Beispiel #1
0
def main():
    print(torch.__version__)
    cudnn.benchmark = False
    device = torch.device('cuda:{}'.format(params['gpu'][0]))

    cur_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
    logdir = os.path.join(params['log'], cur_time)
    if not os.path.exists(logdir):
        os.makedirs(logdir)

    writer = SummaryWriter(log_dir=logdir)
    #convert_csv(params['dataset'])
    print('Loading dataset')
    train_transform = create_train_transform(False,
                                             True,
                                             True,
                                             True,
                                             size=params['size'],
                                             bright=False)
    train_text_transform = EDA
    train_dataset = VideoDataset(params['dataset'],
                                 size=params['size'],
                                 mode='train',
                                 play_time=params['clip_len'],
                                 frame_sample_rate=params['frame_sample_rate'],
                                 transform=train_transform,
                                 sub_classnum=params['num_classes'],
                                 label_num=params['label_num'],
                                 stride_num=params['stride'],
                                 use_plot=params['use_plot'],
                                 use_audio=params['use_audio'],
                                 use_video=params['use_video'],
                                 text_transform=train_text_transform)
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=params['batch_size'],
                                  shuffle=True,
                                  num_workers=params['num_workers'],
                                  collate_fn=Collate_batch)

    val_transform = create_val_transform(True, size=params['size'])
    val_text_transform = None
    val_dataset = VideoDataset(params['dataset'],
                               size=params['size'],
                               mode='validation',
                               play_time=params['clip_len'],
                               frame_sample_rate=params['frame_sample_rate'],
                               transform=val_transform,
                               sub_classnum=params['num_classes'],
                               label_num=params['label_num'],
                               stride_num=params['stride'],
                               use_plot=params['use_plot'],
                               use_video=params['use_video'],
                               use_audio=params['use_audio'],
                               text_transform=None)
    val_dataloader = DataLoader(val_dataset,
                                batch_size=params['batch_size'],
                                shuffle=False,
                                num_workers=params['num_workers'],
                                collate_fn=Collate_batch)

    print('train_dataset : batch_size -> {}, step_size -> {}, frames -> {}'.
          format(params['batch_size'], len(train_dataloader),
                 params['clip_len']))
    print(
        'validation_dataset : batch_size -> {}, step_size -> {}, frames -> {}'.
        format(params['batch_size'], len(val_dataloader), params['clip_len']))
    print(
        '========================================================================================================='
    )
    print('Load model : mode -> {}, label_size -> {}, sub_class_num -> {}'.
          format(params['mode'], params['label_num'], params['num_classes']))

    ### regression ###

    #model = Only_Text(class_num = params['num_classes'], label_num = params['label_num'])
    #text_model = LSTM_with_Attention(class_num = params['num_classes'], label_num = params['label_num'])
    #video_model = get_slowfast(device)
    model = Custom_Model(classes_num=params['num_classes'],
                         label_num=params['label_num'],
                         device=device)
    if params['use_plot']:
        vocab, embedding_weight, vocab_size = text_func()
        tokenizer = get_tokenizer2
        train_dataset.generate_text_pipeline(vocab, tokenizer, vocab_size)
        val_dataset.generate_text_pipeline(vocab, tokenizer, vocab_size)
        model.text_model.init_text_weights(vocab_size=vocab_size,
                                           weights=embedding_weight)
        '''
        plots = train_dataset.plots
        plots = set(plots)
        counter = Counter()
        tokenizer = get_tokenizer('basic_english')
        for plot in plots:
            counter.update(tokenizer(plot))
        vocab = Vocab(counter, min_freq = 1)
        train_dataset.generate_text_pipeline(vocab, tokenizer)

        val_dataset.generate_text_pipeline(vocab, tokenizer)
        model.init_text_weights(len(vocab))
        '''

    if params['pretrained'] != '':
        pretrained_dict = torch.load(params['pretrained'], map_location='cpu')
        try:
            model_dict = model.module.state_dict()
        except AttributeError:
            model_dict = model.state_dict()
        pretrained_dict = {
            k: v
            for k, v in pretrained_dict.items() if k in model_dict
        }
        print('load pretrained')
        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)
    '''
        ########
        state = torch.load('./saved_model/{}'.format(params['pretrained']))
        model.load_state_dict(state['model'])
    '''

    model = model.to(device)

    ### regression ###
    '''
    criterion = Custom_MSELoss(num_classes = params['num_classes']).cuda()
    '''
    ### classification ###
    if params['mode'] == 'single':
        '''
        criterion = nn.CrossEntropyLoss(weight = train_dataset.get_class_weight().to(device))
        '''
        criterion = Custom_CrossEntropyLoss(
            weight=train_dataset.get_class_weight().to(device))
    elif params['mode'] == 'multi':

        ### multi-class ##

        #criterion = Custom_MultiCrossEntropyLoss(weight = train_dataset.get_class_weight().to(device), label_num=params['label_num'])

        criterion1 = Custom_MultiCrossEntropyLoss(
            weight=train_dataset.get_class_weight2().to(device),
            label_num=params['label_num'])
        #criterion1 = Custom_MultiBinaryCrossEntropyLoss(weight = train_dataset.get_class_weight2().to(device), label_num=params['label_num'])
        criterion2 = Custom_BCELoss(
            weight=train_dataset.get_genre_weight2().to(device))
        criterion3 = Custom_CrossEntropyLoss(
            weight=train_dataset.get_age_weight2().to(device))
    #optimizer = optim.SGD(model.parameters(), lr = params['learning_rate'], momentum = params['momentum'], weight_decay = params['weight_decay'])
    #scheduler = optim.lr_scheduler.StepLR(optimizer,  step_size = params['step'], gamma=0.1)

    optimizer = optim.SGD(model.parameters(),
                          lr=params['learning_rate'],
                          weight_decay=params['weight_decay'])
    #optimizer = optim.AdamW(model.parameters(), lr = params['learning_rate'], weight_decay = params['weight_decay'])

    #optimizer = optim.SGDW(model.parameters(), lr = params['learning_rate'], weight_decay = params['weight_decay'])
    #optimizer = SGDP(model.parameters(), lr = params['learning_rate'], weight_decay = params['weight_decay'], momentum=params['momentum'], nesterov=True)
    #optimizer = AdamP(model.parameters(), lr = params['learning_rate'], weight_decay = params['weight_decay'], betas = (0.9, 0.999))
    #scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience = 2, factor = 0.5, verbose=False)
    #scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max = 30, eta_min = 0)
    scheduler = CosineAnnealingWarmUpRestarts(optimizer,
                                              T_0=50,
                                              eta_max=params['learning_rate'] *
                                              5,
                                              T_up=10,
                                              gamma=0.5)
    model_save_dir = os.path.join(params['save_path'], 'second')
    if not os.path.exists(model_save_dir):
        os.makedirs(model_save_dir)
    print("train gogosing")
    pre_metric = 0
    for epoch in range(params['epoch_num']):
        train(model,
              train_dataloader,
              epoch,
              criterion1,
              criterion2,
              criterion3,
              optimizer,
              writer,
              device,
              mode=params['mode'],
              label_num=params['label_num'])
        if (epoch + 1) % 5 == 0:
            print('======================================================')
            print('validation gogosing')
            metric = val(model,
                         val_dataloader,
                         epoch,
                         criterion1,
                         criterion2,
                         criterion3,
                         optimizer,
                         writer,
                         device,
                         mode=params['mode'],
                         label_num=params['label_num'])
            #validation_loss, metric = val(model, val_dataloader, epoch, criterion, optimizer, writer, device, mode=params['mode'], label_num=params['label_num'])
            #print('validation loss -> {loss:.5f}, \t f1_score -> {f1_score:.5f}'.format(loss = validation_loss, f1_score = metric))
            #checkpoint = os.path.join(model_save_dir, str(epoch) + '.pth.tar')
            #torch.save(model.state_dict(),checkpoint)
            if metric > pre_metric:
                pre_metric = metric
                if params['model'] == 'eff':
                    save_model(model, optimizer, scheduler, epoch,
                               params['model'] + str(params['eff']))
                else:
                    save_model(model, optimizer, scheduler, epoch,
                               params['model'])
                model = model.to(device)
            print('Total F1_score : {metrics:.5f}'.format(metrics=metric))
            print('======================================================')

            #scheduler.step(metric)

        scheduler.step()

    writer.close()
Beispiel #2
0
def main():
    print(torch.__version__)
    cudnn.benchmark = False
    device = torch.device('cuda:{}'.format(params['gpu'][0]))

    cur_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
    logdir = os.path.join(params['log'], cur_time)
    if not os.path.exists(logdir):
        os.makedirs(logdir)

    writer = SummaryWriter(log_dir=logdir)
    #convert_csv(params['dataset'])
    print('Loading dataset')
    train_transform = create_train_transform(True,
                                             True,
                                             False,
                                             True,
                                             size=params['size'],
                                             bright=False)
    train_dataset = VideoDataset(params['dataset'],
                                 size=params['size'],
                                 mode='train',
                                 play_time=params['clip_len'],
                                 frame_sample_rate=params['frame_sample_rate'],
                                 transform=train_transform,
                                 sub_classnum=params['num_classes'],
                                 label_num=params['label_num'],
                                 stride_num=params['stride'],
                                 use_plot=params['use_plot'])
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=params['batch_size'],
                                  shuffle=True,
                                  num_workers=params['num_workers'],
                                  collate_fn=Collate_batch)

    val_transform = create_val_transform(True, size=params['size'])
    val_dataset = VideoDataset(params['dataset'],
                               size=params['size'],
                               mode='validation',
                               play_time=params['clip_len'],
                               frame_sample_rate=params['frame_sample_rate'],
                               transform=val_transform,
                               sub_classnum=params['num_classes'],
                               label_num=params['label_num'],
                               stride_num=params['stride'],
                               use_plot=params['use_plot'])
    val_dataloader = DataLoader(val_dataset,
                                batch_size=params['batch_size'],
                                shuffle=False,
                                num_workers=params['num_workers'],
                                collate_fn=Collate_batch)

    print('train_dataset : batch_size -> {}, step_size -> {}, frames -> {}'.
          format(params['batch_size'], len(train_dataloader),
                 params['clip_len']))
    print(
        'validation_dataset : batch_size -> {}, step_size -> {}, frames -> {}'.
        format(params['batch_size'], len(val_dataloader), params['clip_len']))
    print(
        '========================================================================================================='
    )
    print('Load model : mode -> {}, label_size -> {}, sub_class_num -> {}'.
          format(params['mode'], params['label_num'], params['num_classes']))

    ### regression ###

    #model = generate_model('XL', n_classes = params['label_num'])

    #### class - one label ###
    model = None
    if params['mode'] == 'single':
        if params['model'] == 'slowfast':
            model = slowfastnet.resnet50(class_num=params['num_classes'],
                                         label_num=params['label_num'],
                                         mode=params['mode'])
        elif params['model'] == 'x3d':
            model = x3d.generate_model('S', n_classes=params['num_classes'])

    ### multi ###
    elif params['mode'] == 'multi':

        if params['model'] == 'slowfast':
            model = multi_slowfastnet.resnet50(class_num=params['num_classes'],
                                               label_num=params['label_num'],
                                               mode=params['mode'])

        elif params['model'] == 'x3d':
            if params['use_plot']:
                plots = train_dataset.plots
                plots.extend(val_dataset.plots)
                counter = Counter()
                tokenizer = get_tokenizer('basic_english')
                for plot in plots:
                    counter.update(tokenizer(plot))
                vocab = Vocab(counter, min_freq=1)
                train_dataset.generate_text_pipeline(vocab, tokenizer)
                val_dataset.generate_text_pipeline(vocab, tokenizer)
                model = multi_x3d_plot.generate_model(
                    'S',
                    n_classes=params['num_classes'],
                    label_num=params['label_num'],
                    vocab_size=len(vocab))
            else:
                model = multi_x3d.generate_model(
                    'S',
                    n_classes=params['num_classes'],
                    label_num=params['label_num'])
        elif params['model'] == 'x3d_multitask':
            if params['use_plot']:
                plots = train_dataset.plots
                plots.extend(val_dataset.plots)
                counter = Counter()
                tokenizer = get_tokenizer('basic_english')
                for plot in plots:
                    counter.update(tokenizer(plot))
                vocab = Vocab(counter, min_freq=1)
                train_dataset.generate_text_pipeline(vocab, tokenizer)
                val_dataset.generate_text_pipeline(vocab, tokenizer)
                model = multi_x3d_plot_multitask_audio.generate_model(
                    'S',
                    n_classes=params['num_classes'],
                    label_num=params['label_num'],
                    vocab_size=len(vocab))

                ### add ###
                model = audio.ResNet()

        elif params['model'] == 'eff':
            model = efficientnet.EfficientNet3D.from_name(
                'efficientnet-b{}'.format(params['eff']),
                override_params={'num_classes': params['num_classes']},
                mode=params['mode'],
                label_num=params['label_num'])

    if params['pretrained'] != '':
        pretrained_dict = torch.load(params['pretrained'], map_location='cpu')
        try:
            model_dict = model.module.state_dict()
        except AttributeError:
            model_dict = model.state_dict()
        pretrained_dict = {
            k: v
            for k, v in pretrained_dict.items() if k in model_dict
        }
        print('load pretrained')
        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)
    '''
        ########
        state = torch.load('./saved_model/{}'.format(params['pretrained']))
        model.load_state_dict(state['model'])
    '''

    model = model.to(device)

    ### regression ###
    '''
    criterion = Custom_MSELoss(num_classes = params['num_classes']).cuda()
    '''
    ### classification ###
    if params['mode'] == 'single':
        '''
        criterion = nn.CrossEntropyLoss(weight = train_dataset.get_class_weight().to(device))
        '''
        criterion = Custom_CrossEntropyLoss(
            weight=train_dataset.get_class_weight().to(device))
    elif params['mode'] == 'multi':

        ### multi-class ##

        #criterion = Custom_MultiCrossEntropyLoss(weight = train_dataset.get_class_weight().to(device), label_num=params['label_num'])

        criterion1 = Custom_MultiCrossEntropyLoss(
            weight=train_dataset.get_class_weight2().to(device),
            label_num=params['label_num'])
        criterion2 = Custom_BCELoss()
        criterion3 = Custom_CrossEntropyLoss(
            weight=train_dataset.get_age_weight2().to(device))
    #optimizer = optim.SGD(model.parameters(), lr = params['learning_rate'], momentum = params['momentum'], weight_decay = params['weight_decay'])
    #scheduler = optim.lr_scheduler.StepLR(optimizer,  step_size = params['step'], gamma=0.1)

    optimizer = optim.SGD(model.parameters(),
                          lr=params['learning_rate'],
                          weight_decay=params['weight_decay'])

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     mode='max',
                                                     patience=1,
                                                     factor=0.5,
                                                     verbose=False)
    #scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max = 30, eta_min = 0)
    model_save_dir = os.path.join(params['save_path'], 'second')
    if not os.path.exists(model_save_dir):
        os.makedirs(model_save_dir)
    print("train gogosing")
    pre_metric = 0
    for epoch in range(params['epoch_num']):
        train(model,
              train_dataloader,
              epoch,
              criterion1,
              criterion2,
              criterion3,
              optimizer,
              writer,
              device,
              mode=params['mode'],
              label_num=params['label_num'],
              display=params['display'])
        if (epoch + 1) % 5 == 0:
            print('======================================================')
            print('validation gogosing')
            metric = val(model,
                         val_dataloader,
                         epoch,
                         criterion1,
                         criterion2,
                         criterion3,
                         optimizer,
                         writer,
                         device,
                         mode=params['mode'],
                         label_num=params['label_num'])
            #validation_loss, metric = val(model, val_dataloader, epoch, criterion, optimizer, writer, device, mode=params['mode'], label_num=params['label_num'])
            #print('validation loss -> {loss:.5f}, \t f1_score -> {f1_score:.5f}'.format(loss = validation_loss, f1_score = metric))
            #checkpoint = os.path.join(model_save_dir, str(epoch) + '.pth.tar')
            #torch.save(model.state_dict(),checkpoint)
            if metric > pre_metric:
                pre_metric = metric
                if params['model'] == 'eff':
                    save_model(model, optimizer, schediler, epoch,
                               params['model'] + params['eff'])
                else:
                    save_model(model, optimizer, scheduler, epoch,
                               params['model'])
                model = model.to(device)
            print('Total F1_score : {metrics:.5f}'.format(metrics=metric))
            print('======================================================')

            scheduler.step(metric)
        #scheduler.step()

    writer.close()