Beispiel #1
0
    def calculate_distance_matrix(
            self, points: Union[list[Numpy2DFloatArrayOrthonormal],
                                list[GrassmannPoint]],
            p_dim: Union[list, np.ndarray]):
        """
        Given a list of points that belong on a Grassmann Manifold, assemble the distance matrix between all points.

        :param points: List of points belonging on the Grassmann Manifold. Either a list of :class:`.GrassmannPoint` or
         a list of orthonormal :class:`.ndarray`.
        :param p_dim: Number of independent p-planes of each Grassmann point.
        """
        nargs = len(points)

        # Define the pairs of points to compute the grassmann_manifold distance.
        indices = range(nargs)
        pairs = list(itertools.combinations(indices, 2))

        # Compute the pairwise distances.
        distance_list = []
        for id_pair in range(np.shape(pairs)[0]):
            ii = pairs[id_pair][0]  # Point i
            jj = pairs[id_pair][1]  # Point j

            p0 = int(p_dim[ii])
            p1 = int(p_dim[jj])

            x0 = GrassmannPoint(np.asarray(points[ii].data)[:, :p0])
            x1 = GrassmannPoint(np.asarray(points[jj].data)[:, :p1])

            # Call the functions where the distance metric is implemented.
            distance_value = self.compute_distance(x0, x1)

            distance_list.append(distance_value)

        self.distance_matrix = distance_list
Beispiel #2
0
    def calculate_kernel_matrix(self,
                                points: list[GrassmannPoint],
                                p: int = None):
        """
        Compute the kernel matrix given a list of points on the Grassmann manifold.

        :param points: Points on the Grassmann manifold
        :param p: Number of independent p-planes of each Grassmann point.
        :return: :class:`ndarray` The kernel matrix.
        """
        nargs = len(points)
        # Define the pairs of points to compute the entries of the kernel matrix.
        indices = range(nargs)
        pairs = list(itertools.combinations_with_replacement(indices, 2))

        # Estimate entries of the kernel matrix.
        kernel = np.zeros((nargs, nargs))
        for id_pair in range(np.shape(pairs)[0]):
            i = pairs[id_pair][0]  # Point i
            j = pairs[id_pair][1]  # Point j
            if not p:
                xi = points[i]
                xj = points[j]
            else:
                xi = GrassmannPoint(points[i].data[:, :p])
                xj = GrassmannPoint(points[j].data[:, :p])

            # RiemannianDistance.check_rows(xi, xj)
            kernel[i, j] = self.kernel_entry(xi, xj)
            kernel[j, i] = kernel[i, j]

        self.kernel_matrix = kernel
Beispiel #3
0
def test_spectral_distance():
    xi = np.array([[-np.sqrt(2) / 2, -np.sqrt(2) / 4],
                   [np.sqrt(2) / 2, -np.sqrt(2) / 4], [0, -np.sqrt(3) / 2]])
    xj = np.array([[0, np.sqrt(2) / 2], [1, 0], [0, -np.sqrt(2) / 2]])
    distance = np.round(
        SpectralDistance().compute_distance(GrassmannPoint(xi),
                                            GrassmannPoint(xj)), 6)
    assert distance == 1.356865
Beispiel #4
0
def test_martin_distance():
    xi = np.array([[-np.sqrt(2) / 2, -np.sqrt(2) / 4],
                   [np.sqrt(2) / 2, -np.sqrt(2) / 4], [0, -np.sqrt(3) / 2]])
    xj = np.array([[0, np.sqrt(2) / 2], [1, 0], [0, -np.sqrt(2) / 2]])
    distance = np.round(
        MartinDistance().compute_distance(GrassmannPoint(xi),
                                          GrassmannPoint(xj)), 6)
    assert distance == 2.25056
Beispiel #5
0
def test_asimov_distance():
    xi = np.array([[-np.sqrt(2) / 2, -np.sqrt(2) / 4],
                   [np.sqrt(2) / 2, -np.sqrt(2) / 4], [0, -np.sqrt(3) / 2]])
    xj = np.array([[0, np.sqrt(2) / 2], [1, 0], [0, -np.sqrt(2) / 2]])
    distance = np.round(
        AsimovDistance().compute_distance(GrassmannPoint(xi),
                                          GrassmannPoint(xj)), 6)
    assert distance == 1.491253
Beispiel #6
0
def test_binet_cauchy_distance():
    xi = np.array([[-np.sqrt(2) / 2, -np.sqrt(2) / 4],
                   [np.sqrt(2) / 2, -np.sqrt(2) / 4], [0, -np.sqrt(3) / 2]])
    xj = np.array([[0, np.sqrt(2) / 2], [1, 0], [0, -np.sqrt(2) / 2]])
    distance = np.round(
        BinetCauchyDistance().compute_distance(GrassmannPoint(xi),
                                               GrassmannPoint(xj)), 6)
    assert distance == 0.996838
Beispiel #7
0
def test_projection_distance():
    xi = np.array([[-np.sqrt(2) / 2, -np.sqrt(2) / 4],
                   [np.sqrt(2) / 2, -np.sqrt(2) / 4], [0, -np.sqrt(3) / 2]])
    xj = np.array([[0, np.sqrt(2) / 2], [1, 0], [0, -np.sqrt(2) / 2]])
    distance = np.round(
        ProjectionDistance().compute_distance(GrassmannPoint(xi),
                                              GrassmannPoint(xj)), 6)
    assert distance == 0.996838
Beispiel #8
0
    def exp_map(tangent_points: list[Numpy2DFloatArray],
                reference_point: Union[np.ndarray, GrassmannPoint]) -> list[GrassmannPoint]:
        """
        :param tangent_points: Tangent vector(s).
        :param reference_point: Origin of the tangent space.
        :return: Point(s) on the Grassmann manifold.
        """
        number_of_points = len(tangent_points)
        for i in range(number_of_points):
            if reference_point.data.shape[1] != tangent_points[i].shape[1]:
                raise ValueError("UQpy: Point {0} is on G({1},{2}) - Reference is on"
                                 " G({1},{2})".format(i, tangent_points[i].shape[1], tangent_points[i].shape[0]))

        # Map the each point back to the manifold.
        manifold_points = []
        for i in range(number_of_points):
            u_trunc = tangent_points[i]
            ui, si, vi = np.linalg.svd(u_trunc, full_matrices=False)

            x0 = np.dot(
                np.dot(np.dot(reference_point.data, vi.T), np.diag(np.cos(si)))
                + np.dot(ui, np.diag(np.sin(si))),
                vi,
            )

            if not np.allclose(x0.T @ x0, np.eye(u_trunc.shape[1])):
                x0, _ = np.linalg.qr(x0)

            manifold_points.append(GrassmannPoint(x0))

        return manifold_points
Beispiel #9
0
def test_kernel_projection():
    xi = GrassmannPoint(
        np.array([[-np.sqrt(2) / 2, -np.sqrt(2) / 4],
                  [np.sqrt(2) / 2, -np.sqrt(2) / 4], [0, -np.sqrt(3) / 2]]))
    xj = GrassmannPoint(
        np.array([[0, np.sqrt(2) / 2], [1, 0], [0, -np.sqrt(2) / 2]]))
    xk = GrassmannPoint(
        np.array([[-0.69535592, -0.0546034], [-0.34016974, -0.85332868],
                  [-0.63305978, 0.51850616]]))
    points = [xi, xj, xk]
    k = ProjectionKernel()
    k.calculate_kernel_matrix(points)
    kernel = np.matrix.round(k.kernel_matrix, 4)

    assert np.allclose(
        kernel,
        np.array([[2, 1.0063, 1.2345], [1.0063, 2, 1.0101],
                  [1.2345, 1.0101, 2]]))
Beispiel #10
0
def test_kernel_binet_cauchy():
    xi = GrassmannPoint(
        np.array([[-np.sqrt(2) / 2, -np.sqrt(2) / 4],
                  [np.sqrt(2) / 2, -np.sqrt(2) / 4], [0, -np.sqrt(3) / 2]]))
    xj = GrassmannPoint(
        np.array([[0, np.sqrt(2) / 2], [1, 0], [0, -np.sqrt(2) / 2]]))
    xk = GrassmannPoint(
        np.array([[-0.69535592, -0.0546034], [-0.34016974, -0.85332868],
                  [-0.63305978, 0.51850616]]))
    points = [xi, xj, xk]

    kernel = BinetCauchyKernel()
    kernel.calculate_kernel_matrix(points)
    kernel = np.matrix.round(kernel.kernel_matrix, 4)

    assert np.allclose(
        kernel,
        np.array([[1, 0.0063, 0.2345], [0.0063, 1, 0.0101],
                  [0.2345, 0.0101, 1]]))
Beispiel #11
0
    def _stochastic_gradient_descent(data_points, distance_fun, tolerance, maximum_iterations):

        tol = tolerance
        maxiter = maximum_iterations
        n_mat = len(data_points)

        rnk = [min(np.shape(data_points[i].data)) for i in range(n_mat)]
        max_rank = max(rnk)

        fmean = [GrassmannOperations.frechet_variance(data_points, data_points[i], distance_fun) for i in range(n_mat)]

        index_0 = fmean.index(min(fmean))

        mean_element = data_points[index_0].data.tolist()
        itera = 0
        _gamma = []
        k = 1
        while itera < maxiter:

            indices = np.arange(n_mat)
            np.random.shuffle(indices)

            melem = mean_element
            for i in range(len(indices)):
                alpha = 0.5 / k
                idx = indices[i]
                _gamma = GrassmannOperations.log_map(grassmann_points=[data_points[idx]],
                                                     reference_point=np.asarray(mean_element))

                step = 2 * alpha * _gamma[0]

                X = GrassmannOperations.exp_map(tangent_points=[step],
                                                reference_point=np.asarray(mean_element))

                _gamma = []
                mean_element = X[0].data

                k += 1

            test_1 = np.linalg.norm(mean_element - melem, 'fro')
            if test_1 < tol:
                break

            itera += 1

        return GrassmannPoint(np.asarray(mean_element))
Beispiel #12
0
    def _gradient_descent(data_points, distance_fun, acceleration, tolerance, maximum_iterations):
        # acc is a boolean variable to activate the Nesterov acceleration scheme.
        acc = acceleration
        # Error tolerance
        tol = tolerance
        # Maximum number of iterations.
        maxiter = maximum_iterations
        # Number of points.
        n_mat = len(data_points)

        # =========================================
        alpha = 0.5
        rnk = [min(np.shape(data_points[i].data)) for i in range(n_mat)]
        max_rank = max(rnk)
        fmean = [GrassmannOperations.frechet_variance(data_points, data_points[i], distance_fun) for i in range(n_mat)]

        index_0 = fmean.index(min(fmean))
        mean_element = data_points[index_0].data.tolist()

        avg_gamma = np.zeros([np.shape(data_points[0].data)[0], np.shape(data_points[0].data)[1]])

        itera = 0

        l = 0
        avg = []
        _gamma = []
        if acc:
            _gamma = GrassmannOperations.log_map(grassmann_points=data_points,
                                                 reference_point=np.asarray(mean_element))

            avg_gamma.fill(0)
            for i in range(n_mat):
                avg_gamma += _gamma[i] / n_mat
            avg.append(avg_gamma)

        # Main loop
        while itera <= maxiter:
            _gamma = GrassmannOperations.log_map(grassmann_points=data_points,
                                                 reference_point=np.asarray(mean_element))
            avg_gamma.fill(0)

            for i in range(n_mat):
                avg_gamma += _gamma[i] / n_mat

            test_0 = np.linalg.norm(avg_gamma, 'fro')
            if test_0 < tol and itera == 0:
                break

            # Nesterov: Accelerated Gradient Descent
            if acc:
                avg.append(avg_gamma)
                l0 = l
                l1 = 0.5 * (1 + np.sqrt(1 + 4 * l * l))
                ls = (1 - l0) / l1
                step = (1 - ls) * avg[itera + 1] + ls * avg[itera]
                l = copy.copy(l1)
            else:
                step = alpha * avg_gamma

            x = GrassmannOperations.exp_map(tangent_points=[step],
                                            reference_point=np.asarray(mean_element))

            test_1 = np.linalg.norm(x[0].data - mean_element, 'fro')

            if test_1 < tol:
                break

            mean_element = []
            mean_element = x[0].data.tolist()

            itera += 1

        # return the Karcher mean.
        return GrassmannPoint(np.asarray(mean_element))
Beispiel #13
0
    def __init__(
            self,
            data: list[Numpy2DFloatArray],
            p: Union[int, str],
            tol: float = None,
    ):
        """

        :param data: Raw data given as a list of matrices.
        :param p: Number of independent p-planes of each Grassmann point.
            Options:

            :any:`int`: Integer specifying the number of p-planes

            :any:`str`:
             `"max"`: Set p equal to the maximum rank of all provided data matrices

             `"min"`: Set p equal to the minimum rank of all provided data matrices
        :param tol: Tolerance on the SVD
        """
        self.data = data
        self.tolerance = tol

        points_number = len(data)

        n_left = []
        n_right = []
        for i in range(points_number):
            n_left.append(max(np.shape(data[i])))
            n_right.append(min(np.shape(data[i])))

        bool_left = n_left.count(n_left[0]) != len(n_left)
        bool_right = n_right.count(n_right[0]) != len(n_right)

        if bool_left and bool_right:
            raise TypeError("UQpy: The shape of the input matrices must be the same.")
        n_u = n_left[0]
        n_v = n_right[0]

        ranks = [np.linalg.matrix_rank(data[i], tol=self.tolerance) for i in range(points_number)]

        if isinstance(p, str) and p == "min":
            p = int(min(ranks))
        elif isinstance(p, str) and p == "max":
            p = int(max(ranks))
        elif isinstance(p, str):
            raise ValueError("The input parameter p must me either 'min', 'max' or a integer.")
        else:
            for i in range(points_number):
                if min(np.shape(data[i])) < p:
                    raise ValueError("UQpy: The dimension of the input data is not consistent with `p` of G(n,p).")
                    # write something that makes sense

        ranks = np.ones(points_number) * [int(p)]
        ranks = ranks.tolist()

        ranks = list(map(int, ranks))

        phi = []  # initialize the left singular eigenvectors as a list.
        sigma = []  # initialize the singular values as a list.
        psi = []  # initialize the right singular eigenvectors as a list.
        for i in range(points_number):
            u, s, v = svd(data[i], int(ranks[i]))
            phi.append(GrassmannPoint(u))
            sigma.append(np.diag(s))
            psi.append(GrassmannPoint(v))

        self.input_points = data
        self.u: list[GrassmannPoint] = phi
        """Left singular vectors from the SVD of each sample in `data` representing a point on the Grassmann 
        manifold. """
        self.sigma: np.ndarray = sigma
        """Singular values from the SVD of each sample in `data`."""
        self.v: list[GrassmannPoint] = psi
        """Right singular vectors from the SVD of each sample in `data` representing a point on the Grassmann 
        manifold."""

        self.n_u = n_u
        self.n_v = n_v
        self.p = p
        self.ranks = ranks
        self.points_number = points_number
        self.max_rank = int(np.max(ranks))