def sample_mean(data, sample_size):
    total = 0
    sample = getSample(data, sample_size)
    num_values = len(sample)
    for num in sample:
        total = addition(total, num)
    return division(total, num_values)
Beispiel #2
0
def sample_mean(data, sample_size):
    total = 0
    # check that get sample returns the proper number of samples
    # check that sample size is not 0
    # check that sample size is not larger than the population
    # https://realpython.com/python-exceptions/
    # https://stackoverflow.com/questions/129507/how-do-you-test-that-a-python-function-throws-an-exception
    sample = getSample(data, sample_size)
    num_values = len(sample)
    for num in sample:
        total = addition(total, num)
    return division(total, num_values)
Beispiel #3
0
def sample_st_deviation(data, sample_size):
    dev = 0
    sample = getSample(data, sample_size)
    sample_values = len(sample)
    x_bar = sample_mean()
    x = sample_values
    n = subtraction(sample_values, 1)
    for dev in sample:
        dev = subtraction(x, x_bar)
        square_x_bar = square(dev)
        add = addition(square_x_bar, square_x_bar)
        divide = division(add, n)
    return squareroot(divide)
def ssd(data):
    total = 0
    sample = random.randint(1, len(data))
    new_sample = getSample(data, sample)
    new_mean = mean(new_sample)
    for numb in new_sample:
        result = subtraction(numb, new_mean)
        sq = squaree(result)
        total = addition(total, sq)
    n = len(new_sample)
    d = division(subtraction(1, n), total)
    samp_sd = squar_rot(d)
    # actual_sd = statistics.stdev(new_sample)
    return samp_sd