Beispiel #1
0
def train(model, criterion, optimizer, scheduler, ap, global_step):
    data_loader = setup_loader(ap, is_val=False, verbose=True)
    model.train()
    epoch_time = 0
    best_loss = float('inf')
    avg_loss = 0
    end_time = time.time()
    for _, data in enumerate(data_loader):
        start_time = time.time()

        # setup input data
        inputs = data[0]
        loader_time = time.time() - end_time
        global_step += 1

        # setup lr
        if c.lr_decay:
            scheduler.step()
        optimizer.zero_grad()

        # dispatch data to GPU
        if use_cuda:
            inputs = inputs.cuda(non_blocking=True)
            # labels = labels.cuda(non_blocking=True)

        # forward pass model
        outputs = model(inputs)

        # loss computation
        loss = criterion(
            outputs.view(c.num_speakers_in_batch,
                         outputs.shape[0] // c.num_speakers_in_batch, -1))
        loss.backward()
        grad_norm, _ = check_update(model, c.grad_clip)
        optimizer.step()

        step_time = time.time() - start_time
        epoch_time += step_time

        avg_loss = 0.01 * loss.item(
        ) + 0.99 * avg_loss if avg_loss != 0 else loss.item()
        current_lr = optimizer.param_groups[0]['lr']

        if global_step % c.steps_plot_stats == 0:
            # Plot Training Epoch Stats
            train_stats = {
                "GE2Eloss": avg_loss,
                "lr": current_lr,
                "grad_norm": grad_norm,
                "step_time": step_time
            }
            tb_logger.tb_train_epoch_stats(global_step, train_stats)
            figures = {
                # FIXME: not constant
                "UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(),
                                             10),
            }
            tb_logger.tb_train_figures(global_step, figures)

        if global_step % c.print_step == 0:
            print(
                "   | > Step:{}  Loss:{:.5f}  AvgLoss:{:.5f}  GradNorm:{:.5f}  "
                "StepTime:{:.2f}  LoaderTime:{:.2f}  LR:{:.6f}".format(
                    global_step, loss.item(), avg_loss, grad_norm, step_time,
                    loader_time, current_lr),
                flush=True)

        # save best model
        best_loss = save_best_model(model, optimizer, avg_loss, best_loss,
                                    OUT_PATH, global_step)

        end_time = time.time()
    return avg_loss, global_step
Beispiel #2
0
def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
          ap, global_step, epoch):
    data_loader = setup_loader(ap, is_val=False, verbose=(epoch == 0))
    if c.use_speaker_embedding:
        speaker_mapping = load_speaker_mapping(OUT_PATH)
    model.train()
    epoch_time = 0
    avg_postnet_loss = 0
    avg_decoder_loss = 0
    avg_stop_loss = 0
    avg_step_time = 0
    avg_loader_time = 0
    print("\n > Epoch {}/{}".format(epoch, c.epochs), flush=True)
    if use_cuda:
        batch_n_iter = int(
            len(data_loader.dataset) / (c.batch_size * num_gpus))
    else:
        batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
    end_time = time.time()
    for num_iter, data in enumerate(data_loader):
        start_time = time.time()

        # setup input data
        text_input = data[0]
        text_lengths = data[1]
        speaker_names = data[2]
        linear_input = data[3] if c.model in ["Tacotron", "TacotronGST"
                                              ] else None
        mel_input = data[4]
        mel_lengths = data[5]
        stop_targets = data[6]
        avg_text_length = torch.mean(text_lengths.float())
        avg_spec_length = torch.mean(mel_lengths.float())
        loader_time = time.time() - end_time

        if c.use_speaker_embedding:
            speaker_ids = [
                speaker_mapping[speaker_name] for speaker_name in speaker_names
            ]
            speaker_ids = torch.LongTensor(speaker_ids)
        else:
            speaker_ids = None

        # set stop targets view, we predict a single stop token per r frames prediction
        stop_targets = stop_targets.view(text_input.shape[0],
                                         stop_targets.size(1) // c.r, -1)
        stop_targets = (stop_targets.sum(2) >
                        0.0).unsqueeze(2).float().squeeze(2)

        global_step += 1

        # setup lr
        if c.lr_decay:
            scheduler.step()
        optimizer.zero_grad()
        if optimizer_st:
            optimizer_st.zero_grad()

        # dispatch data to GPU
        if use_cuda:
            text_input = text_input.cuda(non_blocking=True)
            text_lengths = text_lengths.cuda(non_blocking=True)
            mel_input = mel_input.cuda(non_blocking=True)
            mel_lengths = mel_lengths.cuda(non_blocking=True)
            linear_input = linear_input.cuda(
                non_blocking=True) if c.model in ["Tacotron", "TacotronGST"
                                                  ] else None
            stop_targets = stop_targets.cuda(non_blocking=True)
            if speaker_ids is not None:
                speaker_ids = speaker_ids.cuda(non_blocking=True)

        # forward pass model
        decoder_output, postnet_output, alignments, stop_tokens = model(
            text_input, text_lengths, mel_input, speaker_ids=speaker_ids)

        # loss computation
        stop_loss = criterion_st(stop_tokens,
                                 stop_targets) if c.stopnet else torch.zeros(1)
        if c.loss_masking:
            decoder_loss = criterion(decoder_output, mel_input, mel_lengths)
            if c.model in ["Tacotron", "TacotronGST"]:
                postnet_loss = criterion(postnet_output, linear_input,
                                         mel_lengths)
            else:
                postnet_loss = criterion(postnet_output, mel_input,
                                         mel_lengths)
        else:
            decoder_loss = criterion(decoder_output, mel_input)
            if c.model in ["Tacotron", "TacotronGST"]:
                postnet_loss = criterion(postnet_output, linear_input)
            else:
                postnet_loss = criterion(postnet_output, mel_input)
        loss = decoder_loss + postnet_loss
        if not c.separate_stopnet and c.stopnet:
            loss += stop_loss

        loss.backward()
        optimizer, current_lr = weight_decay(optimizer, c.wd)
        grad_norm, _ = check_update(model, c.grad_clip)
        optimizer.step()

        # backpass and check the grad norm for stop loss
        if c.separate_stopnet:
            stop_loss.backward()
            optimizer_st, _ = weight_decay(optimizer_st, c.wd)
            grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
            optimizer_st.step()
        else:
            grad_norm_st = 0

        step_time = time.time() - start_time
        epoch_time += step_time

        if global_step % c.print_step == 0:
            print(
                "   | > Step:{}/{}  GlobalStep:{}  TotalLoss:{:.5f}  PostnetLoss:{:.5f}  "
                "DecoderLoss:{:.5f}  StopLoss:{:.5f}  GradNorm:{:.5f}  "
                "GradNormST:{:.5f}  AvgTextLen:{:.1f}  AvgSpecLen:{:.1f}  StepTime:{:.2f}  "
                "LoaderTime:{:.2f}  LR:{:.6f}".format(
                    num_iter, batch_n_iter, global_step, loss.item(),
                    postnet_loss.item(), decoder_loss.item(), stop_loss.item(),
                    grad_norm, grad_norm_st, avg_text_length, avg_spec_length,
                    step_time, loader_time, current_lr),
                flush=True)

        # aggregate losses from processes
        if num_gpus > 1:
            postnet_loss = reduce_tensor(postnet_loss.data, num_gpus)
            decoder_loss = reduce_tensor(decoder_loss.data, num_gpus)
            loss = reduce_tensor(loss.data, num_gpus)
            stop_loss = reduce_tensor(stop_loss.data,
                                      num_gpus) if c.stopnet else stop_loss

        if args.rank == 0:
            avg_postnet_loss += float(postnet_loss.item())
            avg_decoder_loss += float(decoder_loss.item())
            avg_stop_loss += stop_loss if isinstance(
                stop_loss, float) else float(stop_loss.item())
            avg_step_time += step_time
            avg_loader_time += loader_time

            # Plot Training Iter Stats
            # reduce TB load
            if global_step % 10 == 0:
                iter_stats = {
                    "loss_posnet": postnet_loss.item(),
                    "loss_decoder": decoder_loss.item(),
                    "lr": current_lr,
                    "grad_norm": grad_norm,
                    "grad_norm_st": grad_norm_st,
                    "step_time": step_time
                }
                tb_logger.tb_train_iter_stats(global_step, iter_stats)

            if global_step % c.save_step == 0:
                if c.checkpoint:
                    # save model
                    save_checkpoint(model, optimizer, optimizer_st,
                                    postnet_loss.item(), OUT_PATH, global_step,
                                    epoch)

                # Diagnostic visualizations
                const_spec = postnet_output[0].data.cpu().numpy()
                gt_spec = linear_input[0].data.cpu().numpy() if c.model in [
                    "Tacotron", "TacotronGST"
                ] else mel_input[0].data.cpu().numpy()
                align_img = alignments[0].data.cpu().numpy()

                figures = {
                    "prediction": plot_spectrogram(const_spec, ap),
                    "ground_truth": plot_spectrogram(gt_spec, ap),
                    "alignment": plot_alignment(align_img)
                }
                tb_logger.tb_train_figures(global_step, figures)

                # Sample audio
                if c.model in ["Tacotron", "TacotronGST"]:
                    train_audio = ap.inv_spectrogram(const_spec.T)
                else:
                    train_audio = ap.inv_mel_spectrogram(const_spec.T)
                tb_logger.tb_train_audios(global_step,
                                          {'TrainAudio': train_audio},
                                          c.audio["sample_rate"])
        end_time = time.time()

    avg_postnet_loss /= (num_iter + 1)
    avg_decoder_loss /= (num_iter + 1)
    avg_stop_loss /= (num_iter + 1)
    avg_total_loss = avg_decoder_loss + avg_postnet_loss + avg_stop_loss
    avg_step_time /= (num_iter + 1)
    avg_loader_time /= (num_iter + 1)

    # print epoch stats
    print("   | > EPOCH END -- GlobalStep:{}  AvgTotalLoss:{:.5f}  "
          "AvgPostnetLoss:{:.5f}  AvgDecoderLoss:{:.5f}  "
          "AvgStopLoss:{:.5f}  EpochTime:{:.2f}  "
          "AvgStepTime:{:.2f}  AvgLoaderTime:{:.2f}".format(
              global_step, avg_total_loss, avg_postnet_loss, avg_decoder_loss,
              avg_stop_loss, epoch_time, avg_step_time, avg_loader_time),
          flush=True)

    # Plot Epoch Stats
    if args.rank == 0:
        # Plot Training Epoch Stats
        epoch_stats = {
            "loss_postnet": avg_postnet_loss,
            "loss_decoder": avg_decoder_loss,
            "stop_loss": avg_stop_loss,
            "epoch_time": epoch_time
        }
        tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
        if c.tb_model_param_stats:
            tb_logger.tb_model_weights(model, global_step)
    return avg_postnet_loss, global_step
Beispiel #3
0
def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
          ap, global_step, epoch):
    data_loader = setup_loader(ap,
                               model.decoder.r,
                               is_val=False,
                               verbose=(epoch == 0))
    model.train()
    epoch_time = 0
    train_values = {
        'avg_postnet_loss': 0,
        'avg_decoder_loss': 0,
        'avg_stop_loss': 0,
        'avg_align_score': 0,
        'avg_step_time': 0,
        'avg_loader_time': 0,
        'avg_alignment_score': 0
    }
    if c.bidirectional_decoder:
        train_values['avg_decoder_b_loss'] = 0  # decoder backward loss
        train_values['avg_decoder_c_loss'] = 0  # decoder consistency loss
    keep_avg = KeepAverage()
    keep_avg.add_values(train_values)
    print("\n > Epoch {}/{}".format(epoch, c.epochs), flush=True)
    if use_cuda:
        batch_n_iter = int(
            len(data_loader.dataset) / (c.batch_size * num_gpus))
    else:
        batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
    end_time = time.time()
    for num_iter, data in enumerate(data_loader):
        start_time = time.time()

        # format data
        text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, avg_text_length, avg_spec_length = format_data(
            data)
        loader_time = time.time() - end_time

        global_step += 1

        # setup lr
        if c.noam_schedule:
            scheduler.step()
        optimizer.zero_grad()
        if optimizer_st:
            optimizer_st.zero_grad()

        # forward pass model
        if c.bidirectional_decoder:
            decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
                text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
        else:
            decoder_output, postnet_output, alignments, stop_tokens = model(
                text_input, text_lengths, mel_input, speaker_ids=speaker_ids)

        # loss computation
        stop_loss = criterion_st(stop_tokens,
                                 stop_targets) if c.stopnet else torch.zeros(1)
        if c.loss_masking:
            decoder_loss = criterion(decoder_output, mel_input, mel_lengths)
            if c.model in ["Tacotron", "TacotronGST"]:
                postnet_loss = criterion(postnet_output, linear_input,
                                         mel_lengths)
            else:
                postnet_loss = criterion(postnet_output, mel_input,
                                         mel_lengths)
        else:
            decoder_loss = criterion(decoder_output, mel_input)
            if c.model in ["Tacotron", "TacotronGST"]:
                postnet_loss = criterion(postnet_output, linear_input)
            else:
                postnet_loss = criterion(postnet_output, mel_input)
        loss = decoder_loss + postnet_loss
        if not c.separate_stopnet and c.stopnet:
            loss += stop_loss

        # backward decoder
        if c.bidirectional_decoder:
            if c.loss_masking:
                decoder_backward_loss = criterion(
                    torch.flip(decoder_backward_output, dims=(1, )), mel_input,
                    mel_lengths)
            else:
                decoder_backward_loss = criterion(
                    torch.flip(decoder_backward_output, dims=(1, )), mel_input)
            decoder_c_loss = torch.nn.functional.l1_loss(
                torch.flip(decoder_backward_output, dims=(1, )),
                decoder_output)
            loss += decoder_backward_loss + decoder_c_loss
            keep_avg.update_values({
                'avg_decoder_b_loss':
                decoder_backward_loss.item(),
                'avg_decoder_c_loss':
                decoder_c_loss.item()
            })

        loss.backward()
        optimizer, current_lr = adam_weight_decay(optimizer)
        grad_norm, grad_flag = check_update(model,
                                            c.grad_clip,
                                            ignore_stopnet=True)
        optimizer.step()

        # compute alignment score
        align_score = alignment_diagonal_score(alignments)
        keep_avg.update_value('avg_align_score', align_score)

        # backpass and check the grad norm for stop loss
        if c.separate_stopnet:
            stop_loss.backward()
            optimizer_st, _ = adam_weight_decay(optimizer_st)
            grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
            optimizer_st.step()
        else:
            grad_norm_st = 0

        step_time = time.time() - start_time
        epoch_time += step_time

        if global_step % c.print_step == 0:
            print(
                "   | > Step:{}/{}  GlobalStep:{}  PostnetLoss:{:.5f}  "
                "DecoderLoss:{:.5f}  StopLoss:{:.5f}  AlignScore:{:.4f}  GradNorm:{:.5f}  "
                "GradNormST:{:.5f}  AvgTextLen:{:.1f}  AvgSpecLen:{:.1f}  StepTime:{:.2f}  "
                "LoaderTime:{:.2f}  LR:{:.6f}".format(
                    num_iter, batch_n_iter, global_step, postnet_loss.item(),
                    decoder_loss.item(), stop_loss.item(), align_score,
                    grad_norm, grad_norm_st, avg_text_length, avg_spec_length,
                    step_time, loader_time, current_lr),
                flush=True)

        # aggregate losses from processes
        if num_gpus > 1:
            postnet_loss = reduce_tensor(postnet_loss.data, num_gpus)
            decoder_loss = reduce_tensor(decoder_loss.data, num_gpus)
            loss = reduce_tensor(loss.data, num_gpus)
            stop_loss = reduce_tensor(stop_loss.data,
                                      num_gpus) if c.stopnet else stop_loss

        if args.rank == 0:
            update_train_values = {
                'avg_postnet_loss':
                float(postnet_loss.item()),
                'avg_decoder_loss':
                float(decoder_loss.item()),
                'avg_stop_loss':
                stop_loss
                if isinstance(stop_loss, float) else float(stop_loss.item()),
                'avg_step_time':
                step_time,
                'avg_loader_time':
                loader_time
            }
            keep_avg.update_values(update_train_values)

            # Plot Training Iter Stats
            # reduce TB load
            if global_step % 10 == 0:
                iter_stats = {
                    "loss_posnet": postnet_loss.item(),
                    "loss_decoder": decoder_loss.item(),
                    "lr": current_lr,
                    "grad_norm": grad_norm,
                    "grad_norm_st": grad_norm_st,
                    "step_time": step_time
                }
                tb_logger.tb_train_iter_stats(global_step, iter_stats)

            if global_step % c.save_step == 0:
                if c.checkpoint:
                    # save model
                    save_checkpoint(model, optimizer, optimizer_st,
                                    postnet_loss.item(), OUT_PATH, global_step,
                                    epoch)

                # Diagnostic visualizations
                const_spec = postnet_output[0].data.cpu().numpy()
                gt_spec = linear_input[0].data.cpu().numpy() if c.model in [
                    "Tacotron", "TacotronGST"
                ] else mel_input[0].data.cpu().numpy()
                align_img = alignments[0].data.cpu().numpy()

                figures = {
                    "prediction": plot_spectrogram(const_spec, ap),
                    "ground_truth": plot_spectrogram(gt_spec, ap),
                    "alignment": plot_alignment(align_img),
                }

                if c.bidirectional_decoder:
                    figures["alignment_backward"] = plot_alignment(
                        alignments_backward[0].data.cpu().numpy())

                tb_logger.tb_train_figures(global_step, figures)

                # Sample audio
                if c.model in ["Tacotron", "TacotronGST"]:
                    train_audio = ap.inv_spectrogram(const_spec.T)
                else:
                    train_audio = ap.inv_mel_spectrogram(const_spec.T)
                tb_logger.tb_train_audios(global_step,
                                          {'TrainAudio': train_audio},
                                          c.audio["sample_rate"])
        end_time = time.time()

    # print epoch stats
    print("   | > EPOCH END -- GlobalStep:{}  "
          "AvgPostnetLoss:{:.5f}  AvgDecoderLoss:{:.5f}  "
          "AvgStopLoss:{:.5f}  AvgAlignScore:{:3f}  EpochTime:{:.2f}  "
          "AvgStepTime:{:.2f}  AvgLoaderTime:{:.2f}".format(
              global_step, keep_avg['avg_postnet_loss'],
              keep_avg['avg_decoder_loss'], keep_avg['avg_stop_loss'],
              keep_avg['avg_align_score'], epoch_time,
              keep_avg['avg_step_time'], keep_avg['avg_loader_time']),
          flush=True)
    # Plot Epoch Stats
    if args.rank == 0:
        # Plot Training Epoch Stats
        epoch_stats = {
            "loss_postnet": keep_avg['avg_postnet_loss'],
            "loss_decoder": keep_avg['avg_decoder_loss'],
            "stop_loss": keep_avg['avg_stop_loss'],
            "alignment_score": keep_avg['avg_align_score'],
            "epoch_time": epoch_time
        }
        tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
        if c.tb_model_param_stats:
            tb_logger.tb_model_weights(model, global_step)
    return keep_avg['avg_postnet_loss'], global_step