if __name__ == "__main__": model_name = "TransformerText" # TextRNN, TextCNN, lSTMATT, TextRCNN, TransformerText data_dir = "/search/hadoop02/suanfa/songyingxin/data/SST-2" cache_dir = ".cache/" embedding_folder = "/search/hadoop02/suanfa/songyingxin/data/embedding/glove/" model_dir = ".models/" log_dir = ".log/" if model_name == "TextCNN": from TextCNN import args, TextCNN elif model_name == "TextRNN": from TextRNN import args, TextRNN elif model_name == "LSTMATT": from LSTM_ATT import args, LSTMATT elif model_name == "TextRCNN": from TextRCNN import args, TextRCNN elif model_name == "TransformerText": from TransformerText import args, TransformerText main( args.get_args(data_dir, cache_dir, embedding_folder, model_dir, log_dir))
print('{}'.format(dev_report)) model.load_state_dict(torch.load('tut2-model.pt')) test_loss, test_acc, test_report = evaluate(model, test_iterator, criterion, config.output_dim) print("-------------- Test -------------") print(f'\t \t Loss: {test_loss: .3f} | Acc: {test_acc*100: .2f} %') print('{}'.format(test_report)) if __name__ == "__main__": model_name = "TextRNN" # TextRNN, TextCNN, lSTMATT, TextRCNN data_dir = "/home/songyingxin/datasets/SST-2" cache_dir = data_dir + "/cache/" embedding_folder = "/home/songyingxin/datasets/WordEmbedding/" if model_name == "TextCNN": from TextCNN import args, TextCNN main(args.get_args(data_dir, cache_dir, embedding_folder)) elif model_name == "TextRNN": from TextRNN import args, TextRNN main(args.get_args(data_dir, cache_dir, embedding_folder)) elif model_name == "LSTMATT": from LSTM_ATT import args, LSTMATT main(args.get_args(data_dir, cache_dir, embedding_folder)) elif model_name == "TextRCNN": from TextRCNN import args, TextRCNN main(args.get_args(data_dir, cache_dir, embedding_folder))