jitonic = None
tau_cla = 50000
namelist = ['raw', 'homhots']

namelist = ['raw', 'hots', 'homhots']

for name in namelist:
    f_name = f'{record_path}{timestr}_LR_results_{name}_{nbclust}_36_40_{ds_ev}.pkl'
    if os.path.isfile(f_name):
        with open(f_name, 'rb') as file:
            likelihood, true_target, time_scale = pickle.load(file)
    else:
        print(f'LR fit for {name}...')
        model, loss  = fit_data(name,timestr,record_path,filt,tau,R,nbclust,sigma,homeinv,jitter,dataset,nb_train, ds_ev,learning_rate,num_epochs,betas,tau_cla,jitonic=jitonic,num_workers=num_workers,verbose=False)
        print(f'prediction for {name}...')
        likelihood, true_target, time_scale = predict_data(model,name,timestr,record_path,filt,tau,R,nbclust,sigma, homeinv, jitter,dataset,nb_test,ds_ev,tau_cla,jitonic=jitonic,num_workers=num_workers, verbose=False)
        with open(f_name, 'wb') as file:
            pickle.dump([likelihood, true_target, time_scale], file, pickle.HIGHEST_PROTOCOL)


timesteps = np.arange(500,100000,100)
nb_classes = 10

results = [timesteps]

for namnum, name in enumerate(namelist):
    f_name = f'{record_path}{timestr}_LR_results_{name}_{nbclust}_{nb_train}_{nb_test}_{ds_ev}_timescale.pkl'
    with open(f_name, 'rb') as file:
        likelihood, true_target, time_scale = pickle.load(file)

    y_true = np.zeros([len(true_target)])
Beispiel #2
0
beta1, beta2 = 0.9, 0.999
betas = (beta1, beta2)
num_epochs = 2 ** 5 + 1
#num_epochs = 2 ** 9 + 1
print(f'number of epochs: {num_epochs}')
#______________________________________________

timestr = '2021-02-16'
record_path = '../Records/EXP_03_NMNIST/models/'

for name in ['raw','hots','homhots']:
    tic()
    learn_set, nb_pola, name_net = get_loader(name, record_path, nb_train, True, filt, tau, nblay, nbclust, sigma, homeinv, jitter, timestr)
    model, loss = fit_data(name_net, learn_set, nb_train, nb_pola, learning_rate, num_epochs, betas, verbose=True)
    test_set, nb_pola, name_net = get_loader(name, record_path, nb_test, False, filt, tau, nblay, nbclust, sigma, homeinv, jitter, timestr)
    pred_target, true_target = predict_data(test_set, model, nb_test)
    mean_acc, online_acc = classification_results(pred_target, true_target, nb_test)
    toc()
    print(f'Classification performance for {name}: {mean_acc}')
    
homhots_jit_s = []
hots_jit_s = []
homhots_jit_t = []
hots_jit_t = []
for name in ['homhots', 'hots']:
    learn_set, nb_pola, name_net = get_loader(name, record_path, nb_train, True, filt, tau, nblay, nbclust, sigma, homeinv, jitter, timestr)
    model, loss = fit_data(name_net, learn_set, nb_train, nb_pola, learning_rate, num_epochs, betas, verbose=True)
    for j_s in jit_s:
        jitonic = [None,j_s]
        test_set, nb_pola, name_net = get_loader(name, record_path, nb_test, False, filt, tau, nblay, nbclust, sigma, homeinv, jitter, timestr, jitonic = jitonic)
        pred_target, true_target = predict_data(test_set, model, nb_test)
        print(f'get testing set for {name}...')
        test_set, nb_pola, name_net = get_loader(name,
                                                 record_path,
                                                 nb_test,
                                                 False,
                                                 filt,
                                                 tau,
                                                 nbclust,
                                                 sigma,
                                                 homeinv,
                                                 jitter,
                                                 timestr,
                                                 dataset,
                                                 R,
                                                 ds_ev=ds_ev_output)
        print(f'prediction for {name}...')
        pred_target, true_target = predict_data(test_set,
                                                model,
                                                nb_test,
                                                num_workers=num_workers)
        mean_acc, online_acc = classification_results(pred_target, true_target,
                                                      nb_test)
        print(f'Classification performance for {name}: {mean_acc}')
        results.append([pred_target, true_target, mean_acc, online_acc])

    path = '../Records/EXP_05_POKERDVS/'
    f_name = f'{path}{timestr}_LR_results_{nbclust}_{nb_train}_{nb_test}_{ds_ev_output}.pkl'

    with open(f_name, 'wb') as file:
        pickle.dump([results], file, pickle.HIGHEST_PROTOCOL)
                                    jitonic=jitonic,
                                    subset_size=nb_train,
                                    num_workers=num_workers,
                                    verbose=False)
             ds_ev = ds_ev_test
             print(f'prediction for {name}...')
             likelihood, true_target, time_scale = predict_data(
                 model,
                 name,
                 timestr,
                 path,
                 filt,
                 tau,
                 R,
                 nbclust,
                 sigma,
                 homeinv,
                 jitter,
                 dataset,
                 nb_test,
                 ds_ev,
                 tau_cla,
                 sample_space=sample_space,
                 jitonic=jitonic,
                 subset_size=nb_test,
                 num_workers=num_workers,
                 verbose=False)
             with open(f_name, 'wb') as file:
                 pickle.dump([likelihood, true_target, time_scale], file,
                             pickle.HIGHEST_PROTOCOL)
 #return likelihood, true_target, time_scale