMS is too high in order {0} '
                    '({1:.3f} > {2:.3f})')
            fargs = [snr_order, exp_clean_rms[snr_order],
                     p['QC_TELLU_CLEAN_RMS_MAX']]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            # add to qc header lists
            qc_values.append(exp_clean_rms[snr_order])
            qc_name_str = 'exp_clean_rms[{0}]'.format(snr_order)
            qc_names.append(qc_name_str)
            qc_logic.append('{0} > {1:.2f}'.format(qc_name_str,
                                                   p['QC_TELLU_CLEAN_RMS_MAX']))
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # ----------------------------------------------------------------------
        # finally log the failed messages and set QC = 1 if we pass the
        # quality control QC = 0 if we fail quality control
        if passed:
            WLOG(p, 'info',
                 'QUALITY CONTROL SUCCESSFUL - Well Done -')
            p['QC'] = 1
            p.set_source('QC', __NAME__ + '/main()')
        else:
            for farg in fail_msg:
                wmsg = 'QUALITY CONTROL FAILED: {0}'
                WLOG(p, 'warning', wmsg.format(farg))
            p['QC'] = 0
            p.set_source('QC', __NAME__ + '/main()')
        # store in qc_params
        qc_params = [qc_names, qc_values, qc_logic, qc_pass]

        # ------------------------------------------------------------------
        # Save transmission map to file
        # ------------------------------------------------------------------
        # get raw file name
        raw_in_file = os.path.basename(p['FITSFILENAME'])
        # copy original keys
        hdict = spirouImage.CopyOriginalKeys(loc['DATAHDR'])
        # add version number
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        # set the input files
        hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'],
                                   value=p['BLAZFILE'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'],
                                   value=os.path.basename(masterwavefile))
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'],
                                   value=mwsource)
        hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'],
                                         dim1name='file',
                                         values=p['ARG_FILE_NAMES'])
        # add qc parameters
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
        hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
        # add wave solution date
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME1'],
                                   value=master_acqtimes[0])
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME2'],
                                   value=master_acqtimes[1])
        # add wave solution number of orders
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_ORD_N'],
                                   value=masterwavep.shape[0])
        # add wave solution degree of fit
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_LL_DEG'],
                                   value=masterwavep.shape[1] - 1)
        # add wave solution coefficients
        hdict = spirouImage.AddKey2DList(p, hdict, p['KW_WAVE_PARAM'],
                                         values=masterwavep)
        # write to file
        p = spirouImage.WriteImage(p, outfile, transmission_map, hdict)

        # ------------------------------------------------------------------
        # Generate the absorption map
        # ------------------------------------------------------------------
        # set up storage for the absorption
        abso = np.array(transmission_map)
        # set values less than low threshold to low threshold
        # set values higher than high threshold to 1
        low, high = p['TELLU_ABSO_LOW_THRES'], p['TELLU_ABSO_HIGH_THRES']
        with warnings.catch_warnings(record=True) as w:
            abso[abso < low] = low
            abso[abso > high] = 1.0
        # write to loc
        loc['RECON_ABSO'] = abso.reshape(np.product(loc['DATA'].shape))
        loc.set_source('RECON_ABSO', main_name)

        # ------------------------------------------------------------------
        # Get molecular absorption
        # ------------------------------------------------------------------
        loc = spirouTelluric.CalcMolecularAbsorption(p, loc)
        # add molecular absorption to file
        for it, molecule in enumerate(p['TELLU_ABSORBERS'][1:]):
            # get molecule keyword store and key
            molkey = '{0}_{1}'.format(p['KW_TELLU_ABSO'][0], molecule.upper())
            # add water col
            if molecule == 'h2o':
                loc['WATERCOL'] = loc[molkey]
                # set source
                loc.set_source('WATERCOL', main_name)

        # ------------------------------------------------------------------
        # Add transmission map to telluDB
        # ------------------------------------------------------------------
        if p['QC']:
            # copy tellu file to the telluDB folder
            spirouDB.PutTelluFile(p, outfile)
            # update the master tellu DB file with transmission map
            targs = [p, outfilename, loc['OBJNAME'], loc['AIRMASS'],
                     loc['WATERCOL']]
            spirouDB.UpdateDatabaseTellMap(*targs)

    # ----------------------------------------------------------------------
    # Optional Absorption maps
    # ----------------------------------------------------------------------
    if p['TELLU_ABSO_MAPS']:

        # ------------------------------------------------------------------
        # Generate the absorption map
        # ------------------------------------------------------------------
        # get number of files
        nfiles = len(p['OUTPUTFILES'])
        # set up storage for the absorption
        abso = np.zeros([nfiles, np.product(loc['DATA'].shape)])
        # loop around outputfiles and add them to abso
        for it, filename in enumerate(p['OUTPUTFILES']):
            # push data into array
            data_it, _, _, _ = spirouImage.ReadImage(p, filename)
            abso[it, :] = data_it.reshape(np.product(loc['DATA'].shape))
        # set values less than low threshold to low threshold
        # set values higher than high threshold to 1
        low, high = p['TELLU_ABSO_LOW_THRES'], p['TELLU_ABSO_HIGH_THRES']
        abso[abso < low] = low
        abso[abso > high] = 1.0
        # set values less than TELLU_CUT_BLAZE_NORM threshold to NaN
        abso[loc['NBLAZE'] < p['TELLU_CUT_BLAZE_NORM']] = np.nan
        # reshape data (back to E2DS)
        abso_e2ds = abso.reshape(nfiles, loc['YDIM'], loc['XDIM'])
        # get file name
        abso_map_file, tag2 = spirouConfig.Constants.TELLU_ABSO_MAP_FILE(p)
        # get raw file name
        raw_in_file = os.path.basename(p['FITSFILENAME'])
        # write the map to file
        hdict = spirouImage.CopyOriginalKeys(loc['DATAHDR'])
        # add version number
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
        # set the input files
        hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'],
                                   value=p['BLAZFILE'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'],
                                   value=loc['WAVEFILE'])

        # write to file
        p = spirouImage.WriteImage(p, abso_map_file, abso_e2ds, hdict)

        # ------------------------------------------------------------------
        # Generate the median and normalized absorption maps
        # ------------------------------------------------------------------
        # copy the absorption cube
        abso2 = np.array(abso)
        # log the absorption cube
        log_abso = np.log(abso)
        # get the threshold from p
        threshold = p['TELLU_ABSO_SIG_THRESH']
        # calculate the abso_med
        abso_med = np.nanmedian(log_abso, axis=0)
        # sigma clip around the median
        for it in range(p['TELLU_ABSO_SIG_N_ITER']):
            # recalculate the abso_med
            abso_med = np.nanmedian(log_abso, axis=0)
            # loop around each file
            for jt in range(nfiles):
                # get this iterations row
                rowvalue = log_abso[jt, :]
                # get the mask of those values above threshold
                goodpix = (rowvalue > threshold) & (abso_med > threshold)
                # apply the mask of good pixels to work out ratio
                part1 = np.nansum(rowvalue[goodpix] * abso_med[goodpix])
                part2 = np.nansum(abso_med[goodpix] ** 2)
                ratio = part1 / part2
                # store normalised absol back on to log_abso
                log_abso[jt, :] = log_abso[jt, :] / ratio

        # unlog log_abso
        abso_out = np.exp(log_abso)

        # calculate the median of the log_abso
        abso_med_out = np.exp(np.nanmedian(log_abso, axis=0))
        # reshape the median
        abso_map_n = abso_med_out.reshape(loc['DATA'].shape)

        # save the median absorption map to file
        abso_med_file, tag3 = spirouConfig.Constants.TELLU_ABSO_MEDIAN_FILE(p)
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)
        p = spirouImage.WriteImage(p, abso_med_file, abso_med_out, hdict)

        # save the normalized absorption map to file
        abso_map_file, tag4 = spirouConfig.Constants.TELLU_ABSO_NORM_MAP_FILE(p)
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
        p = spirouImage.WriteImage(p, abso_map_file, abso_map_n, hdict)

        # ------------------------------------------------------------------
        # calculate dv statistic
        # ------------------------------------------------------------------
        # get the order for dv calculation
        dvselect = p['TELLU_ABSO_DV_ORDER']
        size = p['TELLU_ABSO_DV_SIZE']
        threshold2 = p['TELLU_ABSO_DV_GOOD_THRES']
        fitdeg = p['TELLU_ABSO_FIT_DEG']
        ydim, xdim = loc['DATA'].shape
        # get the start and end points of this order
        start, end = xdim * dvselect + size, xdim * dvselect - size + xdim
        # get the median for selected order
        abso_med2 = np.exp(abso_med[start:end])
        # get the dv pixels to extract
        dvpixels = np.arange(-np.floor(size / 2), np.ceil(size / 2), 1)
        # loop around files
        for it, filename in enumerate(p['OUTPUTFILES']):
            # storage for the extracted abso ratios for this file
            cc = np.zeros(size)
            # loop around a box of size="size"
            for jt, dv in dvpixels:
                # get the start and end position
                start = xdim * dvselect + size + dv
                end = xdim * dvselect + xdim - size + dv
                # get the log abso for this iteration
                rowvalue = np.exp(log_abso[it, start:end])
                # find the good pixels
                goodpix = (rowvalue > threshold2) & (abso_med2 > threshold2)
                # get the ratio
                part1 = np.nansum(rowvalue[goodpix] * abso_med2[goodpix])
                part2 = np.nansum(abso_med2[goodpix] ** 2)
                cc[jt] = part1 / part2
            # fit the ratio across the points
            cfit = nanpolyfit(dvpixels, cc, fitdeg)
            # work out the dv pix
            dvpix = -0.5 * (cfit[1] / cfit[0])
            # log stats
            wmsg = 'File: "{0}", dv={1}'
            WLOG(p, '', wmsg.format(filename, dvpix))

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None,
         e2dsfile=None,
         mask=None,
         rv=None,
         width=None,
         step=None):
    """
    cal_CCF_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_CCF_E2DS_spirou.py [night_directory] [E2DSfilename] [mask] [RV]
                               [width] [step]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param e2dsfile: string, the E2DS file to use
    :param mask: string, the mask file to use (i.e. "UrNe.mas")
    :param rv: float, the target RV to use
    :param width: float, the CCF width to use
    :param step: float, the CCF step to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with arguments being None (i.e. get from sys.argv)
    pos = [0, 1, 2, 3, 4]
    fmt = [str, str, float, float, float]
    name = ['e2dsfile', 'ccf_mask', 'target_rv', 'ccf_width', 'ccf_step']
    lname = ['input_file', 'CCF_mask', 'RV', 'CCF_width', 'CCF_step']
    req = [True, True, True, False, False]
    call = [e2dsfile, mask, rv, width, step]
    call_priority = [True, True, True, True, True]
    # now get custom arguments
    customargs = spirouStartup.GetCustomFromRuntime(p, pos, fmt, name, req,
                                                    call, call_priority, lname)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='e2dsfile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, e2dsfilename = spirouStartup.SingleFileSetup(p, filename=p['E2DSFILE'])

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Deal with optional run time arguments
    # ----------------------------------------------------------------------
    # define default arguments (if ccf_width and ccf_step are not defined
    # in function call or run time arguments
    if 'ccf_width' not in p:
        p['CCF_WIDTH'] = p['IC_CCF_WIDTH']
    if 'ccf_step' not in p:
        p['CCF_STEP'] = p['IC_CCF_STEP']

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    e2ds, hdr, nbo, nx = spirouImage.ReadData(p, e2dsfilename)
    # add to loc
    loc = ParamDict()
    loc['E2DS'] = e2ds
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['E2DS', 'number_orders'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    # get obj name
    p = spirouImage.ReadParam(p, hdr, 'KW_OBJNAME', name='OBJNAME', dtype=str)

    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']

    # ----------------------------------------------------------------------
    #  Earth Velocity calculation
    # ----------------------------------------------------------------------
    if p['IC_IMAGE_TYPE'] == 'H4RG':
        p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr)

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # log
    WLOG(p, '', 'Reading wavelength solution ')
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    param_ll, wave_ll, wavefile, wsource = wout
    # save to storage
    loc['PARAM_LL'], loc['WAVE_LL'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    source = __NAME__ + '/main() + spirouTHORCA.GetWaveSolution()'
    loc.set_sources(['WAVE_LL', 'PARAM_LL', 'WAVEFILE', 'WSOURCE'], source)

    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # TODO We do not need to correct FLAT
    # log
    # WLOG(p, '', 'Reading Flat-Field ')

    # get flat
    # loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    # loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    # loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])

    # get blaze
    # p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hdr)
    p, blaze0 = spirouImage.ReadBlazeFile(p, hdr)

    # ----------------------------------------------------------------------
    # Preliminary set up = no flat, no blaze
    # ----------------------------------------------------------------------
    # reset flat to all ones
    # loc['FLAT'] = np.ones((nbo, nx))
    # set blaze to all ones (if not bug in correlbin !!!
    # TODO Check why Blaze makes bugs in correlbin
    loc['BLAZE'] = np.ones((nbo, nx))
    # set sources
    # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()')
    loc.set_sources(['blaze'], __NAME__ + '/main()')

    # Modification of E2DS array  with N.A.N
    if np.isnan(np.sum(e2ds)):
        WLOG(p, 'warning', 'NaN values found in e2ds, converting process')
        #  First basic approach Replacing N.A.N by zeros
        #    e2ds[np.isnan(e2ds)] = 0

        # Second approach replacing N.A.N by the Adjusted Blaze
        e2dsb = e2ds / blaze0
        for i in np.arange(len(e2ds)):
            with warnings.catch_warnings(record=True) as _:
                rap = np.mean(e2dsb[i][np.isfinite(e2dsb[i])])
            if np.isnan(rap):
                rap = 0.0
            e2ds[i] = np.where(np.isfinite(e2dsb[i]), e2ds[i], blaze0[i] * rap)

    # ----------------------------------------------------------------------
    # correct extracted image for flat
    # ----------------------------------------------------------------------
    # loc['E2DSFF'] = e2ds/loc['FLAT']
    # loc['E2DSFF'] = e2ds*1.
    loc['E2DSFF'] = e2ds
    loc.set_source('E2DSFF', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Compute photon noise uncertainty for reference file
    # ----------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['E2DS'], loc['WAVE_LL']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    # wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    # WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))
    wmsg = 'On fiber estimated RV uncertainty on spectrum is {0:.3f} m/s'
    WLOG(p, 'info', wmsg.format(wmeanref))
    # TEST N.A.N
    # loc['E2DSFF'][20:22,2000:3000]=np.nan
    # e2ds[20:30,1000:3000]=np.nan

    # ----------------------------------------------------------------------
    # Reference plots
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        sPlt.drift_plot_selected_wave_ref(p,
                                          loc,
                                          x=loc['WAVE_LL'],
                                          y=loc['E2DS'])
        # plot photon noise uncertainty
        sPlt.drift_plot_photon_uncertainty(p, loc)

    # ----------------------------------------------------------------------
    # Get template RV (from ccf_mask)
    # ----------------------------------------------------------------------
    # get the CCF mask from file (check location of mask)
    loc = spirouRV.GetCCFMask(p, loc)

    # check and deal with mask in microns (should be in nm)
    if np.mean(loc['LL_MASK_CTR']) < 2.0:
        loc['LL_MASK_CTR'] *= 1000.0
        loc['LL_MASK_D'] *= 1000.0

    # ----------------------------------------------------------------------
    # Do correlation
    # ----------------------------------------------------------------------
    # calculate and fit the CCF
    loc = spirouRV.Coravelation(p, loc)

    # ----------------------------------------------------------------------
    # Correlation stats
    # ----------------------------------------------------------------------
    # get the maximum number of orders to use
    nbmax = p['CCF_NUM_ORDERS_MAX']
    # get the average ccf
    loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
    # normalize the average ccf
    normalized_ccf = loc['AVERAGE_CCF'] / np.max(loc['AVERAGE_CCF'])
    # get the fit for the normalized average ccf
    ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                       loc['RV_CCF'],
                                       normalized_ccf,
                                       fit_type=0)
    loc['CCF_RES'] = ccf_res
    loc['CCF_FIT'] = ccf_fit
    # get the max cpp
    loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum(
        loc['PIX_PASSED_ALL'])
    # get the RV value from the normalised average ccf fit center location
    loc['RV'] = float(ccf_res[1])
    # get the contrast (ccf fit amplitude)
    loc['CONTRAST'] = np.abs(100 * ccf_res[0])
    # get the FWHM value
    loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm()

    # ----------------------------------------------------------------------
    # set the source
    keys = [
        'average_ccf', 'maxcpp', 'rv', 'contrast', 'fwhm', 'ccf_res', 'ccf_fit'
    ]
    loc.set_sources(keys, __NAME__ + '/main()')
    # ----------------------------------------------------------------------
    # log the stats
    wmsg = ('Correlation: C={0:.1f}[%] RV={1:.5f}[km/s] '
            'FWHM={2:.4f}[km/s] maxcpp={3:.1f}')
    wargs = [loc['CONTRAST'], loc['RV'], loc['FWHM'], loc['MAXCPP']]
    WLOG(p, 'info', wmsg.format(*wargs))

    # ----------------------------------------------------------------------
    # rv ccf plot
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # Plot rv vs ccf (and rv vs ccf_fit)
        sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ----------------------------------------------------------------------
    # archive ccf to table
    # ----------------------------------------------------------------------
    # construct filename
    res_table_file = spirouConfig.Constants.CCF_TABLE_FILE(p)
    # log progress
    WLOG(p, '', 'Archiving CCF on file {0}'.format(res_table_file))
    # define column names
    columns = ['order', 'maxcpp', 'nlines', 'contrast', 'RV', 'sig']
    # define values for each column
    values = [
        loc['ORDERS'], loc['CCF_MAX'] / loc['PIX_PASSED_ALL'], loc['TOT_LINE'],
        np.abs(100 * loc['CCF_ALL_RESULTS'][:, 0]),
        loc['CCF_ALL_RESULTS'][:, 1], loc['CCF_ALL_RESULTS'][:, 2]
    ]
    # define the format for each column
    formats = ['2.0f', '5.0f', '4.0f', '4.1f', '9.4f', '7.4f']
    # construct astropy table from column names, values and formats
    table = spirouImage.MakeTable(p, columns, values, formats)
    # save table to file
    spirouImage.WriteTable(p, table, res_table_file, fmt='ascii')

    # ----------------------------------------------------------------------
    # archive ccf to fits file
    # ----------------------------------------------------------------------
    raw_infile = os.path.basename(p['E2DSFILE'])
    # construct folder and filename
    corfile, tag = spirouConfig.Constants.CCF_FITS_FILE(p)
    corfilename = os.path.split(corfile)[-1]
    # log that we are archiving the CCF on file
    WLOG(p, '', 'Archiving CCF on file {0}'.format(corfilename))
    # get constants from p
    mask = p['CCF_MASK']
    # if file exists remove it
    if os.path.exists(corfile):
        os.remove(corfile)
    # add the average ccf to the end of ccf
    data = np.vstack([loc['CCF'], loc['AVERAGE_CCF']])
    # add drs keys
    hdict = spirouImage.CopyOriginalKeys(hdr)
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='file',
                                     values=p['E2DSFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_INCCFMASK'],
                               value=p['CCF_MASK'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_INRV'], value=p['TARGET_RV'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_INWIDTH'], value=p['CCF_WIDTH'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_INSTEP'], value=p['CCF_STEP'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add CCF keys
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CTYPE'], value='km/s')
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_CRVAL'],
                               value=loc['RV_CCF'][0])
    # the rv step
    rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep)
    # add ccf stats
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_RV'],
                               value=loc['CCF_RES'][1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_RVC'], value=loc['RV'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_FWHM'], value=loc['FWHM'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_WMREF'],
                               value=loc['WMEANREF'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_CONTRAST'],
                               value=loc['CONTRAST'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_MAXCPP'],
                               value=loc['MAXCPP'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_MASK'], value=p['CCF_MASK'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_LINES'],
                               value=np.nansum(loc['TOT_LINE']))
    # add berv values
    hdict = spirouImage.AddKey(p, hdict, p['KW_BERV'], value=loc['BERV'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_BJD'], value=loc['BJD'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_BERV_MAX'],
                               value=loc['BERV_MAX'])
    # write image and add header keys (via hdict)
    p = spirouImage.WriteImage(p, corfile, data, hdict)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #30
0
def polar_products_header(p, loc, polardict, qc_params):
    """
        Function to construct header keywords to be saved in the polar products
        
        :param p: parameter dictionary, ParamDict containing constants
        
        :param loc: parameter dictionary, ParamDict containing data
        
        :param polardict: dictionary, ParamDict containing information on the
        input data

        :return hdict, loc: ParamDict, ParamDict: the header parameter
        dictionary and the updated loc parameter dictionary
        
    """
    
    # add keys from original header of base file
    hdict = spirouImage.CopyOriginalKeys(loc['HDR'])
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    # add in file
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'], value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='file',
                                     values=p['ARG_FILE_NAMES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add stokes parameter keyword to header
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_STOKES'],
                               value=loc['STOKES'])
    # add number of exposures parameter keyword to header
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_NEXP'],
                               value=loc['NEXPOSURES'])
    # add the polarimetry method parameter keyword to header
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_METHOD'],
                               value=loc['METHOD'])
    
    mjd_first, mjd_last = 0.0, 0.0
    meanbjd, tot_exptime = 0.0, 0.0
    bjd_first, bjd_last, exptime_last = 0.0, 0.0, 0.0
    berv_first, berv_last = 0.0, 0.0
    bervmaxs = []
    
    # loop over files in polar sequence to add keywords to header of products
    for filename in polardict.keys():
        # get this entry
        entry = polardict[filename]
        # get expnum, fiber, and header
        expnum, fiber, hdr = entry['exposure'], entry['fiber'], entry['hdr']
        # Add only times from fiber A
        if fiber == 'A':
            # calcualte total exposure time
            tot_exptime += float(hdr[p['KW_EXPTIME'][0]])
            # get values for BJDCEN calculation
            if expnum == 1:
                mjd_first = float(hdr[p['KW_ACQTIME'][0]])
                bjd_first = float(hdr[p['KW_BJD'][0]])
                berv_first = float(hdr[p['KW_BERV'][0]])
            elif expnum == loc['NEXPOSURES']:
                mjd_last = float(hdr[p['KW_ACQTIME'][0]])
                bjd_last = float(hdr[p['KW_BJD'][0]])
                berv_last = float(hdr[p['KW_BERV'][0]])
                exptime_last = float(hdr[p['KW_EXPTIME'][0]])
            meanbjd += float(hdr[p['KW_BJD'][0]])
            # add exposure file name
            fileexp = p['kw_POL_FILENAM{0}'.format(expnum)]
            hdict = spirouImage.AddKey(p, hdict, fileexp, value=hdr['FILENAME'])
            # add EXPTIME for each exposure
            exptimeexp = p['kw_POL_EXPTIME{0}'.format(expnum)]
            hdict = spirouImage.AddKey(p, hdict, exptimeexp,
                                       value=hdr[p['KW_EXPTIME'][0]])
            # add MJDATE for each exposure
            mjdexp = p['kw_POL_MJDATE{0}'.format(expnum)]
            hdict = spirouImage.AddKey(p, hdict, mjdexp,
                                       value=hdr[p['KW_ACQTIME'][0]])
            # add MJDEND for each exposure
            mjdendexp = p['kw_POL_MJDEND{0}'.format(expnum)]
            hdict = spirouImage.AddKey(p, hdict, mjdendexp,
                                       value=hdr[p['KW_MJDEND'][0]])
            # add BJD for each exposure
            bjdexp = p['kw_POL_BJD{0}'.format(expnum)]
            hdict = spirouImage.AddKey(p, hdict, bjdexp,
                                       value=hdr[p['KW_BJD'][0]])
            # add BERV for each exposure
            bervexp = p['kw_POL_BERV{0}'.format(expnum)]
            hdict = spirouImage.AddKey(p, hdict, bervexp,
                                       value=hdr[p['KW_BERV'][0]])
            # append BERVMAX value of each exposure
            bervmaxs.append(float(hdr[p['KW_BERV_MAX'][0]]))

    # add total exposure time parameter keyword to header
    hdict = spirouImage.AddKey(p, hdict, p['KW_POL_EXPTIME'], value=tot_exptime)
    # update existing EXPTIME keyword
    hdict = spirouImage.AddKey(p, hdict, p['KW_EXPTIME'], value=tot_exptime)

    # add elapsed time parameter keyword to header
    elapsed_time = (bjd_last - bjd_first) * 86400. + exptime_last
    hdict = spirouImage.AddKey(p, hdict, p['KW_POL_ELAPTIME'], value=elapsed_time)

    # calculate MJD at center of polarimetric sequence
    mjdcen = mjd_first + (mjd_last - mjd_first + exptime_last/86400.)/2.0
    # add central MJD
    hdict = spirouImage.AddKey(p, hdict, p['KW_POL_MJDCEN'], value=mjdcen)
    # update existing MJD keyword
    hdict = spirouImage.AddKey(p, hdict, p['KW_ACQTIME'], value=mjdcen)

    # calculate BJD at center of polarimetric sequence
    bjdcen = bjd_first + (bjd_last - bjd_first + exptime_last/86400.)/2.0
    # add central BJD
    hdict = spirouImage.AddKey(p, hdict, p['KW_POL_BJDCEN'], value=bjdcen)
    # update existing BJD keyword
    hdict = spirouImage.AddKey(p, hdict, p['KW_BJD'], value=bjdcen)

    # calculate BERV at center by linear interpolation
    berv_slope = (berv_last - berv_first) / (bjd_last - bjd_first)
    berv_intercept = berv_first - berv_slope * bjd_first
    loc['BERVCEN'] = berv_intercept + berv_slope * bjdcen
    
    # add central BERV
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_BERVCEN'], value=loc['BERVCEN'])
    # update existing BERV keyword
    hdict = spirouImage.AddKey(p, hdict, p['kw_BERV'], value=loc['BERVCEN'])
    
    # calculate maximum bervmax
    bervmax = np.max(bervmaxs)
    # update existing BERVMAX keyword
    hdict = spirouImage.AddKey(p, hdict, p['kw_BERV_MAX'], value=bervmax)

    # add mean BJD
    meanbjd = meanbjd / loc['NEXPOSURES']
    hdict = spirouImage.AddKey(p, hdict, p['kw_POL_MEANBJD'], value=meanbjd)

    return hdict, loc