def main(night_name=None, key=None, filename=None):
    """
    Manually add a file the the calibDB with "key"

    i.e. adds

    key night_name filename human-date unix-time

    to the calibDB and copies "filename" from .../reduced_dir/night_name/ into
    the calibDB

    Note filename must be in .../reduced_dir/night_name/
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with arguments being None (i.e. get from sys.argv)
    pos = [0, 1]
    fmt = [str, str]
    names = ['key', 'filename']
    call = [key, filename]
    # now get custom arguments
    customargs = spirouStartup.GetCustomFromRuntime(p,
                                                    pos,
                                                    fmt,
                                                    names,
                                                    calls=call)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='filename',
                                    mainfitsdir='reduced')
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    image, hdr, nbo, nx = spirouImage.ReadData(p, p['FITSFILENAME'])

    # ----------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ----------------------------------------------------------------------
    # set dark key
    keydb = p['KEY']
    # copy dark fits file to the calibDB folder
    spirouDB.PutCalibFile(p, p['FITSFILENAME'])
    # update the master calib DB file with new key
    spirouDB.UpdateCalibMaster(p, keydb, p['FILENAME'], hdr)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None,
         e2dsfile=None,
         mask=None,
         rv=None,
         width=None,
         step=None):
    """
    cal_CCF_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_CCF_E2DS_spirou.py [night_directory] [E2DSfilename] [mask] [RV]
                               [width] [step]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param e2dsfile: string, the E2DS file to use
    :param mask: string, the mask file to use (i.e. "UrNe.mas")
    :param rv: float, the target RV to use
    :param width: float, the CCF width to use
    :param step: float, the CCF step to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with arguments being None (i.e. get from sys.argv)
    pos = [0, 1, 2, 3, 4]
    fmt = [str, str, float, float, float]
    name = ['e2dsfile', 'ccf_mask', 'target_rv', 'ccf_width', 'ccf_step']
    lname = ['input_file', 'CCF_mask', 'RV', 'CCF_width', 'CCF_step']
    req = [True, True, True, False, False]
    call = [e2dsfile, mask, rv, width, step]
    call_priority = [True, True, True, True, True]
    # now get custom arguments
    customargs = spirouStartup.GetCustomFromRuntime(p, pos, fmt, name, req,
                                                    call, call_priority, lname)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='e2dsfile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, e2dsfilename = spirouStartup.SingleFileSetup(p, filename=p['E2DSFILE'])

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Deal with optional run time arguments
    # ----------------------------------------------------------------------
    # define default arguments (if ccf_width and ccf_step are not defined
    # in function call or run time arguments
    if 'ccf_width' not in p:
        p['CCF_WIDTH'] = p['IC_CCF_WIDTH']
    if 'ccf_step' not in p:
        p['CCF_STEP'] = p['IC_CCF_STEP']

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    e2ds, hdr, nbo, nx = spirouImage.ReadData(p, e2dsfilename)
    # add to loc
    loc = ParamDict()
    loc['E2DS'] = e2ds
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['E2DS', 'number_orders'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    # get obj name
    p = spirouImage.ReadParam(p, hdr, 'KW_OBJNAME', name='OBJNAME', dtype=str)

    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']

    # ----------------------------------------------------------------------
    #  Earth Velocity calculation
    # ----------------------------------------------------------------------
    if p['IC_IMAGE_TYPE'] == 'H4RG':
        p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr)

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # log
    WLOG(p, '', 'Reading wavelength solution ')
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    param_ll, wave_ll, wavefile, wsource = wout
    # save to storage
    loc['PARAM_LL'], loc['WAVE_LL'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    source = __NAME__ + '/main() + spirouTHORCA.GetWaveSolution()'
    loc.set_sources(['WAVE_LL', 'PARAM_LL', 'WAVEFILE', 'WSOURCE'], source)

    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # TODO We do not need to correct FLAT
    # log
    # WLOG(p, '', 'Reading Flat-Field ')

    # get flat
    # loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    # loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    # loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])

    # get blaze
    # p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hdr)
    p, blaze0 = spirouImage.ReadBlazeFile(p, hdr)

    # ----------------------------------------------------------------------
    # Preliminary set up = no flat, no blaze
    # ----------------------------------------------------------------------
    # reset flat to all ones
    # loc['FLAT'] = np.ones((nbo, nx))
    # set blaze to all ones (if not bug in correlbin !!!
    # TODO Check why Blaze makes bugs in correlbin
    loc['BLAZE'] = np.ones((nbo, nx))
    # set sources
    # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()')
    loc.set_sources(['blaze'], __NAME__ + '/main()')

    # Modification of E2DS array  with N.A.N
    if np.isnan(np.sum(e2ds)):
        WLOG(p, 'warning', 'NaN values found in e2ds, converting process')
        #  First basic approach Replacing N.A.N by zeros
        #    e2ds[np.isnan(e2ds)] = 0

        # Second approach replacing N.A.N by the Adjusted Blaze
        e2dsb = e2ds / blaze0
        for i in np.arange(len(e2ds)):
            with warnings.catch_warnings(record=True) as _:
                rap = np.mean(e2dsb[i][np.isfinite(e2dsb[i])])
            if np.isnan(rap):
                rap = 0.0
            e2ds[i] = np.where(np.isfinite(e2dsb[i]), e2ds[i], blaze0[i] * rap)

    # ----------------------------------------------------------------------
    # correct extracted image for flat
    # ----------------------------------------------------------------------
    # loc['E2DSFF'] = e2ds/loc['FLAT']
    # loc['E2DSFF'] = e2ds*1.
    loc['E2DSFF'] = e2ds
    loc.set_source('E2DSFF', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Compute photon noise uncertainty for reference file
    # ----------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['E2DS'], loc['WAVE_LL']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    # wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    # WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))
    wmsg = 'On fiber estimated RV uncertainty on spectrum is {0:.3f} m/s'
    WLOG(p, 'info', wmsg.format(wmeanref))
    # TEST N.A.N
    # loc['E2DSFF'][20:22,2000:3000]=np.nan
    # e2ds[20:30,1000:3000]=np.nan

    # ----------------------------------------------------------------------
    # Reference plots
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        sPlt.drift_plot_selected_wave_ref(p,
                                          loc,
                                          x=loc['WAVE_LL'],
                                          y=loc['E2DS'])
        # plot photon noise uncertainty
        sPlt.drift_plot_photon_uncertainty(p, loc)

    # ----------------------------------------------------------------------
    # Get template RV (from ccf_mask)
    # ----------------------------------------------------------------------
    # get the CCF mask from file (check location of mask)
    loc = spirouRV.GetCCFMask(p, loc)

    # check and deal with mask in microns (should be in nm)
    if np.mean(loc['LL_MASK_CTR']) < 2.0:
        loc['LL_MASK_CTR'] *= 1000.0
        loc['LL_MASK_D'] *= 1000.0

    # ----------------------------------------------------------------------
    # Do correlation
    # ----------------------------------------------------------------------
    # calculate and fit the CCF
    loc = spirouRV.Coravelation(p, loc)

    # ----------------------------------------------------------------------
    # Correlation stats
    # ----------------------------------------------------------------------
    # get the maximum number of orders to use
    nbmax = p['CCF_NUM_ORDERS_MAX']
    # get the average ccf
    loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
    # normalize the average ccf
    normalized_ccf = loc['AVERAGE_CCF'] / np.max(loc['AVERAGE_CCF'])
    # get the fit for the normalized average ccf
    ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                       loc['RV_CCF'],
                                       normalized_ccf,
                                       fit_type=0)
    loc['CCF_RES'] = ccf_res
    loc['CCF_FIT'] = ccf_fit
    # get the max cpp
    loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum(
        loc['PIX_PASSED_ALL'])
    # get the RV value from the normalised average ccf fit center location
    loc['RV'] = float(ccf_res[1])
    # get the contrast (ccf fit amplitude)
    loc['CONTRAST'] = np.abs(100 * ccf_res[0])
    # get the FWHM value
    loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm()

    # ----------------------------------------------------------------------
    # set the source
    keys = [
        'average_ccf', 'maxcpp', 'rv', 'contrast', 'fwhm', 'ccf_res', 'ccf_fit'
    ]
    loc.set_sources(keys, __NAME__ + '/main()')
    # ----------------------------------------------------------------------
    # log the stats
    wmsg = ('Correlation: C={0:.1f}[%] RV={1:.5f}[km/s] '
            'FWHM={2:.4f}[km/s] maxcpp={3:.1f}')
    wargs = [loc['CONTRAST'], loc['RV'], loc['FWHM'], loc['MAXCPP']]
    WLOG(p, 'info', wmsg.format(*wargs))

    # ----------------------------------------------------------------------
    # rv ccf plot
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # Plot rv vs ccf (and rv vs ccf_fit)
        sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ----------------------------------------------------------------------
    # archive ccf to table
    # ----------------------------------------------------------------------
    # construct filename
    res_table_file = spirouConfig.Constants.CCF_TABLE_FILE(p)
    # log progress
    WLOG(p, '', 'Archiving CCF on file {0}'.format(res_table_file))
    # define column names
    columns = ['order', 'maxcpp', 'nlines', 'contrast', 'RV', 'sig']
    # define values for each column
    values = [
        loc['ORDERS'], loc['CCF_MAX'] / loc['PIX_PASSED_ALL'], loc['TOT_LINE'],
        np.abs(100 * loc['CCF_ALL_RESULTS'][:, 0]),
        loc['CCF_ALL_RESULTS'][:, 1], loc['CCF_ALL_RESULTS'][:, 2]
    ]
    # define the format for each column
    formats = ['2.0f', '5.0f', '4.0f', '4.1f', '9.4f', '7.4f']
    # construct astropy table from column names, values and formats
    table = spirouImage.MakeTable(p, columns, values, formats)
    # save table to file
    spirouImage.WriteTable(p, table, res_table_file, fmt='ascii')

    # ----------------------------------------------------------------------
    # archive ccf to fits file
    # ----------------------------------------------------------------------
    raw_infile = os.path.basename(p['E2DSFILE'])
    # construct folder and filename
    corfile, tag = spirouConfig.Constants.CCF_FITS_FILE(p)
    corfilename = os.path.split(corfile)[-1]
    # log that we are archiving the CCF on file
    WLOG(p, '', 'Archiving CCF on file {0}'.format(corfilename))
    # get constants from p
    mask = p['CCF_MASK']
    # if file exists remove it
    if os.path.exists(corfile):
        os.remove(corfile)
    # add the average ccf to the end of ccf
    data = np.vstack([loc['CCF'], loc['AVERAGE_CCF']])
    # add drs keys
    hdict = spirouImage.CopyOriginalKeys(hdr)
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='file',
                                     values=p['E2DSFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_INCCFMASK'],
                               value=p['CCF_MASK'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_INRV'], value=p['TARGET_RV'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_INWIDTH'], value=p['CCF_WIDTH'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_INSTEP'], value=p['CCF_STEP'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add CCF keys
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CTYPE'], value='km/s')
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_CRVAL'],
                               value=loc['RV_CCF'][0])
    # the rv step
    rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep)
    # add ccf stats
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_RV'],
                               value=loc['CCF_RES'][1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_RVC'], value=loc['RV'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_FWHM'], value=loc['FWHM'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_WMREF'],
                               value=loc['WMEANREF'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_CONTRAST'],
                               value=loc['CONTRAST'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_MAXCPP'],
                               value=loc['MAXCPP'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_MASK'], value=p['CCF_MASK'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_LINES'],
                               value=np.nansum(loc['TOT_LINE']))
    # add berv values
    hdict = spirouImage.AddKey(p, hdict, p['KW_BERV'], value=loc['BERV'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_BJD'], value=loc['BJD'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_BERV_MAX'],
                               value=loc['BERV_MAX'])
    # write image and add header keys (via hdict)
    p = spirouImage.WriteImage(p, corfile, data, hdict)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, reffile=None):
    """
    cal_DRIFTPEAK_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_DRIFTPEAK_E2DS_spirou.py [night_directory] [reffile]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param reffile: string, the reference file to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with reference file being None (i.e. get from sys.argv)
    if reffile is None:
        customargs = spirouStartup.GetCustomFromRuntime(
            p, [0], [str], ['reffile'])
    else:
        customargs = dict(reffile=reffile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='reffile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE'])
    p['REFFILENAME'] = reffilename
    p.set_source('REFFILENAME', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    speref, hdr, nbo, nx = spirouImage.ReadData(p, p['REFFILENAME'])
    # add to loc
    loc = ParamDict()
    loc['SPEREF'] = speref
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['SPEREF', 'NUMBER_ORDERS'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get lamp type
    # ----------------------------------------------------------------------
    # get lamp type
    if p['KW_EXT_TYPE'][0] in hdr:
        ext_type = hdr[p['KW_EXT_TYPE'][0]]
        drift_types = p['DRIFT_PEAK_ALLOWED_TYPES'].keys()
        found = False
        for kind in drift_types:
            if ext_type == kind:
                loc['LAMP'] = p['DRIFT_PEAK_ALLOWED_TYPES'][kind]
                found = True
        if not found:
            eargs1 = [p['KW_EXT_TYPE'][0], ' or '.join(drift_types)]
            emsg1 = (
                'Wrong type of image for Drift, header key "{0}" should be'
                '{1}'.format(*eargs1))
            emsg2 = '\tPlease check DRIFT_PEAK_ALLOWED_TYPES'
            WLOG(p, 'error', [emsg1, emsg2])
    else:
        emsg = 'Header key = "{0}" missing from file {1}'
        eargs = [p['KW_EXT_TYPE'][0], p['REFFILENAME']]
        WLOG(p, 'error', emsg.format(*eargs))
    loc.set_source('LAMP', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    source = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    _, loc['WAVE'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVE', 'WAVEFILE', 'WSOURCE'], source)

    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # get flat
    p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])
    # correct for flat file
    loc['SPEREF'] = loc['SPEREF'] / loc['FLAT']

    # ----------------------------------------------------------------------
    # Background correction
    # ----------------------------------------------------------------------
    # test whether we want to subtract background
    if p['IC_DRIFT_BACK_CORR']:
        # Loop around the orders
        for order_num in range(loc['NUMBER_ORDERS']):
            # get the box size from constants
            bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
            # Measurethe min and max flux
            miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num],
                                                  bsize)
            # subtract off the background (miny)
            loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny

    # ----------------------------------------------------------------------
    # Identify FP peaks in reference file
    # ----------------------------------------------------------------------
    # log that we are identifying peaks
    wmsg = 'Identification of lines in reference file: {0}'
    WLOG(p, '', wmsg.format(p['REFFILE']))
    # get the position of FP peaks from reference file
    loc = spirouRV.CreateDriftFile(p, loc)

    # ----------------------------------------------------------------------
    # Removal of suspiciously wide FP lines
    # ----------------------------------------------------------------------
    loc = spirouRV.RemoveWidePeaks(p, loc)

    # ----------------------------------------------------------------------
    # Get reference drift
    # ----------------------------------------------------------------------
    # are we using gaussfit?
    gaussfit = p['DRIFT_PEAK_GETDRIFT_GAUSSFIT']
    # get drift
    loc['XREF'] = spirouRV.GetDrift(p,
                                    loc['SPEREF'],
                                    loc['ORDPEAK'],
                                    loc['XPEAK'],
                                    gaussfit=gaussfit)
    loc.set_source('XREF', __NAME__ + '/main()')
    # remove any drifts that are zero (i.e. peak not measured
    loc = spirouRV.RemoveZeroPeaks(p, loc)

    # ------------------------------------------------------------------
    # Reference plots
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        sPlt.drift_plot_selected_wave_ref(p, loc)

    # ------------------------------------------------------------------
    # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from
    #    ref file
    # ------------------------------------------------------------------
    # get files
    listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr)
    # get the number of files
    nfiles = len(listfiles)
    # Log the number of files found
    wmsgs = [
        'Number of files found on directory = {0}'.format(nfiles),
        '\tExtensions allowed:'
    ]
    for listtype in listtypes:
        wmsgs.append('\t\t - {0}'.format(listtype))
    WLOG(p, 'info', wmsgs)

    # ------------------------------------------------------------------
    # Set up Extract storage for all files
    # ------------------------------------------------------------------
    # decide whether we need to skip (for large number of files)
    if len(listfiles) >= p['DRIFT_NLARGE']:
        skip = p['DRIFT_PEAK_FILE_SKIP']
        nfiles = int(nfiles / skip)
    else:
        skip = 1
    # set up storage
    loc['DRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['DRIFT_LEFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['DRIFT_RIGHT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['ERRDRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['DELTATIME'] = np.zeros(nfiles)
    loc['MEANRV'] = np.zeros(nfiles)
    loc['MEANRV_LEFT'] = np.zeros(nfiles)
    loc['MEANRV_RIGHT'] = np.zeros(nfiles)
    loc['MERRDRIFT'] = np.zeros(nfiles)
    loc['FLUXRATIO'] = np.zeros(nfiles)
    # add sources
    source = __NAME__ + '/main()'
    keys = [
        'drift', 'drift_left', 'drift_right', 'errdrift', 'deltatime',
        'meanrv', 'meanrv_left', 'meanrv_right', 'merrdrift', 'fluxratio'
    ]
    loc.set_sources(keys, source)

    # ------------------------------------------------------------------
    # Loop around all files: correct for dark, reshape, extract and
    #     calculate dvrms and meanpond
    # ------------------------------------------------------------------
    # get the maximum number of orders to use
    nomin = p['IC_DRIFT_PEAK_N_ORDER_MIN']
    nomax = p['IC_DRIFT_PEAK_N_ORDER_MAX']
    # loop around files
    for i_it in range(nfiles):
        # get file for this iteration
        fpfile = listfiles[::skip][i_it]
        # Log the file we are reading
        wmsg = 'Reading file {0}'
        WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1]))
        # ------------------------------------------------------------------
        # read e2ds files and get timestamp
        # ------------------------------------------------------------------
        # read data
        rout = spirouImage.ReadData(p, filename=fpfile, log=False)
        loc['SPE'], hdri, nxi, nyi = rout
        # apply flat
        loc['SPE'] = loc['SPE'] / loc['FLAT']
        # get acqtime
        bjdspe = spirouImage.GetAcqTime(p,
                                        hdri,
                                        name='acqtime',
                                        return_value=1,
                                        kind='julian')
        # ----------------------------------------------------------------------
        # Background correction
        # ----------------------------------------------------------------------
        # test whether we want to subtract background
        if p['IC_DRIFT_BACK_CORR']:
            # Loop around the orders
            for order_num in range(loc['NUMBER_ORDERS']):
                # get the box size from constants
                bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
                # Measurethe min and max flux
                miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num],
                                                      bsize)
                # subtract off the background (miny)
                loc['SPE'][order_num] = loc['SPE'][order_num] - miny

        # ------------------------------------------------------------------
        # calculate flux ratio
        # ------------------------------------------------------------------
        sorder = p['IC_DRIFT_ORDER_PLOT']
        fratio = np.nansum(loc['SPE'][sorder]) / np.nansum(
            loc['SPEREF'][sorder])
        loc['FLUXRATIO'][i_it] = fratio
        # ------------------------------------------------------------------
        # Calculate delta time
        # ------------------------------------------------------------------
        # calculate the time from reference (in hours)
        loc['DELTATIME'][i_it] = (bjdspe - bjdref) * 24
        # ------------------------------------------------------------------
        # Calculate PearsonR coefficient
        # ------------------------------------------------------------------
        pargs = [loc['NUMBER_ORDERS'], loc['SPE'], loc['SPEREF']]
        correlation_coeffs = spirouRV.PearsonRtest(*pargs)
        # ----------------------------------------------------------------------
        # Get drift with comparison to the reference image
        # ----------------------------------------------------------------------
        # only calculate drift if the correlation between orders and
        #   reference file is above threshold
        prcut = p['DRIFT_PEAK_PEARSONR_CUT']
        if np.min(correlation_coeffs[nomin:nomax]) > prcut:
            # get drifts for each order
            dargs = [p, loc['SPE'], loc['ORDPEAK'], loc['XREF']]
            x = spirouRV.GetDrift(*dargs, gaussfit=gaussfit)
            # get delta v
            loc['DV'] = (x - loc['XREF']) * loc['VRPEAK']
            # sigma clip
            loc = spirouRV.SigmaClip(loc, sigma=p['DRIFT_PEAK_SIGMACLIP'])
            # work out median drifts per order
            loc = spirouRV.DriftPerOrder(loc, i_it)
            # work out mean drift across all orders
            loc = spirouRV.DriftAllOrders(p, loc, i_it, nomin, nomax)
            # log the mean drift
            wmsg = ('Time from ref= {0:.2f} h - Flux Ratio= {1:.3f} '
                    '- Drift mean= {2:.2f} +- {3:.2f} m/s')
            wargs = [
                loc['DELTATIME'][i_it], loc['FLUXRATIO'][i_it],
                loc['MEANRV'][i_it], loc['MERRDRIFT'][i_it]
            ]
            WLOG(p, 'info', wmsg.format(*wargs))
        # else we can't use this extract
        else:
            if p['DRS_PLOT'] > 0:
                # start interactive session if needed
                sPlt.plt.ioff()
                # plot comparison between spe and ref
                sPlt.drift_plot_correlation_comp(p, loc, correlation_coeffs,
                                                 i_it)
                sPlt.plt.show()
                sPlt.plt.close()
                # turn interactive plotting back on
                sPlt.plt.ion()
            # log that we cannot use this extraction
            wmsg1 = 'The correlation of some orders compared to the template is'
            wmsg2 = '   < {0}, something went wrong in the extract.'
            WLOG(p, 'warning', wmsg1)
            WLOG(p, 'warning', wmsg2.format(prcut))
    # ------------------------------------------------------------------
    # peak to peak drift
    driftptp = np.max(loc['MEANRV']) - np.min(loc['MEANRV'])
    driftrms = np.std(loc['MEANRV'])
    # log th etotal drift peak-to-peak and rms
    wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in '
            '{2:.2f} hour')
    wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])]
    WLOG(p, '', wmsg.format(*wargs))

    # ------------------------------------------------------------------
    # Plot of mean drift
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot delta time against median drift
        sPlt.drift_peak_plot_dtime_against_drift(p, loc)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Save drift values to file
    # ------------------------------------------------------------------
    # get raw input file name
    raw_infile = os.path.basename(p['REFFILE'])
    # construct filename
    driftfits, tag = spirouConfig.Constants.DRIFTPEAK_E2DS_FITS_FILE(p)
    driftfitsname = os.path.split(driftfits)[-1]
    # log that we are saving drift values
    wmsg = 'Saving drift values of Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname))
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile)
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # save drift values
    p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict)

    # ------------------------------------------------------------------
    # print .tbl result
    # ------------------------------------------------------------------
    # construct filename
    drifttbl = spirouConfig.Constants.DRIFTPEAK_E2DS_TBL_FILE(p)
    drifttblname = os.path.split(drifttbl)[-1]
    # construct and write table
    columnnames = ['time', 'drift', 'drifterr', 'drift_left', 'drift_right']
    columnformats = ['7.4f', '6.2f', '6.3f', '6.2f', '6.2f']
    columnvalues = [
        loc['DELTATIME'], loc['MEANRV'], loc['MERRDRIFT'], loc['MEANRV_LEFT'],
        loc['MEANRV_RIGHT']
    ]
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    wmsg = 'Average Drift saved in {0} Saved '
    WLOG(p, '', wmsg.format(drifttblname))
    spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst')

    # ------------------------------------------------------------------
    # Plot amp and llpeak
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] and p['DRIFT_PEAK_PLOT_LINE_LOG_AMP']:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot delta time against median drift
        sPlt.drift_peak_plot_llpeak_amps(p, loc)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #4
0
def main(night_name=None, fpfile=None, hcfiles=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    if hcfiles is None or fpfile is None:
        names, types = ['fpfile', 'hcfiles'], [str, str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1],
                                                        types,
                                                        names,
                                                        last_multi=True)
    else:
        customargs = dict(hcfiles=hcfiles, fpfile=fpfile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsdir='reduced',
                                    mainfitsfile='hcfiles')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, fpfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['FPFILE'])
    fiber1 = str(p['FIBER'])
    p, hcfilenames = spirouStartup.MultiFileSetup(p, files=p['HCFILES'])
    fiber2 = str(p['FIBER'])
    # set the hcfilename to the first hcfilenames
    hcfitsfilename = hcfilenames[0]

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Have to check that the fibers match
    # ----------------------------------------------------------------------
    if fiber1 == fiber2:
        p['FIBER'] = fiber1
        fsource = __NAME__ + '/main() & spirouStartup.GetFiberType()'
        p.set_source('FIBER', fsource)
    else:
        emsg = 'Fiber not matching for {0} and {1}, should be the same'
        eargs = [hcfitsfilename, fpfitsfilename]
        WLOG(p, 'error', emsg.format(*eargs))
    # set the fiber type
    p['FIB_TYP'] = [p['FIBER']]
    p.set_source('FIB_TYP', __NAME__ + '/main()')

    # set find line mode
    find_lines_mode = p['HC_FIND_LINES_MODE']

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read and combine all HC files except the first (fpfitsfilename)
    rargs = [p, 'add', hcfitsfilename, hcfilenames[1:]]
    p, hcdata, hchdr = spirouImage.ReadImageAndCombine(*rargs)
    # read first file (fpfitsfilename)
    fpdata, fphdr, _, _ = spirouImage.ReadImage(p, fpfitsfilename)

    # add data and hdr to loc
    loc = ParamDict()
    loc['HCDATA'], loc['HCHDR'] = hcdata, hchdr
    loc['FPDATA'], loc['FPHDR'] = fpdata, fphdr
    # set the source
    sources = ['HCDATA', 'HCHDR']
    loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()')
    sources = ['FPDATA', 'FPHDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hchdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hchdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hchdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hchdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # get lamp parameters
    p = spirouTHORCA.GetLampParams(p, hchdr)

    # ----------------------------------------------------------------------
    # Obtain the flat
    # ----------------------------------------------------------------------
    # get the flat
    p, loc = spirouFLAT.GetFlat(p, loc, hchdr)

    # ----------------------------------------------------------------------
    # Read blaze
    # ----------------------------------------------------------------------
    # get tilts
    p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hchdr)
    loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile')

    # correct the data with the flat
    # TODO: Should this be used?
    # log
    # WLOG(p, '', 'Applying flat correction')
    # loc['HCDATA'] = loc['HCDATA']/loc['FLAT']
    # loc['FPDATA'] = loc['FPDATA']/loc['FLAT']

    # ----------------------------------------------------------------------
    # Start plotting session
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive plot
        sPlt.start_interactive_session(p)

    # ----------------------------------------------------------------------
    # loop around fiber type
    # ----------------------------------------------------------------------
    for fiber in p['FIB_TYP']:
        # set fiber type for inside loop
        p['FIBER'] = fiber

        # ------------------------------------------------------------------
        # Instrumental drift computation (if previous solution exists)
        # ------------------------------------------------------------------
        # get key
        keydb = 'HCREF_{0}'.format(p['FIBER'])
        # check for key in calibDB
        if keydb in p['CALIBDB'].keys():
            # log process
            wmsg = ('Doing Instrumental drift computation from previous '
                    'calibration')
            WLOG(p, '', wmsg)
            # calculate instrument drift
            loc = spirouTHORCA.CalcInstrumentDrift(p, loc)

        # ------------------------------------------------------------------
        # Wave solution
        # ------------------------------------------------------------------
        # log message for loop
        wmsg = 'Processing Wavelength Calibration for Fiber {0}'
        WLOG(p, 'info', wmsg.format(p['FIBER']))

        # ------------------------------------------------------------------
        # Part 1 of cal_HC
        # ------------------------------------------------------------------
        p, loc = cal_HC_E2DS_spirou.part1(p, loc, mode=find_lines_mode)

        # ------------------------------------------------------------------
        # FP solution
        # ------------------------------------------------------------------
        # log message
        wmsg = 'Calculating FP wave solution'
        WLOG(p, '', wmsg)
        # calculate FP wave solution
        # spirouTHORCA.FPWaveSolution(p, loc, mode=find_lines_mode)
        spirouTHORCA.FPWaveSolutionNew(p, loc)

        # ------------------------------------------------------------------
        # FP solution plots
        # ------------------------------------------------------------------
        if p['DRS_PLOT'] > 0:
            # Plot the FP extracted spectrum against wavelength solution
            sPlt.wave_plot_final_fp_order(p, loc, iteration=1)
            # Plot the measured FP cavity width offset against line number
            sPlt.wave_local_width_offset_plot(p, loc)
            # Plot the FP line wavelength residuals
            sPlt.wave_fp_wavelength_residuals(p, loc)

        # ------------------------------------------------------------------
        # Part 2 of cal_HC
        # ------------------------------------------------------------------
        # set params for part2
        p['QC_RMS_LITTROW_MAX'] = p['QC_WAVE_RMS_LITTROW_MAX']
        p['QC_DEV_LITTROW_MAX'] = p['QC_WAVE_DEV_LITTROW_MAX']

        p['IC_HC_N_ORD_START_2'] = min(p['IC_HC_N_ORD_START_2'],
                                       p['IC_FP_N_ORD_START'])
        p['IC_HC_N_ORD_FINAL_2'] = max(p['IC_HC_N_ORD_FINAL_2'],
                                       p['IC_FP_N_ORD_FINAL'])

        # run part 2
        # p, loc = part2test(p, loc)
        p, loc = cal_HC_E2DS_spirou.part2(p, loc)

    # ----------------------------------------------------------------------
    # End plotting session
    # ----------------------------------------------------------------------
    # end interactive session
    sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
# =============================================================================
# Main code here
if __name__ == "__main__":
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    customargs = spirouStartup.GetCustomFromRuntime(p, [0], [str], ['reffile'],
                                                    [True], [reffile])
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='reffile',
                                    mainfitsdir='reduced')
    p['FIBER'] = 'AB'
    # load the calibDB
    p = spirouStartup.LoadCalibDB(p)

    # load ref spectrum
    e2ds, hdr, nx, ny = spirouImage.ReadImage(p)
    # get blaze
    blaze = spirouImage.ReadBlazeFile(p)
    # get wave image
    _, wave, _ = spirouImage.GetWaveSolution(p, hdr=hdr, return_wavemap=True)

    # get files
    files = os.listdir('.')
    fluxes = []
    times = []

    fig1, frame1 = plt.subplots(ncols=1, nrows=1)
def main(night_name=None, hcfile=None, fpfiles=None):
    """
    cal_SLIT_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_SLIT_spirou.py [night_directory] [files]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    if hcfile is None or fpfiles is None:
        names, types = ['hcfile', 'fpfiles'], [str, str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1],
                                                        types,
                                                        names,
                                                        last_multi=True)
    else:
        customargs = dict(hcfile=hcfile, fpfiles=fpfiles)

    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='fpfiles')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, hcfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['HCFILE'])
    p, fpfilenames = spirouStartup.MultiFileSetup(p, files=p['FPFILES'])
    # set fiber (it doesn't matter with the 2D image but we need this to get
    # the lamp type for FPFILES and HCFILES, AB == C
    p['FIBER'] = 'AB'
    p['FIB_TYP'] = [p['FIBER']]
    fsource = __NAME__ + '/main()'
    p.set_sources(['FIBER', 'FIB_TYP'], fsource)
    # set the hcfilename to the first hcfilenames
    fpfitsfilename = fpfilenames[0]

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # add a force plot off
    p['PLOT_PER_ORDER'] = PLOT_PER_ORDER
    p.set_source('PLOT_PER_ORDER', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Read FP and HC files
    # ----------------------------------------------------------------------
    # read and combine all FP files except the first (fpfitsfilename)
    rargs = [p, 'add', fpfitsfilename, fpfilenames[1:]]
    p, fpdata, fphdr = spirouImage.ReadImageAndCombine(*rargs)
    # read first file (hcfitsfilename)
    hcdata, hchdr, _, _ = spirouImage.ReadImage(p, hcfitsfilename)

    # add data and hdr to loc
    loc = ParamDict()
    loc['HCDATA'], loc['HCHDR'] = hcdata, hchdr
    loc['FPDATA'], loc['FPHDR'] = fpdata, fphdr
    # set the source
    sources = ['HCDATA', 'HCHDR']
    loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()')
    sources = ['FPDATA', 'FPHDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')

    # ---------------------------------------------------------------------
    # fix for un-preprocessed files
    # ----------------------------------------------------------------------
    hcdata = spirouImage.FixNonPreProcess(p, hcdata)
    fpdata = spirouImage.FixNonPreProcess(p, fpdata)

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, fphdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, fphdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, fphdr, name='gain')
    # get lamp parameters
    p = spirouTHORCA.GetLampParams(p, hchdr)

    # ----------------------------------------------------------------------
    # Correction of DARK
    # ----------------------------------------------------------------------
    # p, hcdatac = spirouImage.CorrectForDark(p, hcdata, hchdr)
    hcdatac = hcdata
    p['DARKFILE'] = 'None'

    # p, fpdatac = spirouImage.CorrectForDark(p, fpdata, fphdr)
    fpdatac = fpdata

    # ----------------------------------------------------------------------
    # Resize hc data
    # ----------------------------------------------------------------------
    # rotate the image and convert from ADU/s to e-
    hcdata = spirouImage.ConvertToE(spirouImage.FlipImage(p, hcdatac), p=p)
    # convert NaN to zeros
    hcdata0 = np.where(~np.isfinite(hcdata), np.zeros_like(hcdata), hcdata)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    hcdata2 = spirouImage.ResizeImage(p, hcdata0, **bkwargs)
    # log change in data size
    WLOG(p, '', ('HC Image format changed to '
                 '{0}x{1}').format(*hcdata2.shape))

    # ----------------------------------------------------------------------
    # Resize fp data
    # ----------------------------------------------------------------------
    # rotate the image and convert from ADU/s to e-
    fpdata = spirouImage.ConvertToE(spirouImage.FlipImage(p, fpdatac), p=p)
    # convert NaN to zeros
    fpdata0 = np.where(~np.isfinite(fpdata), np.zeros_like(fpdata), fpdata)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    fpdata2 = spirouImage.ResizeImage(p, fpdata0, **bkwargs)
    # log change in data size
    WLOG(p, '', ('FP Image format changed to '
                 '{0}x{1}').format(*fpdata2.shape))

    # ----------------------------------------------------------------------
    # Correct for the BADPIX mask (set all bad pixels to zero)
    # ----------------------------------------------------------------------
    # p, hcdata2 = spirouImage.CorrectForBadPix(p, hcdata2, hchdr)
    # p, fpdata2 = spirouImage.CorrectForBadPix(p, fpdata2, fphdr)
    p['BADPFILE'] = 'None'

    # save data to loc
    loc['HCDATA'] = hcdata2
    loc.set_source('HCDATA', __NAME__ + '/main()')

    # save data to loc
    loc['FPDATA'] = fpdata2
    loc.set_source('FPDATA', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Log the number of dead pixels
    # ----------------------------------------------------------------------
    # get the number of bad pixels
    n_bad_pix = np.nansum(hcdata2 <= 0)
    n_bad_pix_frac = n_bad_pix * 100 / np.product(hcdata2.shape)
    # Log number
    wmsg = 'Nb HC dead pixels = {0} / {1:.2f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # ----------------------------------------------------------------------
    # Log the number of dead pixels
    # ----------------------------------------------------------------------
    # get the number of bad pixels
    n_bad_pix = np.nansum(fpdata2 <= 0)
    n_bad_pix_frac = n_bad_pix * 100 / np.product(fpdata2.shape)
    # Log number
    wmsg = 'Nb FP dead pixels = {0} / {1:.2f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # ------------------------------------------------------------------
    # Get localisation coefficients
    # ------------------------------------------------------------------
    # original there is a loop but it is not used --> removed
    p = spirouImage.FiberParams(p, p['FIBER'], merge=True)
    # get localisation fit coefficients
    p, loc = spirouLOCOR.GetCoeffs(p, fphdr, loc)

    # ------------------------------------------------------------------
    # Get master wave solution map
    # ------------------------------------------------------------------
    # get master wave map
    masterwavefile = spirouDB.GetDatabaseMasterWave(p)
    # log process
    wmsg1 = 'Getting master wavelength grid'
    wmsg2 = '\tFile = {0}'.format(os.path.basename(masterwavefile))
    WLOG(p, '', [wmsg1, wmsg2])
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # read master wave map
    wout = spirouImage.GetWaveSolution(p,
                                       filename=masterwavefile,
                                       return_wavemap=True,
                                       quiet=True,
                                       return_header=True,
                                       fiber=wave_fiber)
    loc['MASTERWAVEP'], loc['MASTERWAVE'] = wout[:2]
    loc['MASTERWAVEHDR'], loc['WSOURCE'] = wout[2:]
    # set sources
    wsource = ['MASTERWAVEP', 'MASTERWAVE', 'MASTERWAVEHDR']
    loc.set_sources(wsource, 'spirouImage.GetWaveSolution()')

    # ----------------------------------------------------------------------
    # Read UNe solution
    # ----------------------------------------------------------------------
    wave_u_ne, amp_u_ne = spirouImage.ReadLineList(p)
    loc['LL_LINE'], loc['AMPL_LINE'] = wave_u_ne, amp_u_ne
    source = __NAME__ + '.main() + spirouImage.ReadLineList()'
    loc.set_sources(['LL_LINE', 'AMPL_LINE'], source)

    # ----------------------------------------------------------------------
    # Read cavity length file
    # ----------------------------------------------------------------------
    loc['CAVITY_LEN_COEFFS'] = spirouImage.ReadCavityLength(p)
    source = __NAME__ + '.main() + spirouImage.ReadCavityLength()'
    loc.set_source('CAVITY_LEN_COEFFS', source)

    # ------------------------------------------------------------------
    # Calculate shape map
    # ------------------------------------------------------------------
    loc = spirouImage.GetShapeMap(p, loc)

    # ------------------------------------------------------------------
    # Plotting
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plots setup: start interactive plot
        sPlt.start_interactive_session(p)
        # plot the shape process for one order
        sPlt.slit_shape_angle_plot(p, loc)
        # end interactive section
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # TODO: Decide on some quality control criteria?
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Writing DXMAP to file
    # ------------------------------------------------------------------
    # get the raw tilt file name
    raw_shape_file = os.path.basename(p['FITSFILENAME'])
    # construct file name and path
    shapefits, tag = spirouConfig.Constants.SLIT_XSHAPE_FILE(p)
    shapefitsname = os.path.basename(shapefits)
    # Log that we are saving tilt file
    wmsg = 'Saving shape information in file: {0}'
    WLOG(p, '', wmsg.format(shapefitsname))
    # Copy keys from fits file
    hdict = spirouImage.CopyOriginalKeys(fphdr)
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='hcfile',
                                     values=p['HCFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE2'],
                                     dim1name='fpfile',
                                     values=p['FPFILES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # write tilt file to file
    p = spirouImage.WriteImage(p, shapefits, loc['DXMAP'], hdict)

    # ------------------------------------------------------------------
    # Writing sanity check files
    # ------------------------------------------------------------------
    if p['SHAPE_DEBUG_OUTPUTS']:
        # log
        WLOG(p, '', 'Saving debug sanity check files')
        # construct file names
        input_fp_file, tag1 = spirouConfig.Constants.SLIT_SHAPE_IN_FP_FILE(p)
        output_fp_file, tag2 = spirouConfig.Constants.SLIT_SHAPE_OUT_FP_FILE(p)
        input_hc_file, tag3 = spirouConfig.Constants.SLIT_SHAPE_IN_HC_FILE(p)
        output_hc_file, tag4 = spirouConfig.Constants.SLIT_SHAPE_OUT_HC_FILE(p)
        overlap_file, tag5 = spirouConfig.Constants.SLIT_SHAPE_OVERLAP_FILE(p)
        # write input fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        p = spirouImage.WriteImage(p, input_fp_file, loc['FPDATA'], hdict)
        # write output fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
        p = spirouImage.WriteImage(p, output_fp_file, loc['FPDATA2'], hdict)
        # write input fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)
        p = spirouImage.WriteImage(p, input_hc_file, loc['HCDATA'], hdict)
        # write output fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
        p = spirouImage.WriteImage(p, output_hc_file, loc['HCDATA2'], hdict)
        # write overlap file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag5)
        p = spirouImage.WriteImage(p, overlap_file, loc['ORDER_OVERLAP'],
                                   hdict)

    # ----------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ----------------------------------------------------------------------
    if p['QC']:
        keydb = 'SHAPE'
        # copy shape file to the calibDB folder
        spirouDB.PutCalibFile(p, shapefits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, shapefitsname, fphdr)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, files=None):
    """
    cal_shape_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_shape_spirou.py [night_directory] [fitsfilename]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p, night_name, files)
    p = spirouStartup.InitialFileSetup(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    p, data, hdr = spirouImage.ReadImageAndCombine(p, framemath='add')

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Get basic image properties for FP file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')

    # ----------------------------------------------------------------------
    # Correction of reference FP
    # ----------------------------------------------------------------------
    # set the number of frames
    p['NBFRAMES'] = 1
    p.set_source('NBFRAMES', __NAME__ + '.main()')
    # Correction of DARK
    p, datac = spirouImage.CorrectForDark(p, data, hdr)
    # Resize hc data
    # rotate the image and convert from ADU/s to e-
    data = spirouImage.ConvertToE(spirouImage.FlipImage(p, datac), p=p)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'], xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'], yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    data1 = spirouImage.ResizeImage(p, data, **bkwargs)
    # log change in data size
    WLOG(p, '',
         ('FPref Image format changed to {0}x{1}').format(*data1.shape))
    # Correct for the BADPIX mask (set all bad pixels to zero)
    bargs = [p, data1, hdr]
    p, data1 = spirouImage.CorrectForBadPix(*bargs)
    p, badpixmask = spirouImage.CorrectForBadPix(*bargs, return_map=True)
    # log progress
    WLOG(p, '', 'Cleaning FPref hot pixels')
    # correct hot pixels
    data1 = spirouEXTOR.CleanHotpix(data1, badpixmask)
    # Log the number of dead pixels
    # get the number of bad pixels
    with warnings.catch_warnings(record=True) as _:
        n_bad_pix = np.nansum(data1 <= 0)
        n_bad_pix_frac = n_bad_pix * 100 / np.product(data1.shape)
    # Log number
    wmsg = 'Nb FPref dead pixels = {0} / {1:.2f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # ----------------------------------------------------------------------
    # Get master FP file
    # ----------------------------------------------------------------------
    # log progress
    WLOG(p, '', 'Getting FP Master from calibDB')
    # get master fp
    p, masterfp = spirouImage.GetFPMaster(p, hdr)

    # ----------------------------------------------------------------------
    # Get transform parameters
    # ----------------------------------------------------------------------
    # log progress
    wargs = [p['ARG_FILE_NAMES'][0], p['FPMASTERFILE']]
    WLOG(p, 'info', 'Calculating transforming for {0} onto {1}'.format(*wargs))

    gout = spirouImage.GetLinearTransformParams(p, masterfp, data1)
    transform, xres, yres = gout

    # ------------------------------------------------------------------
    # Need to straighten the fp data for debug
    # ------------------------------------------------------------------
    p, shapem_x = spirouImage.GetShapeX(p, hdr)
    p, shapem_y = spirouImage.GetShapeY(p, hdr)
    data2 = spirouImage.EATransform(data1, transform, dxmap=shapem_x,
                                    dymap=shapem_y)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # ----------------------------------------------------------------------
    # if transform is None means the fp image quality was too poor
    if transform is None:
        fail_msg.append('FP Image quality too poor (sigma clip failed)')
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    qc_values.append('None')
    qc_names.append('Image Quality')
    qc_logic.append('Image too poor')
    # ----------------------------------------------------------------------
    # get residual qc parameter
    qc_res = p['SHAPE_QC_LINEAR_TRANS_RES_THRES']
    # assess quality of x residuals
    if xres > qc_res:
        fail_msg.append('x-resdiuals too high {0} > {1}'.format(xres, qc_res))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    qc_values.append(xres)
    qc_names.append('XRES')
    qc_logic.append('XRES > {0}'.format(qc_res))
    # assess quality of x residuals
    if yres > qc_res:
        fail_msg.append('y-resdiuals too high {0} > {1}'.format(yres, qc_res))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    qc_values.append(yres)
    qc_names.append('YRES')
    qc_logic.append('YRES > {0}'.format(qc_res))

    # ----------------------------------------------------------------------
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Writing shape to file
    # ------------------------------------------------------------------
    # get the raw tilt file name
    raw_shape_file = os.path.basename(p['FITSFILENAME'])
    # construct file name and path
    shapefits, tag = spirouConfig.Constants.SLIT_SHAPE_LOCAL_FILE(p)
    shapefitsname = os.path.basename(shapefits)
    # Log that we are saving tilt file
    wmsg = 'Saving shape information in file: {0}'
    WLOG(p, '', wmsg.format(shapefitsname))
    # Copy keys from fits file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBSHAPEX'],
                               value=p['SHAPEXFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBSHAPEY'],
                               value=p['SHAPEYFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFPMASTER'],
                               value=p['FPMASTERFILE'])
    hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='file',
                                     values=p['ARG_FILE_NAMES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add the transform parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_SHAPE_DX'], value=transform[0])
    hdict = spirouImage.AddKey(p, hdict, p['KW_SHAPE_DY'], value=transform[1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_SHAPE_A'], value=transform[2])
    hdict = spirouImage.AddKey(p, hdict, p['KW_SHAPE_B'], value=transform[3])
    hdict = spirouImage.AddKey(p, hdict, p['KW_SHAPE_C'], value=transform[4])
    hdict = spirouImage.AddKey(p, hdict, p['KW_SHAPE_D'], value=transform[5])
    # write tilt file to file
    p = spirouImage.WriteImage(p, shapefits, [transform], hdict)

    # ----------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ----------------------------------------------------------------------
    if p['QC']:
        # add shape
        keydb = 'SHAPE'
        # copy shape file to the calibDB folder
        spirouDB.PutCalibFile(p, shapefits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, shapefitsname, hdr)

    # ------------------------------------------------------------------
    # Writing sanity check files
    # ------------------------------------------------------------------
    if p['SHAPE_DEBUG_OUTPUTS']:
        # log
        WLOG(p, '', 'Saving debug sanity check files')
        # construct file names
        dargs = [p, p['ARG_FILE_NAMES'][0]]
        out1 = spirouConfig.Constants.SLIT_SHAPE_IN_FP_FILE(*dargs)
        input_fp_file, tag1= out1
        out2 = spirouConfig.Constants.SLIT_SHAPE_OUT_FP_FILE(*dargs)
        output_fp_file, tag2 = out2
        # write input fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        p = spirouImage.WriteImage(p, input_fp_file, data1, hdict)
        # write output fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
        p = spirouImage.WriteImage(p, output_fp_file, data2, hdict)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #8
0
def main(night_name=None, reffile=None):
    """
    cal_DRIFT_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_DRIFT_E2DS_spirou.py [night_directory] [reffile]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param reffile: string, the reference file to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with reference file being None (i.e. get from sys.argv)
    if reffile is None:
        customargs = spirouStartup.GetCustomFromRuntime(
            p, [0], [str], ['reffile'])
    else:
        customargs = dict(reffile=reffile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='reffile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE'])
    p['REFFILENAME'] = reffilename
    p.set_source('REFFILENAME', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    speref, hdr, nbo, nx = spirouImage.ReadData(p, reffilename)
    # add to loc
    loc = ParamDict()
    loc['SPEREF'] = speref
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['speref', 'number_orders'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # manually set OBJNAME to FP
    p['OBJNAME'] = 'FP'

    # ----------------------------------------------------------------------
    #  Earth Velocity calculation
    # ----------------------------------------------------------------------
    if p['IC_IMAGE_TYPE'] == 'H4RG':
        p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr)

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # # get wave image
    # wout = spirouImage.GetWaveSolution(p, hdr=hdr, fiber=wave_fiber,
    #                                    return_wavemap=True)
    # _, loc['WAVE'] = wout
    # loc.set_source('WAVE', __NAME__+'/main() + /spirouImage.GetWaveSolution')

    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    param_ll, wave_ll, wavefile, wsource = wout
    # save to storage
    loc['PARAM_LL'], loc['WAVE_LL'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    source = __NAME__ + '/main() + spirouTHORCA.GetWaveSolution()'
    loc.set_sources(['WAVE_LL', 'PARAM_LL', 'WAVEFILE', 'WSOURCE'], source)

    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # get flat
    p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])

    # ----------------------------------------------------------------------
    # Background correction
    # ----------------------------------------------------------------------
    # log that we are performing background correction
    if p['IC_DRIFT_BACK_CORR']:
        WLOG(p, '', 'Perform background correction')
        # get the box size from constants
        bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
        # Loop around the orders
        for order_num in range(loc['NUMBER_ORDERS']):
            miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num],
                                                  bsize)
            loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny

    # ----------------------------------------------------------------------
    # Preliminary set up = no flat, no blaze
    # ----------------------------------------------------------------------
    # reset flat to all ones
    # loc['FLAT'] = np.ones((nbo, nx))
    # set blaze to all ones (if not bug in correlbin !!!
    # TODO Check why Blaze makes bugs in correlbin
    loc['BLAZE'] = np.ones((nbo, nx))
    # set sources
    # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()')
    loc.set_sources(['blaze'], __NAME__ + '/main()')

    # ------------------------------------------------------------------
    # Compute photon noise uncertainty for reference file
    # ------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['SPEREF'], loc['WAVE_LL']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))

    # ------------------------------------------------------------------
    # Reference plots
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        # sPlt.drift_plot_selected_wave_ref(p, loc)
        # plot photon noise uncertainty
        sPlt.drift_plot_photon_uncertainty(p, loc)

    # ----------------------------------------------------------------------
    # Get template RV (from ccf_mask)
    # ----------------------------------------------------------------------
    # Use CCF Mask function with drift constants
    p['CCF_MASK'] = p['DRIFT_CCF_MASK']
    p['TARGET_RV'] = p['DRIFT_TARGET_RV']
    p['CCF_WIDTH'] = p['DRIFT_CCF_WIDTH']
    p['CCF_STEP'] = p['DRIFT_CCF_STEP']

    # get the CCF mask from file (check location of mask)
    loc = spirouRV.GetCCFMask(p, loc)

    # check and deal with mask in microns (should be in nm)
    if np.mean(loc['LL_MASK_CTR']) < 2.0:
        loc['LL_MASK_CTR'] *= 1000.0
        loc['LL_MASK_D'] *= 1000.0

    # ----------------------------------------------------------------------
    # Do correlation
    # ----------------------------------------------------------------------
    # calculate and fit the CCF
    loc['E2DSFF'] = np.array(loc['SPEREF'])
    loc.set_source('E2DSFF', __NAME__ + '/main()')
    p['CCF_FIT_TYPE'] = 1
    # run the RV coravelation function with these parameters
    loc = spirouRV.Coravelation(p, loc)

    # ----------------------------------------------------------------------
    # Correlation stats
    # ----------------------------------------------------------------------
    # get the maximum number of orders to use
    nbmax = p['CCF_NUM_ORDERS_MAX']
    # get the average ccf
    loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
    # normalize the average ccf
    normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF'])
    # get the fit for the normalized average ccf
    ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                       loc['RV_CCF'],
                                       normalized_ccf,
                                       fit_type=1)
    loc['CCF_RES'] = ccf_res
    loc['CCF_FIT'] = ccf_fit
    # get the max cpp
    loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum(
        loc['PIX_PASSED_ALL'])
    # get the RV value from the normalised average ccf fit center location
    loc['RV'] = float(ccf_res[1])
    # get the contrast (ccf fit amplitude)
    loc['CONTRAST'] = np.abs(100 * ccf_res[0])
    # get the FWHM value
    loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm()

    # ----------------------------------------------------------------------
    # set the source
    keys = [
        'average_ccf', 'maxcpp', 'rv', 'contrast', 'fwhm', 'ccf_res', 'ccf_fit'
    ]
    loc.set_sources(keys, __NAME__ + '/main()')
    # ----------------------------------------------------------------------
    # log the stats
    wmsg = ('Correlation: C={0:.1f}[%] RV={1:.5f}[km/s] '
            'FWHM={2:.4f}[km/s] maxcpp={3:.1f}')
    wargs = [loc['CONTRAST'], loc['RV'], loc['FWHM'], loc['MAXCPP']]
    WLOG(p, 'info', wmsg.format(*wargs))

    # get the reference RV in m/s
    rvref = loc['RV'] * 1000.

    # ----------------------------------------------------------------------
    # rv ccf plot
    # ----------------------------------------------------------------------

    if p['DRS_PLOT'] > 0:
        # Plot rv vs ccf (and rv vs ccf_fit)
        sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit)

    # ------------------------------------------------------------------
    # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from
    #    ref file
    # ------------------------------------------------------------------
    # get files
    listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr)
    # get the number of files
    nfiles = len(listfiles)
    # Log the number of files found
    wmsgs = [
        'Number of files found on directory = {0}'.format(nfiles),
        '\tExtensions allowed:'
    ]
    for listtype in listtypes:
        wmsgs.append('\t\t - {0}'.format(listtype))
    WLOG(p, 'info', wmsgs)

    # ------------------------------------------------------------------
    # Set up Extract storage for all files
    # ------------------------------------------------------------------
    # decide whether we need to skip (for large number of files)
    if len(listfiles) >= p['DRIFT_NLARGE']:
        skip = p['DRIFT_E2DS_FILE_SKIP']
        nfiles = int(nfiles / skip)
    else:
        skip = 1
    # set up storage
    loc['MDRIFT'] = np.zeros(nfiles)
    loc['MERRDRIFT'] = np.zeros(nfiles)
    loc['DELTATIME'] = np.zeros(nfiles)
    loc['FLUXRATIO'] = np.zeros(nfiles)
    # set loc sources
    keys = ['mdrift', 'merrdrift', 'deltatime']
    loc.set_sources(keys, __NAME__ + '/main()()')

    # ------------------------------------------------------------------
    # Loop around all files: correct for dark, reshape, extract and
    #     calculate dvrms and meanpond
    # ------------------------------------------------------------------
    wref = 1
    for i_it in range(nfiles):
        # get file for this iteration
        fpfile = listfiles[::skip][i_it]
        # Log the file we are reading
        wmsg = 'Reading file {0}'
        WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1]))
        # ------------------------------------------------------------------
        # read e2ds files and get timestamp
        # ------------------------------------------------------------------
        # read data
        rout = spirouImage.ReadData(p, filename=fpfile, log=False)
        loc['SPE'], hdri, nxi, nyi = rout
        # get acqtime
        bjdspe = spirouImage.GetAcqTime(p,
                                        hdri,
                                        name='acqtime',
                                        return_value=1,
                                        kind='julian')
        # test whether we want to subtract background
        if p['IC_DRIFT_BACK_CORR']:
            # Loop around the orders
            for order_num in range(loc['NUMBER_ORDERS']):
                # get the box size from constants
                bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
                # Measurethe min and max flux
                miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num],
                                                      bsize)
                # subtract off the background (miny)
                loc['SPE'][order_num] = loc['SPE'][order_num] - miny

        # ------------------------------------------------------------------
        # calculate flux ratio
        # ------------------------------------------------------------------
        sorder = p['IC_DRIFT_ORDER_PLOT']
        fratio = np.nansum(loc['SPE'][sorder]) / np.nansum(
            loc['SPEREF'][sorder])
        loc['FLUXRATIO'][i_it] = fratio

        # ------------------------------------------------------------------
        # Compute photon noise uncertainty for reference file
        # ------------------------------------------------------------------
        # set up the arguments for DeltaVrms2D
        dargs = [loc['SPE'], loc['WAVE_LL']]
        dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                       size=p['IC_DRIFT_BOXSIZE'],
                       threshold=p['IC_DRIFT_MAXFLUX'])
        # run DeltaVrms2D
        dvrmsspe, wmeanspe = spirouRV.DeltaVrms2D(*dargs, **dkwargs)

        # ----------------------------------------------------------------------
        # Do correlation
        # ----------------------------------------------------------------------
        # calculate and fit the CCF
        loc['E2DSFF'] = loc['SPE'] * 1.
        loc.set_source('E2DSFF', __NAME__ + '/main()')

        loc = spirouRV.Coravelation(p, loc)

        # ----------------------------------------------------------------------
        # Correlation stats
        # ----------------------------------------------------------------------
        # get the maximum number of orders to use
        nbmax = p['CCF_NUM_ORDERS_MAX']
        # get the average ccf
        loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
        # normalize the average ccf
        normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF'])
        # get the fit for the normalized average ccf
        ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                           loc['RV_CCF'],
                                           normalized_ccf,
                                           fit_type=1)
        # calculate the mean RV
        meanrv = ccf_res[1] * 1000. - rvref
        # ------------------------------------------------------------------
        # Calculate delta time
        # ------------------------------------------------------------------
        # calculate the time from reference (in hours)
        deltatime = (bjdspe - bjdref) * 24

        err_meanrv = np.sqrt(dvrmsref + dvrmsspe)
        merr = 1. / np.sqrt(np.nansum((1. / err_meanrv)**2))
        # Log the RV properties
        wmsg = ('Time from ref= {0:.2f} h '
                '- Flux Ratio= {1:.2f} '
                '- Drift mean= {2:.2f} +- '
                '{3:.2f} m/s')
        wargs = [deltatime, loc['FLUXRATIO'][i_it], meanrv, merr]
        WLOG(p, '', wmsg.format(*wargs))
        # add this iteration to storage
        loc['MDRIFT'][i_it] = meanrv
        loc['MERRDRIFT'][i_it] = merr
        loc['DELTATIME'][i_it] = deltatime

    # ------------------------------------------------------------------
    # set source
    loc.set_sources(['mdrift', 'merrdrift'], __NAME__ + '/main()()')
    # ------------------------------------------------------------------
    # peak to peak drift
    driftptp = np.max(loc['MDRIFT']) - np.min(loc['MDRIFT'])
    driftrms = np.std(loc['MDRIFT'])
    # log th etotal drift peak-to-peak and rms
    wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in '
            '{2:.2f} hour')
    wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])]
    WLOG(p, '', wmsg.format(*wargs))

    # ------------------------------------------------------------------
    # Plot of mean drift
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot delta time against median drift
        sPlt.drift_plot_dtime_against_mdrift(p, loc, kind='e2ds')

    # ------------------------------------------------------------------
    # Save drift values to file
    # ------------------------------------------------------------------
    # # get raw input file name
    # raw_infile = os.path.basename(p['REFFILE'])
    # # construct filename
    # driftfits, tag = spirouConfig.Constants.DRIFTCCF_E2DS_FITS_FILE(p)
    # driftfitsname = os.path.split(driftfits)[-1]
    # # log that we are saving drift values
    # wmsg = 'Saving drift values of Fiber {0} in {1}'
    # WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname))
    # # add keys from original header file
    # hdict = spirouImage.CopyOriginalKeys(hdr)
    # # add the reference RV
    # hdict = spirouImage.AddKey(p, hdict, p['KW_REF_RV'], value=rvref)
    #
    # # set the version
    # hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    # hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # # set the input files
    # hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE'])
    # hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile)
    # # save drift values
    # p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict)

    # ------------------------------------------------------------------
    # print .tbl result
    # ------------------------------------------------------------------
    # construct filename
    drifttbl = spirouConfig.Constants.DRIFTCCF_E2DS_TBL_FILE(p)
    drifttblname = os.path.split(drifttbl)[-1]
    # construct and write table
    columnnames = ['time', 'drift', 'drifterr']
    columnformats = ['7.4f', '6.2f', '6.3f']
    columnvalues = [loc['DELTATIME'], loc['MDRIFT'], loc['MERRDRIFT']]
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    wmsg = 'Average Drift saved in {0} Saved '
    WLOG(p, '', wmsg.format(drifttblname))
    spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst')

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, files=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    files,
                                    mainfitsdir='reduced')
    p = spirouStartup.InitialFileSetup(p, calibdb=True)
    # set up function name
    main_name = __NAME__ + '.main()'

    # ----------------------------------------------------------------------
    # load up first file
    # ----------------------------------------------------------------------
    # construct loc parameter dictionary for storing data
    loc = ParamDict()
    # read first file and assign values
    rdata = spirouImage.ReadImage(p, p['FITSFILENAME'])
    loc['DATA'], loc['DATAHDR'] = rdata[:2]

    # Get object name and airmass
    loc['OBJNAME'] = spirouImage.GetObjName(p, loc['DATAHDR'])
    loc.set_source('OBJNAME', main_name)
    loc['AIRMASS'] = spirouImage.GetAirmass(p, loc['DATAHDR'])
    # set source
    source = main_name + '+ spirouImage.ReadParams()'
    loc.set_sources(['OBJNAME', 'AIRMASS'], source)

    # ----------------------------------------------------------------------
    # Get and Normalise the blaze
    # ----------------------------------------------------------------------
    p, loc = spirouTelluric.GetNormalizedBlaze(p, loc, loc['DATAHDR'])

    # ----------------------------------------------------------------------
    # Get database files
    # ----------------------------------------------------------------------
    # get current telluric maps from telluDB
    tellu_db_data = spirouDB.GetDatabaseTellObj(p, required=False)
    tellu_db_files, tellu_db_names = tellu_db_data[0], tellu_db_data[1]

    # sort files by name
    # sortmask = spirouImage.SortByName(tellu_db_files)
    # tellu_db_files = np.array(tellu_db_files)[sortmask]
    # tellu_db_names = np.array(tellu_db_names)[sortmask]

    # filter by object name (only keep OBJNAME objects) and only keep
    #   unique filenames
    tell_files, tell_names = [], []
    for it in range(len(tellu_db_files)):
        # check that objname is correct
        cond1 = loc['OBJNAME'] in tellu_db_names[it]
        # check that filename is not already used
        cond2 = tellu_db_files[it] not in tell_files
        # append to file list if criteria correct
        if cond1 and cond2:
            tell_files.append(tellu_db_files[it])
            tell_names.append(tellu_db_names[it])

    # log if we have no files
    if len(tell_files) == 0:
        wmsg = 'No "TELL_OBJ" files found for object ="{0}" skipping'
        WLOG(p, 'warning', wmsg.format(loc['OBJNAME']))
        # End Message
        wmsg = 'Recipe {0} has been successfully completed'
        WLOG(p, 'info', wmsg.format(p['PROGRAM']))
        # return a copy of locally defined variables in the memory
        return dict(locals())
    else:
        # log how many found
        wmsg = 'N={0} "TELL_OBJ" files found for object ="{1}"'
        WLOG(p, 'info', wmsg.format(len(tell_files), loc['OBJNAME']))

    # ----------------------------------------------------------------------
    # Set up storage for cubes (NaN arrays)
    # ----------------------------------------------------------------------
    # set up flat size
    dims = [loc['DATA'].shape[0], loc['DATA'].shape[1], len(tell_files)]
    flatsize = np.product(dims)
    # create NaN filled storage
    big_cube = np.repeat([np.nan], flatsize).reshape(*dims)
    big_cube0 = np.repeat([np.nan], flatsize).reshape(*dims)

    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
        # get master wave map
        loc['MASTERWAVEFILE'] = spirouDB.GetDatabaseMasterWave(p)
    # read master wave map
    mout = spirouImage.GetWaveSolution(p,
                                       filename=loc['MASTERWAVEFILE'],
                                       return_wavemap=True,
                                       quiet=True,
                                       fiber=wave_fiber)
    loc['MASTERWAVEPARAMS'], loc['MASTERWAVE'], loc['WSOURCE'] = mout
    keys = ['MASTERWAVEPARAMS', 'MASTERWAVE', 'MASTERWAVEFILE', 'WSOURCE']
    loc.set_sources(keys, main_name)

    # ----------------------------------------------------------------------
    # Compile a median SNR for rejection of bad files
    # ----------------------------------------------------------------------
    snr_all = []
    # choose snr to check
    snr_order = p['QC_FIT_TELLU_SNR_ORDER']
    # loop through files
    for it, filename in enumerate(tell_files):
        header = spirouImage.ReadHeader(p, filename)
        # get the SNR from header
        nbo = spirouImage.ReadParam(p,
                                    header,
                                    'KW_WAVE_ORD_N',
                                    dtype=int,
                                    return_value=True)
        snr = spirouImage.Read1Dkey(p, header, p['kw_E2DS_SNR'][0], nbo)
        # append snr_all
        snr_all.append(snr[snr_order])

    # work our bad snr (less than half the median SNR)
    snr_thres = np.nanmedian(snr_all) / 2.0
    bad_snr_objects = np.where(snr_all < snr_thres)[0]

    # ----------------------------------------------------------------------
    # Loop through input files
    # ----------------------------------------------------------------------
    # empty lists for storage
    loc['BASE_ROWNUM'], loc['BASE_FILELIST'] = [], []
    loc['BASE_OBJNAME'], loc['BASE_OBJECT'] = [], []
    loc['BASE_BERVLIST'], loc['BASE_WAVELIST'] = [], []
    loc['BASE_SNRLIST_{0}'.format(snr_order)] = []
    loc['BASE_DATELIST'], loc['BASE_VERSION'] = [], []
    loc['BASE_DARKFILE'], loc['BASE_BADFILE'] = [], []
    loc['BASE_LOCOFILE'], loc['BASE_BLAZFILE'] = [], []
    loc['BASE_FLATFILE'], loc['BASE_SHAPEFILE'] = [], []

    # loop through files
    for it, filename in enumerate(tell_files):
        # get base filenmae
        basefilename = os.path.basename(filename)
        # ------------------------------------------------------------------
        # skip if in bad snr objects
        if it in bad_snr_objects:
            wargs = [it + 1, len(tell_files), snr_all[it], snr_thres]
            wmsg1 = ('Skipping file {0} of {1} due to bad SNR ({2:.3f} < '
                     '{3:.3f})'.format(*wargs))
            wmsg2 = '\tFile = {0}'.format(basefilename)
            WLOG(p, 'warning', [wmsg1, wmsg2])
            continue
        # ------------------------------------------------------------------
        # append basename to file list
        loc['BASE_FILELIST'].append(basefilename)
        # ------------------------------------------------------------------
        # create image for storage
        image = np.repeat([np.nan], np.product(loc['DATA'].shape))
        image = image.reshape(loc['DATA'].shape)
        # ------------------------------------------------------------------
        # Load the data for this file
        tdata0, thdr, _, _ = spirouImage.ReadImage(p, filename)
        nbo, npix = tdata0.shape
        # Correct for the blaze
        tdata = tdata0 / loc['NBLAZE']

        # get berv and add to list
        if p['KW_BERV'][0] in thdr:
            loc['BASE_BERVLIST'].append('{0}'.format(thdr[p['KW_BERV'][0]]))
        else:
            loc['BASE_BERVLIST'].append('UNKNOWN')

        # ------------------------------------------------------------------
        # Get parameters from header
        snr = snr_all[it]
        dateobs = spirouImage.ReadParam(p,
                                        thdr,
                                        'KW_DATE_OBS',
                                        dtype=str,
                                        return_value=True)
        utcobs = spirouImage.ReadParam(p,
                                       thdr,
                                       'KW_UTC_OBS',
                                       dtype=str,
                                       return_value=True)
        tobjname = spirouImage.ReadParam(p,
                                         thdr,
                                         'KW_OBJNAME',
                                         dtype=str,
                                         return_value=True)
        tobject = spirouImage.ReadParam(p,
                                        thdr,
                                        'KW_OBJECT',
                                        dtype=str,
                                        return_value=True)
        tversion = spirouImage.ReadParam(p,
                                         thdr,
                                         'KW_version',
                                         dtype=str,
                                         return_value=True)
        tdarkfile = spirouImage.ReadParam(p,
                                          thdr,
                                          'KW_CDBDARK',
                                          dtype=str,
                                          return_value=True)
        tbadfile = spirouImage.ReadParam(p,
                                         thdr,
                                         'KW_CDBBAD',
                                         dtype=str,
                                         return_value=True)
        tlocofile = spirouImage.ReadParam(p,
                                          thdr,
                                          'KW_CDBLOCO',
                                          dtype=str,
                                          return_value=True)
        tblazfile = spirouImage.ReadParam(p,
                                          thdr,
                                          'KW_CDBBLAZE',
                                          dtype=str,
                                          return_value=True)
        tflatfile = spirouImage.ReadParam(p,
                                          thdr,
                                          'KW_CDBFLAT',
                                          dtype=str,
                                          return_value=True)
        tshapfile = spirouImage.ReadParam(p,
                                          thdr,
                                          'KW_CDBSHAPE',
                                          dtype=str,
                                          return_value=True)
        # append to lists
        loc['BASE_ROWNUM'].append(it)
        loc['BASE_SNRLIST_{0}'.format(snr_order)].append(snr_all[it])
        loc['BASE_DATELIST'].append('{0}_{1}'.format(dateobs, utcobs))
        loc['BASE_OBJNAME'].append(tobjname)
        loc['BASE_OBJECT'].append(tobject)
        loc['BASE_VERSION'].append(tversion)
        loc['BASE_DARKFILE'].append(tdarkfile)
        loc['BASE_BADFILE'].append(tbadfile)
        loc['BASE_LOCOFILE'].append(tlocofile)
        loc['BASE_BLAZFILE'].append(tblazfile)
        loc['BASE_FLATFILE'].append(tflatfile)
        loc['BASE_SHAPEFILE'].append(tshapfile)

        # ------------------------------------------------------------------
        # Get the wave solution for this file
        # ------------------------------------------------------------------
        # Force A and B to AB solution
        if p['FIBER'] in ['A', 'B']:
            wave_fiber = 'AB'
        else:
            wave_fiber = p['FIBER']
        # need to reload calibDB
        # as we have custom arguments need to load the calibration database
        calib_db = dict(p['CALIBDB'])
        del p['CALIBDB']
        p = spirouStartup.LoadCalibDB(p, header=thdr)
        # get wave solution
        wout = spirouImage.GetWaveSolution(p,
                                           image=tdata,
                                           hdr=thdr,
                                           return_wavemap=True,
                                           fiber=wave_fiber,
                                           return_filename=True)
        _, loc['WAVE'], loc['WAVEFILE'], _ = wout
        loc.set_sources(['WAVE', 'WAVEFILE'], main_name)

        # add wave to wave list
        loc['BASE_WAVELIST'].append(loc['WAVEFILE'])

        # readd original calibDB to p
        p['CALIBDB'] = dict(calib_db)

        # ------------------------------------------------------------------
        # Get the Barycentric correction from header
        dv, _, _ = spirouImage.GetBERV(p, thdr)
        # ------------------------------------------------------------------
        # log stats
        wmsg = 'Processing file {0} of {1} file={2} dv={3}'
        wargs = [it + 1, len(tell_files), basefilename, dv]
        WLOG(p, 'info', wmsg.format(*wargs))
        # ------------------------------------------------------------------
        # shift to correct berv
        dvshift = spirouMath.relativistic_waveshift(dv, units='km/s')

        image = spirouTelluric.Wave2Wave(p, tdata, loc['WAVE'] * dvshift,
                                         loc['MASTERWAVE'])
        # ------------------------------------------------------------------
        # loop around orders
        for order_num in range(loc['DATA'].shape[0]):
            # normalise the tdata
            tdata[order_num, :] /= np.nanmedian(tdata[order_num, :])
            image[order_num, :] /= np.nanmedian(image[order_num, :])
        # ------------------------------------------------------------------
        # add to cube storage
        big_cube[:, :, it] = image
        big_cube0[:, :, it] = tdata

    # ----------------------------------------------------------------------
    # log if we have no files
    if len(loc['BASE_FILELIST']) == 0:
        wmsg = 'No good files found for object ="{0}" skipping'
        WLOG(p, 'warning', wmsg.format(loc['OBJNAME']))
        # End Message
        wmsg = 'Recipe {0} has been successfully completed'
        WLOG(p, 'info', wmsg.format(p['PROGRAM']))
        # return a copy of locally defined variables in the memory
        return dict(locals())

    # ----------------------------------------------------------------------
    # make median image
    with warnings.catch_warnings(record=True) as _:
        big_cube_med = np.nanmedian(big_cube, axis=2)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ----------------------------------------------------------------------
    # Write Cube median (the template) to file
    # ----------------------------------------------------------------------
    # get raw file name
    raw_in_file = os.path.basename(p['FITSFILENAME'])
    # construct filename
    outfile, tag = spirouConfig.Constants.OBJTELLU_TEMPLATE_FILE(p, loc)
    outfilename = os.path.basename(outfile)

    # hdict is first file keys
    hdict = spirouImage.CopyOriginalKeys(loc['DATAHDR'])
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['MASTERWAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='file',
                                     values=p['ARG_FILE_NAMES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add wave solution coefficients
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_WAVE_PARAM'],
                                     values=loc['MASTERWAVEPARAMS'])
    # write to file
    p = spirouImage.WriteImage(p, outfile, big_cube_med, hdict)

    # ----------------------------------------------------------------------
    # Update the telluric database with the template
    # ----------------------------------------------------------------------
    spirouDB.UpdateDatabaseObjTemp(p, outfilename, loc['OBJNAME'],
                                   loc['DATAHDR'])
    # put file in telluDB
    spirouDB.PutTelluFile(p, outfile)

    # ----------------------------------------------------------------------
    # Save cubes to file
    # ----------------------------------------------------------------------
    # make big cube table
    big_table = spirouTelluric.ConstructBigTable(p, loc)
    # construct file names
    outfile1, tag1 = spirouConfig.Constants.OBJTELLU_TEMPLATE_CUBE_FILE1(
        p, loc)
    outfile2, tag2 = spirouConfig.Constants.OBJTELLU_TEMPLATE_CUBE_FILE2(
        p, loc)
    # log big cube 1
    wmsg1 = 'Saving bigcube to file {0}'.format(os.path.basename(outfile1))
    # save big cube 1
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    big_cube_s = np.swapaxes(big_cube, 1, 2)
    p = spirouImage.WriteImageTable(p,
                                    outfile1,
                                    image=big_cube_s,
                                    table=big_table,
                                    hdict=hdict)
    # log big cube 0
    wmsg = 'Saving bigcube0 to file {0}'.format(os.path.basename(outfile2))
    # save big cube 0
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
    big_cube_s0 = np.swapaxes(big_cube0, 1, 2)
    p = spirouImage.WriteImageTable(p,
                                    outfile2,
                                    image=big_cube_s0,
                                    table=big_table,
                                    hdict=hdict)

    # # mega plot
    # nfiles = big_cube_s0.shape[1]
    # ncols = int(np.ceil(np.sqrt(nfiles)))
    # nrows = int(np.ceil(nfiles/ncols))
    # fig, frames = plt.subplots(ncols=ncols, nrows=nrows)
    # for it in range(big_cube_s0.shape[1]):
    #     jt, kt = it // ncols, it % ncols
    #     frame = frames[jt][kt]
    #     frame.imshow(big_cube_s0[:, it, :], origin='lower')
    #     frame.set(xlim=(2030, 2060))

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, hcfile=None, fpfiles=None):
    """
    cal_SLIT_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_SLIT_spirou.py [night_directory] [files]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param files: string, list or None, the list of files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    if hcfile is None or fpfiles is None:
        names, types = ['hcfile', 'fpfiles'], [str, str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1],
                                                        types,
                                                        names,
                                                        last_multi=True)
    else:
        customargs = dict(hcfile=hcfile, fpfile=fpfiles)

    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='fpfiles')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, hcfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['HCFILE'])
    p, fpfitsfiles = spirouStartup.MultiFileSetup(p, files=p['FPFILES'])
    # set fiber (it doesn't matter with the 2D image but we need this to get
    # the lamp type for FPFILES and HCFILES, AB == C
    p['FIBER'] = 'AB'
    p['FIB_TYP'] = [p['FIBER']]
    fsource = __NAME__ + '/main()'
    p.set_sources(['FIBER', 'FIB_TYP'], fsource)

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # add a force plot off
    p['PLOT_PER_ORDER'] = PLOT_PER_ORDER
    p.set_source('PLOT_PER_ORDER', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Read FP and HC files
    # ----------------------------------------------------------------------
    # read input fp and hc data
    rkwargs = dict(filename=fpfitsfiles[0],
                   filenames=fpfitsfiles[1:],
                   framemath='add')
    p, fpdata, fphdr = spirouImage.ReadImageAndCombine(p, **rkwargs)

    hcdata, hchdr, _, _ = spirouImage.ReadImage(p, hcfitsfilename)

    # add data and hdr to loc
    loc = ParamDict()
    loc['HCDATA'], loc['HCHDR'] = hcdata, hchdr
    loc['FPDATA'], loc['FPHDR'] = fpdata, fphdr
    # set the source
    sources = ['HCDATA', 'HCHDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')
    sources = ['FPDATA', 'FPHDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')

    # ---------------------------------------------------------------------
    # fix for un-preprocessed files
    # ----------------------------------------------------------------------
    hcdata = spirouImage.FixNonPreProcess(p, hcdata)
    fpdata = spirouImage.FixNonPreProcess(p, fpdata)

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # add a force plot off
    p['PLOT_PER_ORDER'] = PLOT_PER_ORDER
    p.set_source('PLOT_PER_ORDER', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, fphdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, fphdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, fphdr, name='gain')
    # get lamp parameters
    p = spirouTHORCA.GetLampParams(p, hchdr)
    # get FP_FP DPRTYPE
    p = spirouImage.ReadParam(p, fphdr, 'KW_DPRTYPE', 'DPRTYPE', dtype=str)

    # ----------------------------------------------------------------------
    # Correction of reference FP
    # ----------------------------------------------------------------------
    # set the number of frames
    p['NBFRAMES'] = len(fpfitsfiles)
    p.set_source('NBFRAMES', __NAME__ + '.main()')
    # Correction of DARK
    p, fpdatac = spirouImage.CorrectForDark(p, fpdata, fphdr)
    # Resize hc data
    # rotate the image and convert from ADU/s to e-
    fpdata = spirouImage.ConvertToE(spirouImage.FlipImage(p, fpdatac), p=p)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    fpdata1 = spirouImage.ResizeImage(p, fpdata, **bkwargs)
    # log change in data size
    WLOG(p, '',
         ('FPref Image format changed to {0}x{1}').format(*fpdata1.shape))
    # Correct for the BADPIX mask (set all bad pixels to zero)
    bargs = [p, fpdata1, fphdr]
    p, fpdata1 = spirouImage.CorrectForBadPix(*bargs)
    p, badpixmask = spirouImage.CorrectForBadPix(*bargs, return_map=True)
    # log progress
    WLOG(p, '', 'Cleaning FPref hot pixels')
    # correct hot pixels
    fpdata1 = spirouEXTOR.CleanHotpix(fpdata1, badpixmask)
    # add to loc
    loc['FPDATA1'] = fpdata1
    loc.set_source('FPDATA1', __NAME__ + '.main()')
    # Log the number of dead pixels
    # get the number of bad pixels
    with warnings.catch_warnings(record=True) as _:
        n_bad_pix = np.nansum(fpdata1 <= 0)
        n_bad_pix_frac = n_bad_pix * 100 / np.product(fpdata1.shape)
    # Log number
    wmsg = 'Nb FPref dead pixels = {0} / {1:.2f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # ----------------------------------------------------------------------
    # Correction of HC
    # ----------------------------------------------------------------------
    # set the number of frames
    p['NBFRAMES'] = 1
    p.set_source('NBFRAMES', __NAME__ + '.main()')
    # Correction of DARK
    p, hcdatac = spirouImage.CorrectForDark(p, hcdata, hchdr)
    # Resize hc data
    # rotate the image and convert from ADU/s to e-
    hcdata = spirouImage.ConvertToE(spirouImage.FlipImage(p, hcdatac), p=p)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    hcdata1 = spirouImage.ResizeImage(p, hcdata, **bkwargs)
    # log change in data size
    WLOG(p, '', ('HC Image format changed to {0}x{1}').format(*hcdata1.shape))
    # Correct for the BADPIX mask (set all bad pixels to zero)
    bargs = [p, hcdata1, hchdr]
    p, hcdata1 = spirouImage.CorrectForBadPix(*bargs)
    p, badpixmask = spirouImage.CorrectForBadPix(*bargs, return_map=True)
    # log progress
    WLOG(p, '', 'Cleaning HC hot pixels')
    # correct hot pixels
    hcdata1 = spirouEXTOR.CleanHotpix(hcdata1, badpixmask)
    # add to loc
    loc['HCDATA1'] = hcdata1
    loc.set_source('HCDATA1', __NAME__ + '.main()')
    # Log the number of dead pixels
    # get the number of bad pixels
    with warnings.catch_warnings(record=True) as _:
        n_bad_pix = np.nansum(hcdata1 <= 0)
        n_bad_pix_frac = n_bad_pix * 100 / np.product(hcdata1.shape)
    # Log number
    wmsg = 'Nb HC dead pixels = {0} / {1:.2f} %'
    WLOG(p, 'info', wmsg.format(int(n_bad_pix), n_bad_pix_frac))

    # -------------------------------------------------------------------------
    # get all FP_FP files
    # -------------------------------------------------------------------------
    fpfilenames = spirouImage.FindFiles(p,
                                        filetype=p['DPRTYPE'],
                                        allowedtypes=p['ALLOWED_FP_TYPES'])
    # convert filenames to a numpy array
    fpfilenames = np.array(fpfilenames)
    # julian date to know which file we need to
    # process together
    fp_time = np.zeros(len(fpfilenames))
    basenames, fp_exp, fp_pp_version, nightnames = [], [], [], []
    # log progress
    WLOG(p, '', 'Reading all fp file headers')
    # looping through the file headers
    for it in range(len(fpfilenames)):
        # log progress
        wmsg = '\tReading file {0} / {1}'
        WLOG(p, 'info', wmsg.format(it + 1, len(fpfilenames)))
        # get fp filename
        fpfilename = fpfilenames[it]
        # get night name
        night_name = os.path.dirname(fpfilenames[it]).split(p['TMP_DIR'])[-1]
        # read data
        data_it, hdr_it, _, _ = spirouImage.ReadImage(p, fpfilename)
        # get header
        hdr = spirouImage.ReadHeader(p, filepath=fpfilenames[it])
        # add MJDATE to dark times
        fp_time[it] = float(hdr[p['KW_ACQTIME'][0]])
        # add other keys (for tabular output)
        basenames.append(os.path.basename(fpfilenames[it]))
        nightnames.append(night_name)
        fp_exp.append(float(hdr[p['KW_EXPTIME'][0]]))
        fp_pp_version.append(hdr[p['KW_PPVERSION'][0]])

    # -------------------------------------------------------------------------
    # match files by date
    # -------------------------------------------------------------------------
    # log progress
    wmsg = 'Matching FP files by observation time (+/- {0} hrs)'
    WLOG(p, '', wmsg.format(p['DARK_MASTER_MATCH_TIME']))
    # get the time threshold
    time_thres = p['FP_MASTER_MATCH_TIME']
    # get items grouped by time
    matched_id = spirouImage.GroupFilesByTime(p, fp_time, time_thres)

    # -------------------------------------------------------------------------
    # construct the master fp file (+ correct for dark/badpix)
    # -------------------------------------------------------------------------
    cargs = [fpdata1, fpfilenames, matched_id]
    fpcube, transforms = spirouImage.ConstructMasterFP(p, *cargs)
    # log process
    wmsg1 = 'Master FP construction complete.'
    wmsg2 = '\tAdding {0} group images to form FP master image'
    WLOG(p, 'info', [wmsg1, wmsg2.format(len(fpcube))])
    # sum the cube to make fp data
    masterfp = np.sum(fpcube, axis=0)
    # add to loc
    loc['MASTERFP'] = masterfp
    loc.set_source('MASTERFP', __NAME__ + '.main()')

    # ------------------------------------------------------------------
    # Get localisation coefficients
    # ------------------------------------------------------------------
    # original there is a loop but it is not used --> removed
    p = spirouImage.FiberParams(p, p['FIBER'], merge=True)
    # get localisation fit coefficients
    p, loc = spirouLOCOR.GetCoeffs(p, fphdr, loc)

    # ------------------------------------------------------------------
    # Get master wave solution map
    # ------------------------------------------------------------------
    # get master wave map
    masterwavefile = spirouDB.GetDatabaseMasterWave(p)
    # log process
    wmsg1 = 'Getting master wavelength grid'
    wmsg2 = '\tFile = {0}'.format(os.path.basename(masterwavefile))
    WLOG(p, '', [wmsg1, wmsg2])
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # read master wave map
    wout = spirouImage.GetWaveSolution(p,
                                       filename=masterwavefile,
                                       return_wavemap=True,
                                       quiet=True,
                                       return_header=True,
                                       fiber=wave_fiber)
    loc['MASTERWAVEP'], loc['MASTERWAVE'] = wout[:2]
    loc['MASTERWAVEHDR'], loc['WSOURCE'] = wout[2:]
    # set sources
    wsource = ['MASTERWAVEP', 'MASTERWAVE', 'MASTERWAVEHDR']
    loc.set_sources(wsource, 'spirouImage.GetWaveSolution()')

    # ----------------------------------------------------------------------
    # Read UNe solution
    # ----------------------------------------------------------------------
    wave_u_ne, amp_u_ne = spirouImage.ReadLineList(p)
    loc['LL_LINE'], loc['AMPL_LINE'] = wave_u_ne, amp_u_ne
    source = __NAME__ + '.main() + spirouImage.ReadLineList()'
    loc.set_sources(['LL_LINE', 'AMPL_LINE'], source)

    # ----------------------------------------------------------------------
    # Read cavity length file
    # ----------------------------------------------------------------------
    loc['CAVITY_LEN_COEFFS'] = spirouImage.ReadCavityLength(p)
    source = __NAME__ + '.main() + spirouImage.ReadCavityLength()'
    loc.set_source('CAVITY_LEN_COEFFS', source)

    # ----------------------------------------------------------------------
    # Calculate shape map
    # ----------------------------------------------------------------------
    # calculate dx map
    loc = spirouImage.GetXShapeMap(p, loc)
    # if dx map is None we shouldn't continue
    if loc['DXMAP'] is None:
        fargs = [
            loc['MAXDXMAPINFO'][0], loc['MAXDXMAPINFO'][1], loc['MAXDXMAPSTD'],
            p['SHAPE_QC_DXMAP_STD']
        ]
        fmsg = ('The std of the dxmap for order {0} y-pixel {1} is too large.'
                ' std = {2} (limit = {3})'.format(*fargs))
        wmsg = 'QUALITY CONTROL FAILED: {0}'
        WLOG(p, 'warning', wmsg.format(fmsg))
        WLOG(p, 'warning', 'Cannot continue. Exiting.')
        # End Message
        p = spirouStartup.End(p)
        # return a copy of locally defined variables in the memory
        return dict(locals())

    # calculate dymap
    loc = spirouImage.GetYShapeMap(p, loc, fphdr)

    # ------------------------------------------------------------------
    # Need to straighten the dxmap
    # ------------------------------------------------------------------
    # copy it first
    loc['DXMAP0'] = np.array(loc['DXMAP'])
    # straighten it
    loc['DXMAP'] = spirouImage.EATransform(loc['DXMAP'], dymap=loc['DYMAP'])

    # ------------------------------------------------------------------
    # Need to straighten the hc data and fp data for debug
    # ------------------------------------------------------------------
    # log progress
    WLOG(p, '', 'Shape finding complete. Applying transforms.')
    # apply very last update of the debananafication
    tkwargs = dict(dxmap=loc['DXMAP'], dymap=loc['DYMAP'])
    loc['HCDATA2'] = spirouImage.EATransform(loc['HCDATA1'], **tkwargs)
    loc['FPDATA2'] = spirouImage.EATransform(loc['FPDATA1'], **tkwargs)
    loc.set_sources(['HCDATA2', 'FPDATA2'], __NAME__ + '.main()')

    # ------------------------------------------------------------------
    # Plotting
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plots setup: start interactive plot
        sPlt.start_interactive_session(p)
        # plot the shape process for one order
        sPlt.slit_shape_angle_plot(p, loc)
        # end interactive section
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # TODO: Decide on some quality control criteria?
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append(loc['MAXDXMAPSTD'])
    qc_names.append('DXMAP STD')
    qc_logic.append('DXMAP STD < {0}'.format(p['SHAPE_QC_DXMAP_STD']))
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Writing FP big table
    # ------------------------------------------------------------------
    # construct big fp table
    colnames = [
        'FILENAME', 'NIGHT', 'MJDATE', 'EXPTIME', 'PVERSION', 'GROUPID',
        'DXREF', 'DYREF', 'A', 'B', 'C', 'D'
    ]
    values = [
        basenames, nightnames, fp_time, fp_exp, fp_pp_version, matched_id,
        transforms[:, 0], transforms[:, 1], transforms[:, 2], transforms[:, 3],
        transforms[:, 4], transforms[:, 5]
    ]
    fptable = spirouImage.MakeTable(p, colnames, values)

    # ------------------------------------------------------------------
    # Writing DXMAP to file
    # ------------------------------------------------------------------
    # get the raw tilt file name
    raw_shape_file = os.path.basename(p['FITSFILENAME'])
    # construct file name and path
    shapexfits, tag = spirouConfig.Constants.SLIT_XSHAPE_FILE(p)
    shapexfitsname = os.path.basename(shapexfits)
    # Log that we are saving tilt file
    wmsg = 'Saving shape x information in file: {0}'
    WLOG(p, '', wmsg.format(shapexfitsname))
    # Copy keys from fits file
    hdict = spirouImage.CopyOriginalKeys(fphdr)
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='hcfile',
                                     values=p['HCFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE2'],
                                     dim1name='fpfile',
                                     values=p['FPFILES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # write tilt file to file
    p = spirouImage.WriteImageTable(p,
                                    shapexfits,
                                    image=loc['DXMAP'],
                                    table=fptable,
                                    hdict=hdict)

    # ------------------------------------------------------------------
    # Writing DYMAP to file
    # ------------------------------------------------------------------
    # get the raw tilt file name
    raw_shape_file = os.path.basename(p['FITSFILENAME'])
    # construct file name and path
    shapeyfits, tag = spirouConfig.Constants.SLIT_YSHAPE_FILE(p)
    shapeyfitsname = os.path.basename(shapeyfits)
    # Log that we are saving tilt file
    wmsg = 'Saving shape y information in file: {0}'
    WLOG(p, '', wmsg.format(shapeyfitsname))
    # Copy keys from fits file
    hdict = spirouImage.CopyOriginalKeys(fphdr)
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='hcfile',
                                     values=p['HCFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE2'],
                                     dim1name='fpfile',
                                     values=p['FPFILES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # write tilt file to file
    p = spirouImage.WriteImageTable(p,
                                    shapeyfits,
                                    image=loc['DYMAP'],
                                    table=fptable,
                                    hdict=hdict)

    # ------------------------------------------------------------------
    # Writing Master FP to file
    # ------------------------------------------------------------------
    # get the raw tilt file name
    raw_shape_file = os.path.basename(p['FITSFILENAME'])
    # construct file name and path
    fpmasterfits, tag = spirouConfig.Constants.SLIT_MASTER_FP_FILE(p)
    fpmasterfitsname = os.path.basename(fpmasterfits)
    # Log that we are saving tilt file
    wmsg = 'Saving master FP file: {0}'
    WLOG(p, '', wmsg.format(fpmasterfitsname))
    # Copy keys from fits file
    hdict = spirouImage.CopyOriginalKeys(fphdr)
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBDARK'], value=p['DARKFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BADPFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='hcfile',
                                     values=p['HCFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE2'],
                                     dim1name='fpfile',
                                     values=p['FPFILES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # write tilt file to file
    p = spirouImage.WriteImageTable(p,
                                    fpmasterfits,
                                    image=masterfp,
                                    table=fptable,
                                    hdict=hdict)

    # ------------------------------------------------------------------
    # Writing sanity check files
    # ------------------------------------------------------------------
    if p['SHAPE_DEBUG_OUTPUTS']:
        # log
        WLOG(p, '', 'Saving debug sanity check files')
        # construct file names
        input_fp_file, tag1 = spirouConfig.Constants.SLIT_SHAPE_IN_FP_FILE(p)
        output_fp_file, tag2 = spirouConfig.Constants.SLIT_SHAPE_OUT_FP_FILE(p)
        input_hc_file, tag3 = spirouConfig.Constants.SLIT_SHAPE_IN_HC_FILE(p)
        output_hc_file, tag4 = spirouConfig.Constants.SLIT_SHAPE_OUT_HC_FILE(p)
        bdxmap_file, tag5 = spirouConfig.Constants.SLIT_SHAPE_BDXMAP_FILE(p)
        # write input fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        p = spirouImage.WriteImage(p, input_fp_file, loc['FPDATA1'], hdict)
        # write output fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
        p = spirouImage.WriteImage(p, output_fp_file, loc['FPDATA2'], hdict)
        # write input fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)
        p = spirouImage.WriteImage(p, input_hc_file, loc['HCDATA1'], hdict)
        # write output fp file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag4)
        p = spirouImage.WriteImage(p, output_hc_file, loc['HCDATA2'], hdict)
        # write overlap file
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag5)
        p = spirouImage.WriteImage(p, bdxmap_file, loc['DXMAP0'], hdict)

    # ----------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ----------------------------------------------------------------------
    if p['QC']:
        # add shape x
        keydb = 'SHAPEX'
        # copy shape file to the calibDB folder
        spirouDB.PutCalibFile(p, shapexfits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, shapexfitsname, fphdr)
        # add shape y
        keydb = 'SHAPEY'
        # copy shape file to the calibDB folder
        spirouDB.PutCalibFile(p, shapeyfits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, shapeyfitsname, fphdr)
        # add fp master
        keydb = 'FPMASTER'
        # copy shape file to the calibDB folder
        spirouDB.PutCalibFile(p, fpmasterfits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, fpmasterfitsname, fphdr)
    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #11
0
def main(night_name=None, reffile=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    customargs = spirouStartup.GetCustomFromRuntime(p, [0], [str], ['reffile'],
                                                    [True], [reffile])
    p = spirouStartup.LoadArguments(p, night_name, customargs=customargs,
                                    mainfitsfile='reffile',
                                    mainfitsdir='reduced')

    # load the calibDB
    p = spirouStartup.LoadCalibDB(p)

    # force plotting to 1
    p['DRS_PLOT'] = 1

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    p, fpfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE'])
    # get the fiber type
    fiber1 = str(p['FIBER'])

    e2ds, hdr, nx, ny = spirouImage.ReadImage(p)
    p, blaze = spirouImage.ReadBlazeFile(p)

    # set source of wave file
    wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    _, wave, _ = spirouImage.GetWaveSolution(p, hdr=hdr, return_wavemap=True,
                                             fiber=wave_fiber)

    # ----------------------------------------------------------------------
    # Get basic image properties
    # ----------------------------------------------------------------------

    plt.ion()
    plt.figure()

    for i in np.arange(nx):
        plt.plot(wave[i], e2ds[i])

    plt.xlabel('Wavelength [nm]')
    plt.ylabel('Flux e-')
    plt.title('Extracted spectra')

    plt.figure()

    for i in np.arange(nx):
        plt.plot(wave[i], e2ds[i] / blaze[i])

    plt.xlabel('Wavelength [nm]')
    plt.ylabel('Relative Flux e-')
    plt.title('Blaze corrected Extracted spectra')

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p, outputs=None)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, fpfile=None, hcfiles=None):
    """
    cal_WAVE_E2DS.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_DARK_spirou.py [night_directory] [fpfile] [hcfiles]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param fpfile: string, or None, the FP file to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)
    :param hcfiles: string, list or None, the list of HC files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------

    # test files TC2
    # night_name = 'AT5/AT5-12/2018-05-29_17-41-44/'
    # fpfile = '2279844a_fp_fp_pp_e2dsff_AB.fits'
    # hcfiles = ['2279845c_hc_pp_e2dsff_AB.fits']

    # test files TC3
    # night_name = 'TC3/AT5/AT5-12/2018-07-24_16-17-57/'
    # fpfile = '2294108a_pp_e2dsff_AB.fits'
    # hcfiles = ['2294115c_pp_e2dsff_AB.fits']

    # night_name = 'TC3/AT5/AT5-12/2018-07-25_16-49-50/'
    # fpfile = '2294223a_pp_e2dsff_AB.fits'
    # hcfiles = ['2294230c_pp_e2dsff_AB.fits']

    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    if hcfiles is None or fpfile is None:
        names, types = ['fpfile', 'hcfiles'], [str, str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1],
                                                        types,
                                                        names,
                                                        last_multi=True)
    else:
        customargs = dict(hcfiles=hcfiles, fpfile=fpfile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsdir='reduced',
                                    mainfitsfile='hcfiles')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, fpfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['FPFILE'])
    fiber1 = str(p['FIBER'])
    p, hcfilenames = spirouStartup.MultiFileSetup(p, files=p['HCFILES'])
    fiber2 = str(p['FIBER'])
    # set the hcfilename to the first hcfilenames
    hcfitsfilename = hcfilenames[0]

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Have to check that the fibers match
    # ----------------------------------------------------------------------
    if fiber1 == fiber2:
        p['FIBER'] = fiber1
        fsource = __NAME__ + '/main() & spirouStartup.GetFiberType()'
        p.set_source('FIBER', fsource)
    else:
        emsg = 'Fiber not matching for {0} and {1}, should be the same'
        eargs = [hcfitsfilename, fpfitsfilename]
        WLOG(p, 'error', emsg.format(*eargs))
    # set the fiber type
    p['FIB_TYP'] = [p['FIBER']]
    p.set_source('FIB_TYP', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Read FP and HC files
    # ----------------------------------------------------------------------

    # read and combine all HC files except the first (fpfitsfilename)
    rargs = [p, 'add', hcfitsfilename, hcfilenames[1:]]
    p, hcdata, hchdr = spirouImage.ReadImageAndCombine(*rargs)
    # read first file (fpfitsfilename)
    fpdata, fphdr, _, _ = spirouImage.ReadImage(p, fpfitsfilename)

    # TODO: ------------------------------------------------------------
    # TODO remove to test NaNs
    # TODO: ------------------------------------------------------------
    # hcmask = np.isfinite(hcdata)
    # fpmask = np.isfinite(fpdata)
    # hcdata[~hcmask] = 0.0
    # fpdata[~fpmask] = 0.0
    # TODO: ------------------------------------------------------------

    # add data and hdr to loc
    loc = ParamDict()
    loc['HCDATA'], loc['HCHDR'] = hcdata, hchdr
    loc['FPDATA'], loc['FPHDR'] = fpdata, fphdr

    # set the source
    sources = ['HCDATA', 'HCHDR']
    loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()')
    sources = ['FPDATA', 'FPHDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hchdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hchdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hchdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hchdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # get lamp parameters
    p = spirouTHORCA.GetLampParams(p, hchdr)

    # get number of orders
    # we always get fibre A number because AB is doubled in constants file
    loc['NBO'] = p['QC_LOC_NBO_FPALL']['A']
    loc.set_source('NBO', __NAME__ + '.main()')
    # get number of pixels in x from hcdata size
    loc['NBPIX'] = loc['HCDATA'].shape[1]
    loc.set_source('NBPIX', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Read blaze
    # ----------------------------------------------------------------------
    # get tilts
    p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hchdr)
    loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile')
    # make copy of blaze (as it's overwritten later)
    loc['BLAZE2'] = np.copy(loc['BLAZE'])

    # ----------------------------------------------------------------------
    # Read wave solution
    # ----------------------------------------------------------------------
    # wavelength file; we will use the polynomial terms in its header,
    # NOT the pixel values that would need to be interpolated

    # set source of wave file
    wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hchdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    loc['WAVEPARAMS'], loc['WAVE_INIT'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVE_INIT', 'WAVEFILE', 'WAVEPARAMS', 'WSOURCE'],
                    wsource)
    poly_wave_sol = loc['WAVEPARAMS']

    # ----------------------------------------------------------------------
    # Check that wave parameters are consistent with "ic_ll_degr_fit"
    # ----------------------------------------------------------------------
    loc = spirouImage.CheckWaveSolConsistency(p, loc)

    # ----------------------------------------------------------------------
    # Read UNe solution
    # ----------------------------------------------------------------------
    wave_u_ne, amp_u_ne = spirouImage.ReadLineList(p)
    loc['LL_LINE'], loc['AMPL_LINE'] = wave_u_ne, amp_u_ne
    source = __NAME__ + '.main() + spirouImage.ReadLineList()'
    loc.set_sources(['ll_line', 'ampl_line'], source)

    # ----------------------------------------------------------------------
    # Generate wave map from wave solution
    # ----------------------------------------------------------------------
    loc = spirouWAVE.generate_wave_map(p, loc)

    # ----------------------------------------------------------------------
    # Find Gaussian Peaks in HC spectrum
    # ----------------------------------------------------------------------
    loc = spirouWAVE.find_hc_gauss_peaks(p, loc)

    # ----------------------------------------------------------------------
    # Start plotting session
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive plot
        sPlt.start_interactive_session(p)

    # ----------------------------------------------------------------------
    # Fit Gaussian peaks (in triplets) to
    # ----------------------------------------------------------------------
    loc = spirouWAVE.fit_gaussian_triplets(p, loc)

    # ----------------------------------------------------------------------
    # Generate Resolution map and line profiles
    # ----------------------------------------------------------------------
    # log progress
    wmsg = 'Generating resolution map and '
    # generate resolution map
    loc = spirouWAVE.generate_resolution_map(p, loc)
    # map line profile map
    if p['DRS_PLOT'] > 0:
        sPlt.wave_ea_plot_line_profiles(p, loc)

    # ----------------------------------------------------------------------
    # End plotting session
    # ----------------------------------------------------------------------
    # end interactive session
    if p['DRS_PLOT'] > 0:
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # Set up all_lines storage
    # ----------------------------------------------------------------------

    # initialise up all_lines storage
    all_lines_1 = []

    # get parameters from p
    n_ord_start = p['IC_HC_N_ORD_START_2']
    n_ord_final = p['IC_HC_N_ORD_FINAL_2']
    pixel_shift_inter = p['PIXEL_SHIFT_INTER']
    pixel_shift_slope = p['PIXEL_SHIFT_SLOPE']

    # get values from loc
    xgau = np.array(loc['XGAU_T'])
    dv = np.array(loc['DV_T'])
    fit_per_order = np.array(loc['POLY_WAVE_SOL'])
    ew = np.array(loc['EW_T'])
    peak = np.array(loc['PEAK_T'])
    amp_catalog = np.array(loc['AMP_CATALOG'])
    wave_catalog = np.array(loc['WAVE_CATALOG'])
    ord_t = np.array(loc['ORD_T'])

    # loop through orders
    for iord in range(n_ord_start, n_ord_final):
        # keep relevant lines
        # -> right order
        # -> finite dv
        gg = (ord_t == iord) & (np.isfinite(dv))
        nlines = np.nansum(gg)
        # put lines into ALL_LINES structure
        # reminder:
        # gparams[0] = output wavelengths
        # gparams[1] = output sigma(gauss fit width)
        # gparams[2] = output amplitude(gauss fit)
        # gparams[3] = difference in input / output wavelength
        # gparams[4] = input amplitudes
        # gparams[5] = output pixel positions
        # gparams[6] = output pixel sigma width (gauss fit width in pixels)
        # gparams[7] = output weights for the pixel position

        chebval = np.polynomial.chebyshev.chebval

        # dummy array for weights
        test = np.ones(np.shape(xgau[gg]), 'd') * 1e4
        # get the final wavelength value for each peak in order
        output_wave_1 = np.polyval(fit_per_order[iord][::-1], xgau[gg])
        # output_wave_1 = chebval(xgau[gg], fit_per_order[iord])
        # convert the pixel equivalent width to wavelength units
        xgau_ew_ini = xgau[gg] - ew[gg] / 2
        xgau_ew_fin = xgau[gg] + ew[gg] / 2
        ew_ll_ini = np.polyval(fit_per_order[iord, :], xgau_ew_ini)
        ew_ll_fin = np.polyval(fit_per_order[iord, :], xgau_ew_fin)
        # ew_ll_ini = chebval(xgau_ew_ini, fit_per_order[iord])
        # ew_ll_fin = chebval(xgau_ew_fin, fit_per_order[iord])
        ew_ll = ew_ll_fin - ew_ll_ini
        # put all lines in the order into array
        gau_params = np.column_stack(
            (output_wave_1, ew_ll, peak[gg], wave_catalog[gg] - output_wave_1,
             amp_catalog[gg], xgau[gg], ew[gg], test))
        # append the array for the order into a list
        all_lines_1.append(gau_params)
        # save dv in km/s and auxiliary order number
        # res_1 = np.concatenate((res_1,2.997e5*(input_wave - output_wave_1)/
        #                        output_wave_1))
        # ord_save = np.concatenate((ord_save, test*iord))

    # add to loc
    loc['ALL_LINES_1'] = all_lines_1
    loc['LL_PARAM_1'] = np.array(fit_per_order)
    loc['LL_OUT_1'] = np.array(loc['WAVE_MAP2'])
    loc.set_sources(['ALL_LINES_1', 'LL_PARAM_1'], __NAME__ + '/main()')

    # For compatibility w/already defined functions, I need to save
    # here all_lines_2
    all_lines_2 = list(all_lines_1)
    loc['ALL_LINES_2'] = all_lines_2
    # loc['LL_PARAM_2'] = np.fliplr(fit_per_order)
    # loc['LL_OUT_2'] = np.array(loc['WAVE_MAP2'])
    # loc.set_sources(['ALL_LINES_2', 'LL_PARAM_2'], __NAME__ + '/main()')

    # ------------------------------------------------------------------
    # Littrow test
    # ------------------------------------------------------------------

    start = p['IC_LITTROW_ORDER_INIT_1']
    end = p['IC_LITTROW_ORDER_FINAL_1']

    # calculate echelle orders
    o_orders = np.arange(start, end)
    echelle_order = p['IC_HC_T_ORDER_START'] - o_orders
    loc['ECHELLE_ORDERS'] = echelle_order
    loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()')

    # reset Littrow fit degree
    p['IC_LITTROW_FIT_DEG_1'] = 7

    # Do Littrow check
    ckwargs = dict(ll=loc['LL_OUT_1'][start:end, :], iteration=1, log=True)
    loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs)

    # Plot wave solution littrow check
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_check_plot(p, loc, iteration=1)

    # ------------------------------------------------------------------
    # extrapolate Littrow solution
    # ------------------------------------------------------------------
    ekwargs = dict(ll=loc['LL_OUT_1'], iteration=1)
    loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs)

    # ------------------------------------------------------------------
    # Plot littrow solution
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_extrap_plot(p, loc, iteration=1)

    # ------------------------------------------------------------------
    # Incorporate FP into solution
    # ------------------------------------------------------------------
    # Copy LL_OUT_1 and LL_PARAM_1 into new constants (for FP integration)
    loc['LITTROW_EXTRAP_SOL_1'] = np.array(loc['LL_OUT_1'])
    loc['LITTROW_EXTRAP_PARAM_1'] = np.array(loc['LL_PARAM_1'])
    # only use FP if switched on in constants file
    if p['IC_WAVE_USE_FP']:
        # ------------------------------------------------------------------
        # Find FP lines
        # ------------------------------------------------------------------
        # print message to screen
        wmsg = 'Identification of lines in reference file: {0}'
        WLOG(p, '', wmsg.format(fpfile))

        # ------------------------------------------------------------------
        # Get the FP solution
        # ------------------------------------------------------------------

        loc = spirouTHORCA.FPWaveSolutionNew(p, loc)

        # ------------------------------------------------------------------
        # FP solution plots
        # ------------------------------------------------------------------
        if p['DRS_PLOT'] > 0:
            # Plot the FP extracted spectrum against wavelength solution
            sPlt.wave_plot_final_fp_order(p, loc, iteration=1)
            # Plot the measured FP cavity width offset against line number
            sPlt.wave_local_width_offset_plot(p, loc)
            # Plot the FP line wavelength residuals
            sPlt.wave_fp_wavelength_residuals(p, loc)

    # ------------------------------------------------------------------
    # Create new wavelength solution
    # ------------------------------------------------------------------
    # TODO: Melissa fault - fix later
    p['IC_HC_N_ORD_START_2'] = min(p['IC_HC_N_ORD_START_2'],
                                   p['IC_FP_N_ORD_START'])
    p['IC_HC_N_ORD_FINAL_2'] = max(p['IC_HC_N_ORD_FINAL_2'],
                                   p['IC_FP_N_ORD_FINAL'])
    start = p['IC_HC_N_ORD_START_2']
    end = p['IC_HC_N_ORD_FINAL_2']

    # recalculate echelle orders for Fit1DSolution
    o_orders = np.arange(start, end)
    echelle_order = p['IC_HC_T_ORDER_START'] - o_orders
    loc['ECHELLE_ORDERS'] = echelle_order
    loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()')

    # select the orders to fit
    lls = loc['LITTROW_EXTRAP_SOL_1'][start:end]
    loc = spirouTHORCA.Fit1DSolution(p, loc, lls, iteration=2)
    # from here, LL_OUT_2 wil be 0-47

    # ------------------------------------------------------------------
    # Repeat Littrow test
    # ------------------------------------------------------------------
    start = p['IC_LITTROW_ORDER_INIT_2']
    end = p['IC_LITTROW_ORDER_FINAL_2']
    # recalculate echelle orders for Littrow check
    o_orders = np.arange(start, end)
    echelle_order = p['IC_HC_T_ORDER_START'] - o_orders
    loc['ECHELLE_ORDERS'] = echelle_order
    loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()')

    # Do Littrow check
    ckwargs = dict(ll=loc['LL_OUT_2'][start:end, :], iteration=2, log=True)
    loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs)

    # Plot wave solution littrow check
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_check_plot(p, loc, iteration=2)

    # ------------------------------------------------------------------
    # extrapolate Littrow solution
    # ------------------------------------------------------------------
    ekwargs = dict(ll=loc['LL_OUT_2'], iteration=2)
    loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs)

    # ------------------------------------------------------------------
    # Plot littrow solution
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_extrap_plot(p, loc, iteration=2)

    # ------------------------------------------------------------------
    # Join 0-47 and 47-49 solutions
    # ------------------------------------------------------------------
    loc = spirouTHORCA.JoinOrders(p, loc)

    # ------------------------------------------------------------------
    # Plot single order, wavelength-calibrated, with found lines
    # ------------------------------------------------------------------

    if p['DRS_PLOT'] > 0:
        sPlt.wave_ea_plot_single_order(p, loc)

    # ----------------------------------------------------------------------
    # Do correlation on FP spectra
    # ----------------------------------------------------------------------

    # ------------------------------------------------------------------
    # Compute photon noise uncertainty for FP
    # ------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['FPDATA'], loc['LL_FINAL']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))

    # Use CCF Mask function with drift constants
    p['CCF_MASK'] = p['DRIFT_CCF_MASK']
    p['TARGET_RV'] = p['DRIFT_TARGET_RV']
    p['CCF_WIDTH'] = p['DRIFT_CCF_WIDTH']
    p['CCF_STEP'] = p['DRIFT_CCF_STEP']
    p['RVMIN'] = p['TARGET_RV'] - p['CCF_WIDTH']
    p['RVMAX'] = p['TARGET_RV'] + p['CCF_WIDTH'] + p['CCF_STEP']

    # get the CCF mask from file (check location of mask)
    loc = spirouRV.GetCCFMask(p, loc)

    # TODO Check why Blaze makes bugs in correlbin
    loc['BLAZE'] = np.ones((loc['NBO'], loc['NBPIX']))
    # set sources
    # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()')
    loc.set_source('blaze', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Do correlation on FP
    # ----------------------------------------------------------------------
    # calculate and fit the CCF
    loc['E2DSFF'] = np.array(loc['FPDATA'])
    loc.set_source('E2DSFF', __NAME__ + '/main()')
    p['CCF_FIT_TYPE'] = 1
    loc['BERV'] = 0.0
    loc['BERV_MAX'] = 0.0
    loc['BJD'] = 0.0

    # run the RV coravelation function with these parameters
    loc['WAVE_LL'] = np.array(loc['LL_FINAL'])
    loc['PARAM_LL'] = np.array(loc['LL_PARAM_FINAL'])
    loc = spirouRV.Coravelation(p, loc)

    # ----------------------------------------------------------------------
    # Update the Correlation stats with values using fiber C (FP) drift
    # ----------------------------------------------------------------------
    # get the maximum number of orders to use
    nbmax = p['CCF_NUM_ORDERS_MAX']
    # get the average ccf
    loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
    # normalize the average ccf
    normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF'])
    # get the fit for the normalized average ccf
    ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                       loc['RV_CCF'],
                                       normalized_ccf,
                                       fit_type=1)
    loc['CCF_RES'] = ccf_res
    loc['CCF_FIT'] = ccf_fit
    # get the max cpp
    loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum(
        loc['PIX_PASSED_ALL'])
    # get the RV value from the normalised average ccf fit center location
    loc['RV'] = float(ccf_res[1])
    # get the contrast (ccf fit amplitude)
    loc['CONTRAST'] = np.abs(100 * ccf_res[0])
    # get the FWHM value
    loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm()
    # set the source
    keys = [
        'AVERAGE_CCF', 'MAXCPP', 'RV', 'CONTRAST', 'FWHM', 'CCF_RES', 'CCF_FIT'
    ]
    loc.set_sources(keys, __NAME__ + '/main()')
    # ----------------------------------------------------------------------
    # log the stats
    wmsg = ('FP Correlation: C={0:.1f}[%] DRIFT={1:.5f}[km/s] '
            'FWHM={2:.4f}[km/s] maxcpp={3:.1f}')
    wargs = [loc['CONTRAST'], float(ccf_res[1]), loc['FWHM'], loc['MAXCPP']]
    WLOG(p, 'info', wmsg.format(*wargs))
    # ----------------------------------------------------------------------
    # rv ccf plot
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # Plot rv vs ccf (and rv vs ccf_fit)
        p['OBJNAME'] = 'FP'
        sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit)

    # TODO : Add QC of the FP CCF

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # get parameters ffrom p
    p['QC_RMS_LITTROW_MAX'] = p['QC_HC_RMS_LITTROW_MAX']
    p['QC_DEV_LITTROW_MAX'] = p['QC_HC_DEV_LITTROW_MAX']
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # ----------------------------------------------------------------------
    # quality control on sigma clip (sig1 > qc_hc_wave_sigma_max
    if loc['SIG1'] > p['QC_HC_WAVE_SIGMA_MAX']:
        fmsg = 'Sigma too high ({0:.5f} > {1:.5f})'
        fail_msg.append(fmsg.format(loc['SIG1'], p['QC_HC_WAVE_SIGMA_MAX']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(loc['SIG1'])
    qc_names.append('SIG1')
    qc_logic.append('SIG1 > {0:.2f}'.format(p['QC_HC_WAVE_SIGMA_MAX']))
    # ----------------------------------------------------------------------
    # check the difference between consecutive orders is always positive
    # get the differences
    wave_diff = loc['LL_FINAL'][1:] - loc['LL_FINAL'][:-1]
    if np.min(wave_diff) < 0:
        fmsg = 'Negative wavelength difference between orders'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(np.min(wave_diff))
    qc_names.append('MIN WAVE DIFF')
    qc_logic.append('MIN WAVE DIFF < 0')
    # ----------------------------------------------------------------------
    # check for infinites and NaNs in mean residuals from fit
    if ~np.isfinite(loc['X_MEAN_2']):
        # add failed message to the fail message list
        fmsg = 'NaN or Inf in X_MEAN_2'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(loc['X_MEAN_2'])
    qc_names.append('X_MEAN_2')
    qc_logic.append('X_MEAN_2 not finite')
    # ----------------------------------------------------------------------
    # iterate through Littrow test cut values
    lit_it = 2
    # checks every other value
    # TODO: This QC check (or set of QC checks needs re-writing it is
    # TODO:    nearly impossible to understand
    for x_it in range(1, len(loc['X_CUT_POINTS_' + str(lit_it)]), 2):
        # get x cut point
        x_cut_point = loc['X_CUT_POINTS_' + str(lit_it)][x_it]
        # get the sigma for this cut point
        sig_littrow = loc['LITTROW_SIG_' + str(lit_it)][x_it]
        # get the abs min and max dev littrow values
        min_littrow = abs(loc['LITTROW_MINDEV_' + str(lit_it)][x_it])
        max_littrow = abs(loc['LITTROW_MAXDEV_' + str(lit_it)][x_it])
        # get the corresponding order
        min_littrow_ord = loc['LITTROW_MINDEVORD_' + str(lit_it)][x_it]
        max_littrow_ord = loc['LITTROW_MAXDEVORD_' + str(lit_it)][x_it]
        # check if sig littrow is above maximum
        rms_littrow_max = p['QC_RMS_LITTROW_MAX']
        dev_littrow_max = p['QC_DEV_LITTROW_MAX']
        if sig_littrow > rms_littrow_max:
            fmsg = ('Littrow test (x={0}) failed (sig littrow = '
                    '{1:.2f} > {2:.2f})')
            fargs = [x_cut_point, sig_littrow, rms_littrow_max]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(sig_littrow)
        qc_names.append('sig_littrow')
        qc_logic.append('sig_littrow > {0:.2f}'.format(rms_littrow_max))
        # ----------------------------------------------------------------------
        # check if min/max littrow is out of bounds
        if np.max([max_littrow, min_littrow]) > dev_littrow_max:
            fmsg = ('Littrow test (x={0}) failed (min|max dev = '
                    '{1:.2f}|{2:.2f} > {3:.2f} for order {4}|{5})')
            fargs = [
                x_cut_point, min_littrow, max_littrow, dev_littrow_max,
                min_littrow_ord, max_littrow_ord
            ]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)

            # TODO: Should this be the QC header values?
            # TODO:   it does not change the outcome of QC (i.e. passed=False)
            # TODO:   So what is the point?
            # if sig was out of bounds, recalculate
            if sig_littrow > rms_littrow_max:
                # conditions
                check1 = min_littrow > dev_littrow_max
                check2 = max_littrow > dev_littrow_max
                # get the residuals
                respix = loc['LITTROW_YY_' + str(lit_it)][x_it]
                # check if both are out of bounds
                if check1 and check2:
                    # remove respective orders
                    worst_order = (min_littrow_ord, max_littrow_ord)
                    respix_2 = np.delete(respix, worst_order)
                    redo_sigma = True
                # check if min is out of bounds
                elif check1:
                    # remove respective order
                    worst_order = min_littrow_ord
                    respix_2 = np.delete(respix, worst_order)
                    redo_sigma = True
                # check if max is out of bounds
                elif check2:
                    # remove respective order
                    worst_order = max_littrow_ord
                    respix_2 = np.delete(respix, max_littrow_ord)
                    redo_sigma = True
                # else do not recalculate sigma
                else:
                    redo_sigma, respix_2, worst_order = False, None, None
                    wmsg = 'No outlying orders, sig littrow not recalculated'
                    fail_msg.append(wmsg.format())

                # if outlying order, recalculate stats
                if redo_sigma:
                    mean = np.nansum(respix_2) / len(respix_2)
                    mean2 = np.nansum(respix_2**2) / len(respix_2)
                    rms = np.sqrt(mean2 - mean**2)
                    if rms > rms_littrow_max:
                        fmsg = ('Littrow test (x={0}) failed (sig littrow = '
                                '{1:.2f} > {2:.2f} removing order {3})')
                        fargs = [
                            x_cut_point, rms, rms_littrow_max, worst_order
                        ]
                        fail_msg.append(fmsg.format(*fargs))
                    else:
                        wargs = [
                            x_cut_point, rms, rms_littrow_max, worst_order
                        ]
                        wmsg = ('Littrow test (x={0}) passed (sig littrow = '
                                '{1:.2f} > {2:.2f} removing order {3})')
                        fail_msg.append(wmsg.format(*wargs))
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(np.max([max_littrow, min_littrow]))
        qc_names.append('max or min littrow')
        qc_logic.append('max or min littrow > {0:.2f}'
                        ''.format(dev_littrow_max))
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # archive result in e2ds spectra
    # ------------------------------------------------------------------
    # get raw input file name(s)
    raw_infiles1 = []
    for hcfile in p['HCFILES']:
        raw_infiles1.append(os.path.basename(hcfile))
    raw_infile2 = os.path.basename(p['FPFILE'])
    # get wave filename
    wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA_2(p)
    wavefitsname = os.path.split(wavefits)[-1]
    # log progress
    wargs = [p['FIBER'], wavefits]
    wmsg = 'Write wavelength solution for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))
    # write solution to fitsfilename header
    # copy original keys
    hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'])
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='fpfile',
                                     values=p['FPFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE2'],
                                     dim1name='hcfile',
                                     values=p['HCFILES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add wave solution date
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_TIME1'],
                               value=p['MAX_TIME_HUMAN'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_TIME2'],
                               value=p['MAX_TIME_UNIX'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__)
    # add number of orders
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_ORD_N'],
                               value=loc['LL_PARAM_FINAL'].shape[0])
    # add degree of fit
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_LL_DEG'],
                               value=loc['LL_PARAM_FINAL'].shape[1] - 1)
    # add wave solution
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_WAVE_PARAM'],
                                     values=loc['LL_PARAM_FINAL'])

    # add FP CCF drift
    # target RV and width
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_TARG_RV'],
                               value=p['TARGET_RV'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_WIDTH'],
                               value=p['CCF_WIDTH'])
    # the rv step
    # rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1])
    # hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep)
    hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_STEP'], value=p['CCF_STEP'])

    # add ccf stats
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_DRIFT'],
                               value=loc['CCF_RES'][1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_FWHM'], value=loc['FWHM'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_CONTRAST'],
                               value=loc['CONTRAST'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_MAXCPP'],
                               value=loc['MAXCPP'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_MASK'], value=p['CCF_MASK'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_LINES'],
                               value=np.nansum(loc['TOT_LINE']))

    # write the wave "spectrum"
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    p = spirouImage.WriteImage(p, wavefits, loc['LL_FINAL'], hdict)

    # get filename for E2DS calibDB copy of FITSFILENAME
    e2dscopy_filename = spirouConfig.Constants.WAVE_E2DS_COPY(p)[0]
    wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]]
    wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))

    # make a copy of the E2DS file for the calibBD
    p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict)

    # only copy over if QC passed
    if p['QC']:
        # loop around hc files and update header with
        for hcfile in p['HCFILES']:
            raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile)
            p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath1)
        # update fp file
        raw_infilepath2 = os.path.join(p['ARG_FILE_DIR'], raw_infile2)
        p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath2)

    # ------------------------------------------------------------------
    # Save to result table
    # ------------------------------------------------------------------
    # calculate stats for table
    final_mean = 1000 * loc['X_MEAN_2']
    final_var = 1000 * loc['X_VAR_2']
    num_lines = int(np.nansum(loc['X_ITER_2'][:, 2]))  # loc['X_ITER_2']
    err = 1000 * np.sqrt(loc['X_VAR_2'] / num_lines)
    sig_littrow = 1000 * np.array(loc['LITTROW_SIG_' + str(lit_it)])
    # construct filename
    wavetbl = spirouConfig.Constants.WAVE_TBL_FILE_EA(p)
    wavetblname = os.path.basename(wavetbl)
    # construct and write table
    columnnames = [
        'night_name', 'file_name', 'fiber', 'mean', 'rms', 'N_lines', 'err',
        'rms_L500', 'rms_L1000', 'rms_L1500', 'rms_L2000', 'rms_L2500',
        'rms_L3000', 'rms_L3500'
    ]
    columnformats = [
        '{:20s}', '{:30s}', '{:3s}', '{:7.4f}', '{:6.2f}', '{:3d}', '{:6.3f}',
        '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}',
        '{:6.2f}'
    ]
    columnvalues = [[p['ARG_NIGHT_NAME']], [p['ARG_FILE_NAMES'][0]],
                    [p['FIBER']], [final_mean], [final_var],
                    [num_lines], [err], [sig_littrow[0]], [sig_littrow[1]],
                    [sig_littrow[2]], [sig_littrow[3]], [sig_littrow[4]],
                    [sig_littrow[5]], [sig_littrow[6]]]
    # make table
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # merge table
    wmsg = 'Global result summary saved in {0}'
    WLOG(p, '', wmsg.format(wavetblname))
    spirouImage.MergeTable(p, table, wavetbl, fmt='ascii.rst')

    # ----------------------------------------------------------------------
    # Save resolution and line profiles to file
    # ----------------------------------------------------------------------
    raw_infile = os.path.basename(p['FITSFILENAME'])
    # get wave filename
    resfits, tag3 = spirouConfig.Constants.WAVE_RES_FILE_EA(p)
    resfitsname = os.path.basename(resfits)
    WLOG(p, '', 'Saving wave resmap to {0}'.format(resfitsname))

    # make a copy of the E2DS file for the calibBD
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)

    # get res data in correct format
    resdata, hdicts = spirouTHORCA.GenerateResFiles(p, loc, hdict)
    # save to file
    p = spirouImage.WriteImageMulti(p, resfits, resdata, hdicts=hdicts)

    # ------------------------------------------------------------------
    # Save line list table file
    # ------------------------------------------------------------------
    # construct filename
    # TODO proper column values
    wavelltbl = spirouConfig.Constants.WAVE_LINE_FILE_EA(p)
    wavelltblname = os.path.split(wavelltbl)[-1]
    # construct and write table
    columnnames = ['order', 'll', 'dv', 'w', 'xi', 'xo', 'dvdx']
    columnformats = [
        '{:.0f}', '{:12.4f}', '{:13.5f}', '{:12.4f}', '{:12.4f}', '{:12.4f}',
        '{:8.4f}'
    ]

    columnvalues = []
    # construct column values (flatten over orders)
    for it in range(len(loc['X_DETAILS_2'])):
        for jt in range(len(loc['X_DETAILS_2'][it][0])):
            row = [
                float(it), loc['X_DETAILS_2'][it][0][jt],
                loc['LL_DETAILS_2'][it][0][jt], loc['X_DETAILS_2'][it][3][jt],
                loc['X_DETAILS_2'][it][1][jt], loc['X_DETAILS_2'][it][2][jt],
                loc['SCALE_2'][it][jt]
            ]
            columnvalues.append(row)

    # log saving
    wmsg = 'List of lines used saved in {0}'
    WLOG(p, '', wmsg.format(wavelltblname))

    # make table
    columnvalues = np.array(columnvalues).T
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    spirouImage.WriteTable(p, table, wavelltbl, fmt='ascii.rst')

    # ------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ------------------------------------------------------------------
    if p['QC']:
        # set the wave key
        keydb = 'WAVE_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, wavefits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR'])
        # set the hcref key
        keydb = 'HCREF_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, e2dscopy_filename)
        # update the master calib DB file with new key
        e2dscopyfits = os.path.split(e2dscopy_filename)[-1]
        spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR'])

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return p and loc
    return dict(locals())
def main(night_name=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    main_name = __NAME__ + '.main()'
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    p = spirouStartup.LoadArguments(p, night_name, require_night_name=False)
    # ----------------------------------------------------------------------
    # find all directories if night name was None (ARG_NIGHT_NAME = '')
    files, dirs = find_all_reduced_files(p)
    # ----------------------------------------------------------------------
    # loop around each file
    # ----------------------------------------------------------------------
    for it in range(len(files)):
        # get file name for this iteration
        basefilename = os.path.basename(files[it])
        # Log process
        wmsg = 'Processing file {0} ({1}/{2})'
        wargs = [basefilename, it + 1, len(files)]
        WLOG(p, 'info', wmsg.format(*wargs))
        # get this iteration values
        p['FITSFILENAME'] = files[it]
        p['ARG_NIGHT_NAME'] = dirs[it]
        p['REDUCED_DIR'] = os.path.join(p['DRS_DATA_REDUC'], dirs[it])
        p['ARG_FILE_NAMES'] = [basefilename]
        p['DRS_TYPE'] = "REDUCED"
        # identify fiber
        if '_AB.fits' in os.path.basename(files[it]):
            p['FIBER'] = 'AB'
        elif '_AB.fits' in os.path.basename(files[it]):
            p['FIBER'] = 'A'
        elif '_AB.fits' in os.path.basename(files[it]):
            p['FIBER'] = 'B'
        elif '_C.fits' in os.path.basename(files[it]):
            p['FIBER'] = 'C'
        else:
            wmsg1 = 'Wrong fiber type found. This should happen. Skipping'
            wmsg2 = '\tFile = {0}'.format(files[it])
            WLOG(p, 'warning', [wmsg1, wmsg2])
            # skip
            continue
        # set sources
        source = ['FITSFILENAME', 'ARG_NIGHT_NAME', 'REDUCED_DIR', 'FIBER',
                  'ARG_FILE_NAMES']
        p.set_sources(source, main_name)
        # define loc storage parameter dictionary
        loc = ParamDict()

        # ---------------------------------------------------------------------
        # Read image file
        # ---------------------------------------------------------------------
        # read the image data
        p, data, hdr = spirouImage.ReadImageAndCombine(p, framemath='add')

        # ---------------------------------------------------------------------
        # Load calibDB for this file
        # ---------------------------------------------------------------------
        # as we need a different calibDB for each file
        p = spirouStartup.LoadCalibDB(p, header=hdr)

        # ------------------------------------------------------------------
        # Read wavelength solution
        # ------------------------------------------------------------------
        # force reading from calibDB
        p['CALIB_DB_FORCE_WAVESOL'] = True
        p.set_source('CALIB_DB_FORCE_WAVESOL', main_name)
        # set source of wave file
        wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
        # Force A and B to AB solution
        if p['FIBER'] in ['A', 'B']:
            wave_fiber = 'AB'
        else:
            wave_fiber = p['FIBER']
        # get wave image
        wout = spirouImage.GetWaveSolution(p, hdr=hdr, return_wavemap=True,
                                           return_filename=True,
                                           return_header=True, fiber=wave_fiber)
        loc['WAVEPARAMS'], loc['WAVE'], loc['WAVEFILE'] = wout[:3]
        loc['WAVEHDR'], loc['WSOURCE'] = wout[3:]
        source_names = ['WAVE', 'WAVEFILE', 'WAVEPARAMS', 'WAVEHDR', 'WSOURCE']
        loc.set_sources(source_names, wsource)

        # get dates
        loc['WAVE_ACQTIMES'] = spirouDB.GetTimes(p, loc['WAVEHDR'])
        loc.set_source('WAVE_ACQTIMES', __NAME__ + '.main()')
        # get the recipe that produced the wave solution
        if 'WAVECODE' in loc['WAVEHDR']:
            loc['WAVE_CODE'] = loc['WAVEHDR']['WAVECODE']
        else:
            loc['WAVE_CODE'] = 'UNKNOWN'
        loc.set_source('WAVE_CODE', __NAME__ + '.main()')

        # ------------------------------------------------------------------
        # Save file with new header
        # ------------------------------------------------------------------
        # log that we are saving E2DS spectrum
        wmsg = 'Saving E2DS spectrum of Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(p['FIBER'], basefilename))

        # add keys from original header file
        hdict = spirouImage.CopyOriginalKeys(hdr)
        # set the version
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'],
                                   value=p['DRS_DATE'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'],
                                   value=p['DATE_NOW'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
        # set the input files
        hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'],
                                   value=loc['WAVEFILE'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'],
                                   value=loc['WSOURCE'])
        # add wave solution date
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME1'],
                                   value=loc['WAVE_ACQTIMES'][0])
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME2'],
                                   value=loc['WAVE_ACQTIMES'][1])
        # add wave solution number of orders
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_ORD_N'],
                                   value=loc['WAVEPARAMS'].shape[0])
        # add wave solution degree of fit
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_LL_DEG'],
                                   value=loc['WAVEPARAMS'].shape[1] - 1)
        # add wave solution coefficients
        hdict = spirouImage.AddKey2DList(p, hdict, p['KW_WAVE_PARAM'],
                                         values=loc['WAVEPARAMS'])
        # write to file
        p = spirouImage.WriteImage(p, p['FITSFILENAME'], data, hdict)
    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p, outputs=None)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #14
0
def main(night_name=None, reffile=None):
    """
    cal_DRIFT_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_DRIFT_E2DS_spirou.py [night_directory] [reffile]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param reffile: string, the reference file to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with reference file being None (i.e. get from sys.argv)
    if reffile is None:
        customargs = spirouStartup.GetCustomFromRuntime(
            p, [0], [str], ['reffile'])
    else:
        customargs = dict(reffile=reffile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='reffile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE'])
    p['REFFILENAME'] = reffilename
    p.set_source('REFFILENAME', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    speref, hdr, nbo, nx = spirouImage.ReadData(p, reffilename)
    # add to loc
    loc = ParamDict()
    loc['SPEREF'] = speref
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['speref', 'number_orders'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       fiber=wave_fiber,
                                       return_wavemap=True,
                                       return_filename=True)
    _, loc['WAVE'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    source = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    loc.set_sources(['WAVE', 'WAVEFILE', 'WSOURCE'], source)
    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # get flat
    p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])

    # ----------------------------------------------------------------------
    # Background correction
    # ----------------------------------------------------------------------
    # log that we are performing background correction
    if p['IC_DRIFT_BACK_CORR']:
        WLOG(p, '', 'Perform background correction')
        # get the box size from constants
        bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
        # Loop around the orders
        for order_num in range(loc['NUMBER_ORDERS']):
            miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num],
                                                  bsize)
            loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny

    # ------------------------------------------------------------------
    # Compute photon noise uncertainty for reference file
    # ------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['SPEREF'], loc['WAVE']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))

    # ------------------------------------------------------------------
    # Reference plots
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        sPlt.drift_plot_selected_wave_ref(p, loc)
        # plot photon noise uncertainty
        sPlt.drift_plot_photon_uncertainty(p, loc)

    # ------------------------------------------------------------------
    # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from
    #    ref file
    # ------------------------------------------------------------------
    # get files
    listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr)
    # get the number of files
    nfiles = len(listfiles)
    # Log the number of files found
    wmsgs = [
        'Number of files found on directory = {0}'.format(nfiles),
        '\tExtensions allowed:'
    ]
    for listtype in listtypes:
        wmsgs.append('\t\t - {0}'.format(listtype))
    WLOG(p, 'info', wmsgs)

    # ------------------------------------------------------------------
    # Set up Extract storage for all files
    # ------------------------------------------------------------------
    # decide whether we need to skip (for large number of files)
    if len(listfiles) >= p['DRIFT_NLARGE']:
        skip = p['DRIFT_E2DS_FILE_SKIP']
        nfiles = int(nfiles / skip)
    else:
        skip = 1
    # set up storage
    loc['DRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['ERRDRIFT'] = np.zeros((nfiles, loc['NUMBER_ORDERS']))
    loc['DELTATIME'] = np.zeros(nfiles)
    # set loc sources
    keys = ['drift', 'errdrift', 'deltatime']
    loc.set_sources(keys, __NAME__ + '/main()()')

    # ------------------------------------------------------------------
    # Loop around all files: correct for dark, reshape, extract and
    #     calculate dvrms and meanpond
    # ------------------------------------------------------------------
    wref = 1
    for i_it in range(nfiles):
        # get file for this iteration
        fpfile = listfiles[::skip][i_it]
        # Log the file we are reading
        wmsg = 'Reading file {0}'
        WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1]))
        # ------------------------------------------------------------------
        # read e2ds files and get timestamp
        # ------------------------------------------------------------------
        # read data
        rout = spirouImage.ReadData(p, filename=fpfile, log=False)
        loc['SPE'], hdri, nxi, nyi = rout
        # get acqtime
        bjdspe = spirouImage.GetAcqTime(p,
                                        hdri,
                                        name='acqtime',
                                        return_value=1,
                                        kind='julian')
        # test whether we want to subtract background
        if p['IC_DRIFT_BACK_CORR']:
            # Loop around the orders
            for order_num in range(loc['NUMBER_ORDERS']):
                # get the box size from constants
                bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
                # Measurethe min and max flux
                miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num],
                                                      bsize)
                # subtract off the background (miny)
                loc['SPE'][order_num] = loc['SPE'][order_num] - miny

        # ------------------------------------------------------------------
        # Compute photon noise uncertainty for iteration file
        # ------------------------------------------------------------------
        # set up the arguments for DeltaVrms2D
        dargs = [loc['SPE'], loc['WAVE']]
        dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                       size=p['IC_DRIFT_BOXSIZE'],
                       threshold=p['IC_DRIFT_MAXFLUX'])
        # run DeltaVrms2D
        dvrmsspe, wmodespe = spirouRV.DeltaVrms2D(*dargs, **dkwargs)

        # ------------------------------------------------------------------
        # Compute the correction of the cosmics and re-normalisation by
        #   comparison with the reference spectrum
        # ------------------------------------------------------------------
        # correction of the cosmics and renomalisation by comparison with
        #   the reference spectrum
        dargs = [p, loc['SPEREF'], loc['SPE']]
        dkwargs = dict(threshold=p['IC_DRIFT_MAXFLUX'],
                       size=p['IC_DRIFT_BOXSIZE'],
                       cut=p['IC_DRIFT_CUT_E2DS'])
        spen, cfluxr, cpt = spirouRV.ReNormCosmic2D(*dargs, **dkwargs)

        # ------------------------------------------------------------------
        # Calculate the RV drift
        # ------------------------------------------------------------------
        dargs = [loc['SPEREF'], spen, loc['WAVE']]
        dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                       threshold=p['IC_DRIFT_MAXFLUX'],
                       size=p['IC_DRIFT_BOXSIZE'])
        rv = spirouRV.CalcRVdrift2D(*dargs, **dkwargs)
        # ------------------------------------------------------------------
        # Calculate delta time
        # ------------------------------------------------------------------
        # calculate the time from reference (in hours)
        deltatime = (bjdspe - bjdref) * 24
        # ------------------------------------------------------------------
        # Calculate RV properties
        # ------------------------------------------------------------------
        # calculate the mean flux ratio
        meanfratio = np.nanmean(cfluxr)
        # calculate the weighted mean radial velocity
        wref = 1.0 / dvrmsref
        meanrv = -1.0 * np.nansum(rv * wref) / np.nansum(wref)
        err_meanrv = np.sqrt(dvrmsref + dvrmsspe)
        merr = 1. / np.sqrt(np.nansum((1. / err_meanrv)**2))
        # Log the RV properties
        wmsg = (
            'Time from ref={0:.2f} h  - Drift mean= {1:.2f} +- {2:.3f} m/s '
            '- Flux ratio= {3:.3f} - Nb Comsic= {4}')
        WLOG(p, '', wmsg.format(deltatime, meanrv, merr, meanfratio, cpt))
        # add this iteration to storage
        loc['DRIFT'][i_it] = -1.0 * rv
        loc['ERRDRIFT'][i_it] = err_meanrv
        loc['DELTATIME'][i_it] = deltatime

    # ------------------------------------------------------------------
    # Calculate drift properties
    # ------------------------------------------------------------------
    # get the maximum number of orders to use
    nomax = nbo  # p['IC_DRIFT_N_ORDER_MAX']
    # ------------------------------------------------------------------
    # if use mean
    if p['DRIFT_TYPE_E2DS'].upper() == 'WEIGHTED MEAN':
        # mean radial velocity
        sumwref = np.nansum(wref[:nomax])
        meanrv = np.nansum(loc['DRIFT'][:, :nomax] * wref[:nomax], 1) / sumwref
        # error in mean radial velocity
        errdrift2 = loc['ERRDRIFT'][:, :nomax]**2
        meanerr = 1.0 / np.sqrt(np.nansum(1.0 / errdrift2, 1))
        # add to loc
        loc['MDRIFT'] = meanrv
        loc['MERRDRIFT'] = meanerr
    # else use median
    else:
        # median drift
        loc['MDRIFT'] = np.nanmedian(loc['DRIFT'][:, :nomax], 1)
        # median err drift
        loc['MERRDRIFT'] = np.nanmedian(loc['ERRDRIFT'][:, :nomax], 1)
    # ------------------------------------------------------------------
    # set source
    loc.set_sources(['mdrift', 'merrdrift'], __NAME__ + '/main()()')
    # ------------------------------------------------------------------
    # peak to peak drift
    driftptp = np.max(loc['MDRIFT']) - np.min(loc['MDRIFT'])
    driftrms = np.std(loc['MDRIFT'])
    # log th etotal drift peak-to-peak and rms
    wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in '
            '{2:.2f} hour')
    wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])]
    WLOG(p, '', wmsg.format(*wargs))

    # ------------------------------------------------------------------
    # Plot of mean drift
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot delta time against median drift
        sPlt.drift_plot_dtime_against_mdrift(p, loc, kind='e2ds')

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Save drift values to file
    # ------------------------------------------------------------------
    # get raw input file name
    raw_infile = os.path.basename(p['REFFILE'])
    # construct filename
    driftfits, tag = spirouConfig.Constants.DRIFT_E2DS_FITS_FILE(p)
    driftfitsname = os.path.split(driftfits)[-1]
    # log that we are saving drift values
    wmsg = 'Saving drift values of Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname))
    # add keys from original header file
    hdict = spirouImage.CopyOriginalKeys(hdr)
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile)
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])

    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # save drift values
    p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict)

    # ------------------------------------------------------------------
    # print .tbl result
    # ------------------------------------------------------------------
    # construct filename
    drifttbl = spirouConfig.Constants.DRIFT_E2DS_TBL_FILE(p)
    drifttblname = os.path.split(drifttbl)[-1]
    # construct and write table
    columnnames = ['time', 'drift', 'drifterr']
    columnformats = ['7.4f', '6.2f', '6.3f']
    columnvalues = [loc['DELTATIME'], loc['MDRIFT'], loc['MERRDRIFT']]
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    wmsg = 'Average Drift saved in {0} Saved '
    WLOG(p, '', wmsg.format(drifttblname))
    spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst')

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
Beispiel #15
0
def main(night_name=None, flatfile=None):
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with arguments being None (i.e. get from sys.argv)
    name, lname = ['flatfile'], ['Reference file']
    req, call, call_priority = [True], [flatfile], [True]
    # now get custom arguments
    customargs = spirouStartup.GetCustomFromRuntime(p, [0], [str], name, req,
                                                    call, call_priority, lname)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='flatfile')
    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, reffile = spirouStartup.SingleFileSetup(p, filename=p['FLATFILE'])

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Get the required fiber type from the constants file
    # ----------------------------------------------------------------------
    # get the fiber type (set to AB)
    p['FIBER'] = p['EM_FIB_TYPE']
    p['FIBER_TYPES'] = [p['EM_FIB_TYPE']]

    # ----------------------------------------------------------------------
    # Read flat image file
    # ----------------------------------------------------------------------
    # read the image data (for the header only)
    image, hdr, ny, nx = spirouImage.ReadData(p, reffile)

    # ----------------------------------------------------------------------
    # fix for un-preprocessed files
    # ----------------------------------------------------------------------
    image = spirouImage.FixNonPreProcess(p, image)

    # ----------------------------------------------------------------------
    # Get basic image properties
    # ----------------------------------------------------------------------
    # create loc
    loc = ParamDict()
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')

    # ----------------------------------------------------------------------
    # Resize flat image
    # ----------------------------------------------------------------------
    # rotate the image and convert from ADU/s to e-
    image2 = spirouImage.ConvertToE(spirouImage.FlipImage(p, image), p=p)
    # convert NaN to zeros
    image2 = np.where(~np.isfinite(image2), np.zeros_like(image2), image2)
    # resize image
    bkwargs = dict(xlow=p['IC_CCDX_LOW'],
                   xhigh=p['IC_CCDX_HIGH'],
                   ylow=p['IC_CCDY_LOW'],
                   yhigh=p['IC_CCDY_HIGH'],
                   getshape=False)
    image2 = spirouImage.ResizeImage(p, image2, **bkwargs)
    # save flat to to loc and set source
    loc['IMAGE'] = image2
    loc.set_sources(['image'], __NAME__ + '/main()')
    # log change in data size
    wmsg = 'Image format changed to {0}x{1}'
    WLOG(p, '', wmsg.format(*image2.shape))

    # ----------------------------------------------------------------------
    # Read shape or tilt slit angle
    # ----------------------------------------------------------------------
    # set source of tilt file
    tsource = __NAME__ + '/main() + /spirouImage.ReadTiltFile'

    if p['IC_EXTRACT_TYPE'] in EXTRACT_SHAPE_TYPES:
        # log progress
        WLOG(p, '', 'Debananafying (straightening) image')
        # get the shape map
        p, loc['SHAPE'] = spirouImage.ReadShapeMap(p, hdr)
        loc.set_source('SHAPE', tsource)
    else:
        # get tilts
        p, loc['TILT'] = spirouImage.ReadTiltFile(p, hdr)
        loc.set_source('TILT', tsource)

    # ----------------------------------------------------------------------
    # Read blaze
    # ----------------------------------------------------------------------
    # get tilts
    p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hdr)
    loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile')
    # set number of orders from blaze file
    loc['NBO'] = loc['BLAZE'].shape[0]
    loc.set_source('NBO', __NAME__ + '/main()')

    # ------------------------------------------------------------------
    # Read wavelength solution
    # ------------------------------------------------------------------
    # set source of wave file
    wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    loc['WAVEPARAMS'], loc['WAVE'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVEPARAMS', 'WAVE', 'WAVEFILE', 'WSOURCE'], wsource)

    # ------------------------------------------------------------------
    # Get localisation coefficients
    # ------------------------------------------------------------------
    # storage for fiber parameters
    loc['ALL_ACC'] = OrderedDict()
    loc['ALL_ASS'] = OrderedDict()
    # get this fibers parameters
    for fiber in p['FIBER_TYPES']:
        p = spirouImage.FiberParams(p, fiber, merge=True)
        # get localisation fit coefficients
        p, loc = spirouLOCOR.GetCoeffs(p, hdr, loc=loc)
        # save all fibers
        loc['ALL_ACC'][fiber] = loc['ACC']
        loc['ALL_ASS'][fiber] = loc['ASS']

    # ------------------------------------------------------------------
    # Get telluric and telluric mask and add to loc
    # ------------------------------------------------------------------
    # log process
    wmsg = 'Loading telluric model and locating "good" tranmission'
    WLOG(p, '', wmsg)
    # load telluric and get mask (add to loc)
    loc = spirouExM.get_telluric(p, loc)

    # ------------------------------------------------------------------
    # Make 2D map of orders
    # ------------------------------------------------------------------
    # log progress
    WLOG(p, '', 'Making 2D map of order locations')
    # make the 2D wave-image
    loc = spirouExM.order_profile(p, loc)

    # ------------------------------------------------------------------
    # Make 2D map of wavelengths accounting for shape / tilt
    # ------------------------------------------------------------------
    # log progress
    WLOG(p, '', 'Mapping pixels on to wavelength grid')
    # make the 2D map of wavelength
    loc = spirouExM.create_wavelength_image(p, loc)

    # ------------------------------------------------------------------
    # Use spectra wavelength to create 2D image from wave-image
    # ------------------------------------------------------------------
    if p['EM_SAVE_MASK_MAP'] or p['EM_SAVE_TELL_SPEC']:
        # log progress
        WLOG(p, '', 'Creating image from wave-image interpolation')
        # create image from waveimage
        wkwargs = dict(x=loc['TELL_X'], y=loc['TELL_Y'])
        loc = spirouExM.create_image_from_waveimage(loc, **wkwargs)
    else:
        loc['SPE'] = np.zeros_like(image2).astype(float)

    # ------------------------------------------------------------------
    # Create 2D mask (min to max lambda + transmission threshold)
    # ------------------------------------------------------------------
    if p['EM_SAVE_MASK_MAP']:
        # log progress
        WLOG(p, '', 'Creating wavelength/tranmission mask')
        # create mask
        loc = spirouExM.create_mask(p, loc)
    else:
        loc['TELL_MASK_2D'] = np.zeros_like(image2).astype(bool)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # Construct parameters for header
    # ------------------------------------------------------------------
    hdict = OrderedDict()
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    # set the input files
    if loc['SHAPE'] is not None:
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBSHAPE'],
                                   value=p['SHAPFILE'])
    else:
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBTILT'],
                                   value=p['TILTFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBLOCO'], value=p['LOCOFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='file',
                                     values=p['FLATFILE'])
    # add name of the TAPAS y data
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_EM_TELLY'],
                               value=loc['TELLSPE'])
    # add name of the localisation fits file used
    hfile = os.path.basename(loc['LOCO_CTR_FILE'])
    hdict = spirouImage.AddKey(p, hdict, p['kw_EM_LOCFILE'], value=hfile)
    # add the max and min wavelength threshold
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['kw_EM_MINWAVE'],
                               value=p['EM_MIN_LAMBDA'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['kw_EM_MAXWAVE'],
                               value=p['EM_MAX_LAMBDA'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add the transmission cut
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['kw_EM_TRASCUT'],
                               value=p['EM_TELL_THRESHOLD'])

    # ------------------------------------------------------------------
    # Deal with output preferences
    # ------------------------------------------------------------------
    # add bad pixel map (if required)
    if p['EM_COMBINED_BADPIX']:
        # get bad pix mask (True where bad)
        badpixmask, bhdr, badfile = spirouImage.GetBadPixMap(p, hdr)
        goodpixels = badpixmask == 0
        # apply mask (multiply)
        loc['TELL_MASK_2D'] = loc['TELL_MASK_2D'] & goodpixels.astype(bool)
    else:
        badfile = 'None'
    # add to hdict
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=badfile)

    # convert waveimage mask into float array
    loc['TELL_MASK_2D'] = loc['TELL_MASK_2D'].astype('float')

    # check EM_OUTPUT_TYPE and deal with set to "all"
    if p['EM_OUTPUT_TYPE'] not in ["drs", "raw", "preprocess", "all"]:
        emsg1 = '"EM_OUTPUT_TYPE" not understood'
        emsg2 = '   must be either "drs", "raw" or "preprocess"'
        emsg3 = '   currently EM_OUTPUT_TYPE="{0}"'.format(p['EM_OUTPUT_TYPE'])
        WLOG(p, 'error', [emsg1, emsg2, emsg3])
        outputs = []
    elif p['EM_OUTPUT_TYPE'] != 'all':
        outputs = [str(p['EM_OUTPUT_TYPE'])]
    else:
        outputs = ["drs", "raw", "preprocess"]

    # ----------------------------------------------------------------------
    # loop around output types
    # ----------------------------------------------------------------------
    for output in outputs:
        # log progress
        WLOG(p, '', 'Processing {0} outputs'.format(output))
        # change EM_OUTPUT_TYPE
        p['EM_OUTPUT_TYPE'] = output
        # copy arrays
        out_spe = np.array(loc['SPE'])
        out_wave = np.array(loc['WAVEIMAGE'])
        out_mask = np.array(loc['TELL_MASK_2D'])
        # change image size if needed
        if output in ["raw", "preprocess"]:
            kk = dict(xsize=image.shape[1], ysize=image.shape[0])
            if p['EM_SAVE_TELL_SPEC']:
                WLOG(p, '', 'Resizing/Flipping SPE')
                out_spe = spirouExM.unresize(p, out_spe, **kk)
                WLOG(p, '', 'Rescaling SPE')
                out_spe = out_spe / (p['GAIN'] * p['EXPTIME'])
            if p['EM_SAVE_WAVE_MAP']:
                WLOG(p, '', 'Resizing/Flipping WAVEIMAGE')
                out_wave = spirouExM.unresize(p, out_wave, **kk)
            if p['EM_SAVE_MASK_MAP']:
                WLOG(p, '', 'Resizing/Flipping TELL_MASK_2D')
                out_mask = spirouExM.unresize(p, out_mask, **kk)
        # if raw need to rotate (undo pre-processing)
        if output == "raw":
            if p['EM_SAVE_TELL_SPEC']:
                WLOG(p, '', 'Rotating SPE')
                out_spe = np.rot90(out_spe, 1)
            if p['EM_SAVE_WAVE_MAP']:
                WLOG(p, '', 'Rotating WAVEIMAGE')
                out_wave = np.rot90(out_wave, 1)
            if p['EM_SAVE_MASK_MAP']:
                WLOG(p, '', 'Rotating TELL_MASK_2D')
                out_mask = np.rot90(out_mask, 1)

        # ----------------------------------------------------------------------
        # save 2D spectrum, wavelength image and mask to file
        # ----------------------------------------------------------------------
        # save telluric spectrum
        if p['EM_SAVE_TELL_SPEC']:
            # construct spectrum filename
            specfitsfile, tag = spirouConfig.Constants.EM_SPE_FILE(p)
            specfilename = os.path.split(specfitsfile)[-1]
            # set the version
            hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_DRS_DATE'],
                                       value=p['DRS_DATE'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_DATE_NOW'],
                                       value=p['DATE_NOW'])
            hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
            # log progress
            wmsg = 'Writing spectrum to file {0}'
            WLOG(p, '', wmsg.format(specfilename))
            # write to file
            p = spirouImage.WriteImage(p, specfitsfile, out_spe, hdict=hdict)

        # ----------------------------------------------------------------------
        # save wave map
        if p['EM_SAVE_WAVE_MAP']:
            # construct waveimage filename
            wavefitsfile, tag = spirouConfig.Constants.EM_WAVE_FILE(p)
            wavefilename = os.path.split(wavefitsfile)[-1]
            # set the version
            hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_DRS_DATE'],
                                       value=p['DRS_DATE'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_DATE_NOW'],
                                       value=p['DATE_NOW'])
            hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
            # log progress
            wmsg = 'Writing wave image to file {0}'
            WLOG(p, '', wmsg.format(wavefilename))
            # write to file
            p = spirouImage.WriteImage(p, wavefitsfile, out_wave, hdict=hdict)

        # ----------------------------------------------------------------------
        # save mask file
        if p['EM_SAVE_MASK_MAP']:
            # construct tell mask 2D filename
            maskfitsfile, tag = spirouConfig.Constants.EM_MASK_FILE(p)
            maskfilename = os.path.split(maskfitsfile)[-1]
            # set the version
            hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_DRS_DATE'],
                                       value=p['DRS_DATE'])
            hdict = spirouImage.AddKey(p,
                                       hdict,
                                       p['KW_DATE_NOW'],
                                       value=p['DATE_NOW'])
            hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
            # log progress
            wmsg = 'Writing telluric mask to file {0}'
            WLOG(p, '', wmsg.format(maskfilename))
            # convert boolean mask to integers
            writablemask = np.array(out_mask, dtype=float)
            # write to file
            p = spirouImage.WriteImage(p,
                                       maskfitsfile,
                                       writablemask,
                                       hdict=hdict)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, fpfile=None, hcfiles=None):
    """
    cal_wave_spirou.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_wave_spirou.py [night_directory] [fpfile] [hcfiles]

    :param night_name: string or None, the folder within data reduced directory
                                containing files (also reduced directory) i.e.
                                /data/reduced/20170710 would be "20170710" but
                                /data/reduced/AT5/20180409 is "AT5/20180409"
    :param fpfile: string, or None, the FP file to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)
    :param hcfiles: string, list or None, the list of HC files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------

    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    if hcfiles is None or fpfile is None:
        names, types = ['fpfile', 'hcfiles'], [str, str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1],
                                                        types,
                                                        names,
                                                        last_multi=True)
    else:
        customargs = dict(hcfiles=hcfiles, fpfile=fpfile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsdir='reduced',
                                    mainfitsfile='hcfiles')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, fpfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['FPFILE'])
    fiber1 = str(p['FIBER'])
    p, hcfilenames = spirouStartup.MultiFileSetup(p, files=p['HCFILES'])
    fiber2 = str(p['FIBER'])
    # set the hcfilename to the first hcfilenames
    hcfitsfilename = hcfilenames[0]

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Have to check that the fibers match
    # ----------------------------------------------------------------------
    if fiber1 == fiber2:
        p['FIBER'] = fiber1
        fsource = __NAME__ + '/main() & spirouStartup.GetFiberType()'
        p.set_source('FIBER', fsource)
    else:
        emsg = 'Fiber not matching for {0} and {1}, should be the same'
        eargs = [hcfitsfilename, fpfitsfilename]
        WLOG(p, 'error', emsg.format(*eargs))
    # set the fiber type
    p['FIB_TYP'] = [p['FIBER']]
    p.set_source('FIB_TYP', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Read FP and HC files
    # ----------------------------------------------------------------------

    # read and combine all HC files except the first (fpfitsfilename)
    rargs = [p, 'add', hcfitsfilename, hcfilenames[1:]]
    p, hcdata, hchdr = spirouImage.ReadImageAndCombine(*rargs)
    # read first file (fpfitsfilename)
    fpdata, fphdr, _, _ = spirouImage.ReadImage(p, fpfitsfilename)

    # add data and hdr to loc
    loc = ParamDict()
    loc['HCDATA'], loc['HCHDR'], loc['HCCDR'] = hcdata, hchdr, hchdr.comments
    loc['FPDATA'], loc['FPHDR'], loc['FPCDR'] = fpdata, fphdr, fphdr.comments

    # set the source
    sources = ['HCDATA', 'HCHDR', 'HCCDR']
    loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()')
    sources = ['FPDATA', 'FPHDR', 'FPCDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hchdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hchdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hchdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hchdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # get lamp parameters
    p = spirouWAVE2.get_lamp_parameters(p, hchdr)

    # get number of orders
    # we always get fibre A number because AB is doubled in constants file
    loc['NBO'] = p['QC_LOC_NBO_FPALL']['A']
    loc.set_source('NBO', __NAME__ + '.main()')
    # get number of pixels in x from hcdata size
    loc['NBPIX'] = loc['HCDATA'].shape[1]
    loc.set_source('NBPIX', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Read blaze
    # ----------------------------------------------------------------------
    # get tilts
    p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hchdr)
    loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile')
    # make copy of blaze (as it's overwritten later in CCF part)
    # TODO is this needed? More sensible to make and set copy in CCF?
    loc['BLAZE2'] = np.copy(loc['BLAZE'])

    # ----------------------------------------------------------------------
    # Read wave solution
    # ----------------------------------------------------------------------
    # wavelength file; we will use the polynomial terms in its header,
    # NOT the pixel values that would need to be interpolated

    # set source of wave file
    wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hchdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    loc['WAVEPARAMS'], loc['WAVE_INIT'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVE_INIT', 'WAVEFILE', 'WAVEPARAMS', 'WSOURCE'],
                    wsource)
    poly_wave_sol = loc['WAVEPARAMS']

    # ----------------------------------------------------------------------
    # Check that wave parameters are consistent with "ic_ll_degr_fit"
    # ----------------------------------------------------------------------
    loc = spirouImage.CheckWaveSolConsistency(p, loc)

    # ----------------------------------------------------------------------
    # HC wavelength solution
    # ----------------------------------------------------------------------
    # log that we are running the HC part and the mode
    wmsg = 'Now running the HC solution, mode = {0}'
    WLOG(p, 'info', wmsg.format(p['WAVE_MODE_HC']))

    # get the solution
    loc = spirouWAVE2.do_hc_wavesol(p, loc)

    # ----------------------------------------------------------------------
    # Quality control - HC solution
    # ----------------------------------------------------------------------

    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # ----------------------------------------------------------------------
    # quality control on sigma clip (sig1 > qc_hc_wave_sigma_max
    if loc['SIG1'] > p['QC_HC_WAVE_SIGMA_MAX']:
        fmsg = 'Sigma too high ({0:.5f} > {1:.5f})'
        fail_msg.append(fmsg.format(loc['SIG1'], p['QC_HC_WAVE_SIGMA_MAX']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(loc['SIG1'])
    qc_names.append('SIG1 HC')
    qc_logic.append('SIG1 > {0:.2f}'.format(p['QC_HC_WAVE_SIGMA_MAX']))
    # ----------------------------------------------------------------------
    # check the difference between consecutive orders is always positive
    # get the differences
    wave_diff = loc['WAVE_MAP2'][1:] - loc['WAVE_MAP2'][:-1]
    if np.min(wave_diff) < 0:
        fmsg = 'Negative wavelength difference between orders'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(np.min(wave_diff))
    qc_names.append('MIN WAVE DIFF HC')
    qc_logic.append('MIN WAVE DIFF < 0')
    # ----------------------------------------------------------------------
    # check the difference between consecutive pixels along an order is
    # always positive
    # loop through the orders
    ord_check = np.zeros((loc['NBO']), dtype=bool)
    for order in range(loc['NBO']):
        oc = np.all(loc['WAVE_MAP2'][order, 1:] > loc['WAVE_MAP2'][order, :-1])
        ord_check[order] = oc
    # TODO: Melissa Why is this here????
    # ord_check[5] = False
    if np.all(ord_check):
        qc_pass.append(1)
        qc_values.append('None')
    else:
        fmsg = 'Negative wavelength difference along an order'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
        qc_values.append(np.ndarray.tolist(np.where(~ord_check)[0]))
    # add to qc header lists
    # vale: array of orders where it fails

    qc_names.append('WAVE DIFF ALONG ORDER HC')
    qc_logic.append('WAVE DIFF ALONG ORDER < 0')

    # ----------------------------------------------------------------------
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ----------------------------------------------------------------------
    # log the global stats
    # ----------------------------------------------------------------------

    # calculate catalog-fit residuals in km/s

    res_hc = []
    sumres_hc = 0.0
    sumres2_hc = 0.0

    for order in range(loc['NBO']):
        # get HC line wavelengths for the order
        order_mask = loc['ORD_T'] == order
        hc_x_ord = loc['XGAU_T'][order_mask]
        hc_ll_ord = np.polyval(loc['POLY_WAVE_SOL'][order][::-1], hc_x_ord)
        hc_ll_cat = loc['WAVE_CATALOG'][order_mask]
        hc_ll_diff = hc_ll_ord - hc_ll_cat
        res_hc.append(hc_ll_diff * speed_of_light / hc_ll_cat)
        sumres_hc += np.nansum(res_hc[order])
        sumres2_hc += np.nansum(res_hc[order]**2)

    total_lines_hc = len(np.concatenate(res_hc))
    final_mean_hc = sumres_hc / total_lines_hc
    final_var_hc = (sumres2_hc / total_lines_hc) - (final_mean_hc**2)
    wmsg1 = 'On fiber {0} HC fit line statistic:'.format(p['FIBER'])
    wargs2 = [
        final_mean_hc * 1000.0,
        np.sqrt(final_var_hc) * 1000.0, total_lines_hc,
        1000.0 * np.sqrt(final_var_hc / total_lines_hc)
    ]
    wmsg2 = ('\tmean={0:.3f}[m/s] rms={1:.1f} {2} HC lines (error on mean '
             'value:{3:.4f}[m/s])'.format(*wargs2))
    WLOG(p, 'info', [wmsg1, wmsg2])

    # ----------------------------------------------------------------------
    # Save wave map to file
    # ----------------------------------------------------------------------
    # TODO single file-naming function? Ask Neil
    # get base input filenames
    bfilenames = []
    for raw_file in p['ARG_FILE_NAMES']:
        bfilenames.append(os.path.basename(raw_file))
    # get wave filename
    wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA(p)
    wavefitsname = os.path.basename(wavefits)
    # log progress
    WLOG(p, '', 'Saving wave map to {0}'.format(wavefitsname))
    # log progress
    wargs = [p['FIBER'], wavefitsname]
    wmsg = 'Write wavelength solution for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))
    # write solution to fitsfilename header
    # copy original keys
    hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'], loc['HCCDR'])
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    # TODO add DRS_DATE and DRS_NOW
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBAD'], value=p['BLAZFILE'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add wave solution date
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_TIME1'],
                               value=p['MAX_TIME_HUMAN'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_TIME2'],
                               value=p['MAX_TIME_UNIX'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__)
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='file',
                                     values=p['ARG_FILE_NAMES'])
    # add number of orders
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_ORD_N'],
                               value=loc['POLY_WAVE_SOL'].shape[0])
    # add degree of fit
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_LL_DEG'],
                               value=loc['POLY_WAVE_SOL'].shape[1] - 1)
    # add wave solution
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_WAVE_PARAM'],
                                     values=loc['POLY_WAVE_SOL'])
    # write the wave "spectrum"
    p = spirouImage.WriteImage(p, wavefits, loc['WAVE_MAP2'], hdict)

    # get filename for E2DS calibDB copy of FITSFILENAME
    e2dscopy_filename, tag2 = spirouConfig.Constants.WAVE_E2DS_COPY(p)

    wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]]
    wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))

    # make a copy of the E2DS file for the calibBD
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag2)
    p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict)

    # ----------------------------------------------------------------------
    # Save resolution and line profiles to file
    # ----------------------------------------------------------------------
    raw_infile = os.path.basename(p['FITSFILENAME'])
    # get wave filename
    resfits, tag3 = spirouConfig.Constants.WAVE_RES_FILE_EA(p)
    resfitsname = os.path.basename(resfits)
    WLOG(p, '', 'Saving wave resmap to {0}'.format(resfitsname))

    # make a copy of the E2DS file for the calibBD
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    # TODO add DRS_DATE and DRS_NOW
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)

    # get res data in correct format
    resdata, hdicts = spirouWAVE2.generate_res_files(p, loc, hdict)
    # save to file
    p = spirouImage.WriteImageMulti(p, resfits, resdata, hdicts=hdicts)

    # ----------------------------------------------------------------------
    # Update calibDB
    # ----------------------------------------------------------------------
    if p['QC']:
        # set the wave key
        keydb = 'WAVE_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, wavefits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR'])

        # set the hcref key
        keydb = 'HCREF_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, e2dscopy_filename)
        # update the master calib DB file with new key
        e2dscopyfits = os.path.split(e2dscopy_filename)[-1]
        spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR'])

    # ----------------------------------------------------------------------
    # Update header of current files
    # ----------------------------------------------------------------------
    # only copy over if QC passed
    if p['QC']:
        rdir = os.path.dirname(wavefits)
        # loop around hc files and update header with
        for rawhcfile in p['ARG_FILE_NAMES']:
            hcfile = os.path.join(rdir, rawhcfile)
            raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile)
            p = spirouImage.UpdateWaveSolutionHC(p, loc, raw_infilepath1)

    # ----------------------------------------------------------------------
    # HC+FP wavelength solution
    # ----------------------------------------------------------------------
    # check if there's a FP input and if HC solution passed QCs
    if has_fp and p['QC']:
        # log that we are doing the FP solution
        wmsg = 'Now running the combined FP-HC solution, mode = {}'
        WLOG(p, 'info', wmsg.format(p['WAVE_MODE_FP']))
        # do the wavelength solution
        loc = spirouWAVE2.do_fp_wavesol(p, loc)

        # ----------------------------------------------------------------------
        # Quality control
        # ----------------------------------------------------------------------
        # get parameters ffrom p
        p['QC_RMS_LITTROW_MAX'] = p['QC_HC_RMS_LITTROW_MAX']
        p['QC_DEV_LITTROW_MAX'] = p['QC_HC_DEV_LITTROW_MAX']
        # set passed variable and fail message list
        # passed, fail_msg = True, []
        # qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
        # ----------------------------------------------------------------------
        # check the difference between consecutive orders is always positive
        # get the differences
        wave_diff = loc['LL_FINAL'][1:] - loc['LL_FINAL'][:-1]
        if np.min(wave_diff) < 0:
            fmsg = 'Negative wavelength difference between orders'
            fail_msg.append(fmsg)
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(np.min(wave_diff))
        qc_names.append('MIN WAVE DIFF FP-HC')
        qc_logic.append('MIN WAVE DIFF < 0')
        # ----------------------------------------------------------------------
        # check for infinites and NaNs in mean residuals from fit
        if ~np.isfinite(loc['X_MEAN_2']):
            # add failed message to the fail message list
            fmsg = 'NaN or Inf in X_MEAN_2'
            fail_msg.append(fmsg)
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(loc['X_MEAN_2'])
        qc_names.append('X_MEAN_2')
        qc_logic.append('X_MEAN_2 not finite')
        # ----------------------------------------------------------------------
        # iterate through Littrow test cut values
        lit_it = 2
        # checks every other value
        # TODO: This QC check (or set of QC checks needs re-writing it is
        # TODO:    nearly impossible to understand
        for x_it in range(1, len(loc['X_CUT_POINTS_' + str(lit_it)]), 2):
            # get x cut point
            x_cut_point = loc['X_CUT_POINTS_' + str(lit_it)][x_it]
            # get the sigma for this cut point
            sig_littrow = loc['LITTROW_SIG_' + str(lit_it)][x_it]
            # get the abs min and max dev littrow values
            min_littrow = abs(loc['LITTROW_MINDEV_' + str(lit_it)][x_it])
            max_littrow = abs(loc['LITTROW_MAXDEV_' + str(lit_it)][x_it])
            # get the corresponding order
            min_littrow_ord = loc['LITTROW_MINDEVORD_' + str(lit_it)][x_it]
            max_littrow_ord = loc['LITTROW_MAXDEVORD_' + str(lit_it)][x_it]
            # check if sig littrow is above maximum
            rms_littrow_max = p['QC_RMS_LITTROW_MAX']
            dev_littrow_max = p['QC_DEV_LITTROW_MAX']
            if sig_littrow > rms_littrow_max:
                fmsg = ('Littrow test (x={0}) failed (sig littrow = '
                        '{1:.2f} > {2:.2f})')
                fargs = [x_cut_point, sig_littrow, rms_littrow_max]
                fail_msg.append(fmsg.format(*fargs))
                passed = False
                qc_pass.append(0)
            else:
                qc_pass.append(1)
            # add to qc header lists
            qc_values.append(sig_littrow)
            qc_names.append('sig_littrow')
            qc_logic.append('sig_littrow > {0:.2f}'.format(rms_littrow_max))
            # ----------------------------------------------------------------------
            # check if min/max littrow is out of bounds
            if np.max([max_littrow, min_littrow]) > dev_littrow_max:
                fmsg = ('Littrow test (x={0}) failed (min|max dev = '
                        '{1:.2f}|{2:.2f} > {3:.2f} for order {4}|{5})')
                fargs = [
                    x_cut_point, min_littrow, max_littrow, dev_littrow_max,
                    min_littrow_ord, max_littrow_ord
                ]
                fail_msg.append(fmsg.format(*fargs))
                passed = False
                qc_pass.append(0)

                # TODO: Should this be the QC header values?
                # TODO:   it does not change the outcome of QC (i.e. passed=False)
                # TODO:   So what is the point?
                # if sig was out of bounds, recalculate
                if sig_littrow > rms_littrow_max:
                    # conditions
                    check1 = min_littrow > dev_littrow_max
                    check2 = max_littrow > dev_littrow_max
                    # get the residuals
                    respix = loc['LITTROW_YY_' + str(lit_it)][x_it]
                    # check if both are out of bounds
                    if check1 and check2:
                        # remove respective orders
                        worst_order = (min_littrow_ord, max_littrow_ord)
                        respix_2 = np.delete(respix, worst_order)
                        redo_sigma = True
                    # check if min is out of bounds
                    elif check1:
                        # remove respective order
                        worst_order = min_littrow_ord
                        respix_2 = np.delete(respix, worst_order)
                        redo_sigma = True
                    # check if max is out of bounds
                    elif check2:
                        # remove respective order
                        worst_order = max_littrow_ord
                        respix_2 = np.delete(respix, max_littrow_ord)
                        redo_sigma = True
                    # else do not recalculate sigma
                    else:
                        redo_sigma, respix_2, worst_order = False, None, None
                        wmsg = 'No outlying orders, sig littrow not recalculated'
                        fail_msg.append(wmsg.format())

                    # if outlying order, recalculate stats
                    if redo_sigma:
                        mean = np.nansum(respix_2) / len(respix_2)
                        mean2 = np.nansum(respix_2**2) / len(respix_2)
                        rms = np.sqrt(mean2 - mean**2)
                        if rms > rms_littrow_max:
                            fmsg = (
                                'Littrow test (x={0}) failed (sig littrow = '
                                '{1:.2f} > {2:.2f} removing order {3})')
                            fargs = [
                                x_cut_point, rms, rms_littrow_max, worst_order
                            ]
                            fail_msg.append(fmsg.format(*fargs))
                        else:
                            wargs = [
                                x_cut_point, rms, rms_littrow_max, worst_order
                            ]
                            wmsg = (
                                'Littrow test (x={0}) passed (sig littrow = '
                                '{1:.2f} > {2:.2f} removing order {3})')
                            fail_msg.append(wmsg.format(*wargs))
            else:
                qc_pass.append(1)
            # add to qc header lists
            qc_values.append(np.max([max_littrow, min_littrow]))
            qc_names.append('max or min littrow')
            qc_logic.append('max or min littrow > {0:.2f}'
                            ''.format(dev_littrow_max))
        # finally log the failed messages and set QC = 1 if we pass the
        # quality control QC = 0 if we fail quality control
        if passed:
            WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
            p['QC'] = 1
            p.set_source('QC', __NAME__ + '/main()')
        else:
            for farg in fail_msg:
                wmsg = 'QUALITY CONTROL FAILED: {0}'
                WLOG(p, 'warning', wmsg.format(farg))
            p['QC'] = 0
            p.set_source('QC', __NAME__ + '/main()')
        # store in qc_params
        qc_params = [qc_names, qc_values, qc_logic, qc_pass]

        # ------------------------------------------------------------------
        # archive result in e2ds spectra
        # ------------------------------------------------------------------
        # get raw input file name(s)
        raw_infiles1 = []
        for hcfile in p['HCFILES']:
            raw_infiles1.append(os.path.basename(hcfile))
        raw_infile2 = os.path.basename(p['FPFILE'])
        # get wave filename
        wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA_2(p)
        wavefitsname = os.path.split(wavefits)[-1]
        # log progress
        wargs = [p['FIBER'], wavefits]
        wmsg = 'Write wavelength solution for Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(*wargs))
        # write solution to fitsfilename header
        # copy original keys
        hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'], loc['HCCDR'])
        # add version number
        hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
        # set the input files
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBBAD'],
                                   value=p['BLAZFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_CDBWAVE'],
                                   value=loc['WAVEFILE'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVESOURCE'],
                                   value=loc['WSOURCE'])
        hdict = spirouImage.AddKey1DList(p,
                                         hdict,
                                         p['KW_INFILE1'],
                                         dim1name='fpfile',
                                         values=p['FPFILE'])
        hdict = spirouImage.AddKey1DList(p,
                                         hdict,
                                         p['KW_INFILE2'],
                                         dim1name='hcfile',
                                         values=p['HCFILES'])
        # add qc parameters
        hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
        hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
        # add wave solution date
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_TIME1'],
                                   value=p['MAX_TIME_HUMAN'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_TIME2'],
                                   value=p['MAX_TIME_UNIX'])
        hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__)
        # add number of orders
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_ORD_N'],
                                   value=loc['LL_PARAM_FINAL'].shape[0])
        # add degree of fit
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WAVE_LL_DEG'],
                                   value=loc['LL_PARAM_FINAL'].shape[1] - 1)
        # add wave solution
        hdict = spirouImage.AddKey2DList(p,
                                         hdict,
                                         p['KW_WAVE_PARAM'],
                                         values=loc['LL_PARAM_FINAL'])

        # add FP CCF drift
        # target RV and width
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_TARG_RV'],
                                   value=p['TARGET_RV'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_WIDTH'],
                                   value=p['CCF_WIDTH'])
        # the rv step
        # rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1])
        # hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep)
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_STEP'],
                                   value=p['CCF_STEP'])

        # add ccf stats
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_DRIFT'],
                                   value=loc['CCF_RES'][1])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_FWHM'],
                                   value=loc['FWHM'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_CONTRAST'],
                                   value=loc['CONTRAST'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_MAXCPP'],
                                   value=loc['MAXCPP'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_MASK'],
                                   value=p['CCF_MASK'])
        hdict = spirouImage.AddKey(p,
                                   hdict,
                                   p['KW_WFP_LINES'],
                                   value=np.nansum(loc['TOT_LINE']))

        # write the wave "spectrum"
        hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
        p = spirouImage.WriteImage(p, wavefits, loc['LL_FINAL'], hdict)

        # get filename for E2DS calibDB copy of FITSFILENAME
        e2dscopy_filename = spirouConfig.Constants.WAVE_E2DS_COPY(p)[0]
        wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]]
        wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}'
        WLOG(p, '', wmsg.format(*wargs))

        # make a copy of the E2DS file for the calibBD
        p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict)

        # only copy over if QC passed
        if p['QC']:
            # loop around hc files and update header with
            for hcfile in p['HCFILES']:
                raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile)
                p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath1)
            # update fp file
            raw_infilepath2 = os.path.join(p['ARG_FILE_DIR'], raw_infile2)
            p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath2)

        # ------------------------------------------------------------------
        # Save to result table
        # ------------------------------------------------------------------
        # calculate stats for table
        final_mean = 1000 * loc['X_MEAN_2']
        final_var = 1000 * loc['X_VAR_2']
        num_lines = loc['TOTAL_LINES_2']
        err = 1000 * np.sqrt(loc['X_VAR_2'] / num_lines)
        sig_littrow = 1000 * np.array(loc['LITTROW_SIG_' + str(lit_it)])
        # construct filename
        wavetbl = spirouConfig.Constants.WAVE_TBL_FILE_EA(p)
        wavetblname = os.path.basename(wavetbl)
        # construct and write table
        columnnames = [
            'night_name', 'file_name', 'fiber', 'mean', 'rms', 'N_lines',
            'err', 'rms_L500', 'rms_L1000', 'rms_L1500', 'rms_L2000',
            'rms_L2500', 'rms_L3000', 'rms_L3500'
        ]
        columnformats = [
            '{:20s}', '{:30s}', '{:3s}', '{:7.4f}', '{:6.2f}', '{:3d}',
            '{:6.3f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}',
            '{:6.2f}', '{:6.2f}'
        ]
        columnvalues = [[p['ARG_NIGHT_NAME']], [p['ARG_FILE_NAMES'][0]],
                        [p['FIBER']], [final_mean], [final_var], [num_lines],
                        [err], [sig_littrow[0]], [sig_littrow[1]],
                        [sig_littrow[2]], [sig_littrow[3]], [sig_littrow[4]],
                        [sig_littrow[5]], [sig_littrow[6]]]
        # make table
        table = spirouImage.MakeTable(p,
                                      columns=columnnames,
                                      values=columnvalues,
                                      formats=columnformats)
        # merge table
        wmsg = 'Global result summary saved in {0}'
        WLOG(p, '', wmsg.format(wavetblname))
        spirouImage.MergeTable(p, table, wavetbl, fmt='ascii.rst')

        # ------------------------------------------------------------------
        # Save line list table file
        # ------------------------------------------------------------------
        # construct filename
        # TODO proper column values
        wavelltbl = spirouConfig.Constants.WAVE_LINE_FILE_EA(p)
        wavelltblname = os.path.split(wavelltbl)[-1]
        # construct and write table
        columnnames = ['order', 'll', 'dv', 'w', 'xi', 'xo', 'dvdx']
        columnformats = [
            '{:.0f}', '{:12.4f}', '{:13.5f}', '{:12.4f}', '{:12.4f}',
            '{:12.4f}', '{:8.4f}'
        ]

        columnvalues = []
        # construct column values (flatten over orders)
        for it in range(len(loc['X_DETAILS_2'])):
            for jt in range(len(loc['X_DETAILS_2'][it][0])):
                row = [
                    float(it), loc['X_DETAILS_2'][it][0][jt],
                    loc['LL_DETAILS_2'][it][0][jt],
                    loc['X_DETAILS_2'][it][3][jt],
                    loc['X_DETAILS_2'][it][1][jt],
                    loc['X_DETAILS_2'][it][2][jt], loc['SCALE_2'][it][jt]
                ]
                columnvalues.append(row)

        # log saving
        wmsg = 'List of lines used saved in {0}'
        WLOG(p, '', wmsg.format(wavelltblname))

        # make table
        columnvalues = np.array(columnvalues).T
        table = spirouImage.MakeTable(p,
                                      columns=columnnames,
                                      values=columnvalues,
                                      formats=columnformats)
        # write table
        spirouImage.WriteTable(p, table, wavelltbl, fmt='ascii.rst')

        # ------------------------------------------------------------------
        # Move to calibDB and update calibDB
        # ------------------------------------------------------------------
        if p['QC']:
            # set the wave key
            keydb = 'WAVE_{0}'.format(p['FIBER'])
            # copy wave file to calibDB folder
            spirouDB.PutCalibFile(p, wavefits)
            # update the master calib DB file with new key
            spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR'])
            # set the hcref key
            keydb = 'HCREF_{0}'.format(p['FIBER'])
            # copy wave file to calibDB folder
            spirouDB.PutCalibFile(p, e2dscopy_filename)
            # update the master calib DB file with new key
            e2dscopyfits = os.path.split(e2dscopy_filename)[-1]
            spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR'])

    # If the HC solution failed QCs we do not compute FP-HC solution
    elif has_fp and not p['QC']:
        wmsg = 'HC solution failed quality controls; FP not processed'
        WLOG(p, 'warning', wmsg)

    # If there is no FP file we log that
    elif not has_fp:
        wmsg = 'No FP file given; FP-HC combined solution cannot be generated'
        WLOG(p, 'warning', wmsg)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return p and loc
    return dict(locals())