def check_suilio_ids(inname):
    print('ID num of SULIO:', inname)
    ioin = sulio.DataFrame(inname, debug=True)
    _, header0 = ioin.read(0)
    print(header0[1] - header0[0])

    imgnum_total = 0
    for idd in range(header0[0], header0[1]):
        _, header = ioin.read(idd)
        imgnum = header[1] - header[0]
        imgnum_total += imgnum
    print('Image num:', imgnum_total)
Beispiel #2
0
    def push_sulio(self, inname):
        print('Pushing SULIO:', inname)
        ioin = sulio.DataFrame(inname, debug=True)
        _, header0 = ioin.read(0)

        for idd in tqdm(range(header0[0], header0[1])):
            _, header = ioin.read(idd)
            meta = [self.pos]
            for idx in range(header[0], header[1]):
                img = ioin.read_data(idx)
                self.ioout.write_idx(self.pos, img)
                self.pos += 1
            meta.append(self.pos)
            self.class_metas.append(meta)
 def __init__(self, outname, listfile):
     self.list = pickle.load(open(listfile, 'rb'))
     self.ioout = sulio.DataFrame(outname, 'w', debug=True)
     self.class_metas = []
     self.pos = 1
     self.info = []
     for item in self.list:
         t = item['type']
         if t == 'sulio':
             self.push_sulio(item['data'])
         elif t == 'mxrec':
             self.push_mxrecord(item['data'])
         elif t == 'folder':
             self.push_folder(item['data'])
         self.info.append({'class_len': len(self.class_metas)})
     pickle.dump(self.info, open(os.path.join(outname, 'info.pkl'), 'wb'))
     shutil.copy(listfile, os.path.join(outname, 'pathinfo.pkl'))
Beispiel #4
0
 def __init__(self):
     self.ioout = sulio.DataFrame('/data/emore_exp/data_emore_sul/',
                                  debug=True)
     self.idx, self.max_label = self.get_data()
     print('Sample num:', len(self.idx))
Beispiel #5
0
import numpy as np 
import cv2 
from TorchSUL import DataReader
import random 
from TorchSUL import sulio 

ioout = sulio.DataFrame('../data_emore_sul/', debug=True)
block_size = 32
stride = 16
n_grid = 6

def adjust_img(img):
	# img = img[:16*4]
	if random.random()>0.5:
		img = np.flip(img, axis=1)
	img = np.float32(img)
	img = img / 127.5 - 1.
	img = np.transpose(img, (2,0,1))
	# res = []
	# for i in range(n_grid):
	# 	for j in range(n_grid):
	# 		start_h = i*stride
	# 		start_w = j*stride
	# 		res.append(img[:,start_h:start_h+block_size, start_w:start_w+block_size])
	# res = np.float32(res)
	res = img 
	return res 

def pre_process(inp):
	idx, labels = list(zip(*inp))
	frames = []
Beispiel #6
0
 def __init__(self, outname, max_id):
     self.ioout = sulio.DataFrame(outname, 'w', debug=True)
     self.class_metas = []
     self.pos = 1
Beispiel #7
0
 def __init__(self):
     self.ioout = sulio.DataFrame('../500k_cleanv3/500kfull_v3_02/',
                                  debug=True)
     self.idx, self.max_label = self.get_data()
Beispiel #8
0
import numpy as np
import cv2
from TorchSUL import DataReader
import random
from TorchSUL import sulio

ioout = sulio.DataFrame('../../face_data/part2/', debug=True)


def adjust_img(img):
    # img = img[:16*4]
    if random.random() > 0.5:
        img = np.flip(img, axis=1)
    img = np.float32(img)
    # img = img[:64]
    img = img / 127.5 - 1.
    img = np.transpose(img, (2, 0, 1))
    return img


def pre_process(inp):
    idx, labels = list(zip(*inp))
    frames = []
    for i in idx:
        # print(i)
        img = ioout.read_data(i)
        frames.append(img)
        # print(type(img))
    pack = list(zip(*[frames, labels]))
    return pack