Beispiel #1
0
    def sumImages(self):
        unification = Unification(self.firstDecoder.name,
                                  self.secondDecoder.name, 'L')
        firstImage, secondImage = unification.grayUnification()
        width, height = firstImage.shape[0], firstImage.shape[1]

        maxSum = float(
            numpy.amax(
                numpy.add(firstImage.astype(numpy.uint32),
                          secondImage.astype(numpy.uint32))))
        maxValue = float(numpy.iinfo(firstImage.dtype).max)
        scaleFactor = (maxSum -
                       maxValue) / maxValue if maxSum > maxValue else 0

        result = numpy.ones((height, width), numpy.uint8)
        for h in range(height):
            for w in range(width):
                pom = (firstImage[h, w] - (firstImage[h, w] * scaleFactor)) + (
                    secondImage[h, w] - (secondImage[h, w] * scaleFactor))
                result[h, w] = numpy.ceil(pom)

        ImageHelper.Save(result, self.imageType, 'sum-gray-images', False,
                         self.firstDecoder, self.secondDecoder)
        result = Commons.Normalization(firstImage, result)
        ImageHelper.Save(result, self.imageType, 'sum-gray-images', True,
                         self.firstDecoder, self.secondDecoder)
Beispiel #2
0
    def divideImages(self):
        print('Divide gray image {} with image {}'.format(
            self.firstDecoder.name, self.secondDecoder.name))
        unification = Unification(self.firstDecoder.name,
                                  self.secondDecoder.name, 'L')
        firstImage, secondImage = unification.grayUnification()
        width, height = firstImage.shape[0], firstImage.shape[1]

        maxValue = float(numpy.iinfo(firstImage.dtype).max)
        maxSum = float(
            numpy.amax(
                numpy.add(firstImage.astype(numpy.uint32),
                          secondImage.astype(numpy.uint32))))
        scaleFactor = maxValue / maxSum

        result = numpy.ones((height, width), numpy.uint8)
        for h in range(height):
            for w in range(width):
                pom = (int(firstImage[h, w]) +
                       int(secondImage[h, w])) * scaleFactor
                result[h, w] = math.ceil(pom)

        ImageHelper.Save(result, self.imageType, 'divide-gray-images', False,
                         self.firstDecoder, self.secondDecoder)
        result = Commons.Normalization(firstImage, result)
        ImageHelper.Save(result, self.imageType, 'divide-gray-images', True,
                         self.firstDecoder, self.secondDecoder)
Beispiel #3
0
    def divideImages(self):
        print('Divide color image {} with image {}'.format(
            self.firstDecoder.name, self.secondDecoder.name))
        unification = Unification(self.firstDecoder.name,
                                  self.secondDecoder.name, self.imageType)
        firstImage, secondImage = unification.colorUnification()
        width, height = firstImage.shape[0], firstImage.shape[1]

        maxValue = float(numpy.iinfo(firstImage.dtype).max)
        sumR = float(
            numpy.amax(
                numpy.add(firstImage[:, :, 0].astype(numpy.uint32),
                          secondImage[:, :, 0].astype(numpy.uint32))))
        sumG = float(
            numpy.amax(
                numpy.add(firstImage[:, :, 1].astype(numpy.uint32),
                          secondImage[:, :, 1].astype(numpy.uint32))))
        sumB = float(
            numpy.amax(
                numpy.add(firstImage[:, :, 2].astype(numpy.uint32),
                          secondImage[:, :, 2].astype(numpy.uint32))))
        scaleR = maxValue / sumR
        scaleG = maxValue / sumG
        scaleB = maxValue / sumB

        result = numpy.ones((height, width, 3), numpy.uint8)
        for h in range(height):
            for w in range(width):
                R = (int(firstImage[h, w, 0]) +
                     int(secondImage[h, w, 0])) * scaleR
                G = (int(firstImage[h, w, 1]) +
                     int(secondImage[h, w, 1])) * scaleG
                B = (int(firstImage[h, w, 2]) +
                     int(secondImage[h, w, 2])) * scaleB
                result[h, w, 0] = numpy.ceil(R)
                result[h, w, 1] = numpy.ceil(G)
                result[h, w, 2] = numpy.ceil(B)

        ImageHelper.Save(result, self.imageType, 'divide-color-images', False,
                         self.firstDecoder, self.secondDecoder)
        result = Commons.Normalization(firstImage, result)
        ImageHelper.Save(result, self.imageType, 'divide-color-images', True,
                         self.firstDecoder, self.secondDecoder)
Beispiel #4
0
    def multiplyImages(self):
        print('Multiply gray image {} with image {}'.format(
            self.firstDecoder.name, self.secondDecoder.name))
        unification = Unification(self.firstDecoder.name,
                                  self.secondDecoder.name, 'L')
        firstImage, secondImage = unification.grayUnification()
        width, height = firstImage.shape[0], firstImage.shape[1]

        maxValue = float(numpy.iinfo(firstImage.dtype).max)
        result = numpy.ones((height, width), numpy.uint8)
        for h in range(height):
            for w in range(width):
                pom = int(firstImage[h, w]) * int(secondImage[h, w]) / maxValue
                result[h, w] = pom

        ImageHelper.Save(result, self.imageType, 'multiply-gray-images', False,
                         self.firstDecoder, self.secondDecoder)
        result = Commons.Normalization(firstImage, result)
        ImageHelper.Save(result, self.imageType, 'multiply-gray-images', True,
                         self.firstDecoder, self.secondDecoder)
Beispiel #5
0
    def blendImages(self, ratio):
        print('Blending gray image {} with image {} and ratio {}'.format(
            self.firstDecoder.name, self.secondDecoder.name, ratio))
        if ratio < 0 or ratio > 1.0:
            raise ValueError('ratio is wrong')

        unification = Unification(self.firstDecoder.name,
                                  self.secondDecoder.name, 'L')
        firstImage = unification.scaleUpGray(self.firstDecoder)
        secondImage = unification.scaleUpGray(self.secondDecoder)
        width, height = firstImage.shape[0], firstImage.shape[1]

        result = numpy.ones((height, width), numpy.uint8)
        for h in range(height):
            for w in range(width):
                pom = ratio * firstImage[h, w] + (1 - ratio) * secondImage[h,
                                                                           w]
                result[h, w] = pom

        ImageHelper.Save(result, self.imageType, 'blend-gray-images', False,
                         self.firstDecoder, None, ratio)
Beispiel #6
0
    def sumImages(self):
        print('Sum color image {} with image {}'.format(
            self.firstDecoder.name, self.secondDecoder.name))
        unification = Unification(self.firstDecoder.name,
                                  self.secondDecoder.name, self.imageType)
        firstImage, secondImage = unification.colorUnification()
        width, height = firstImage.shape[0], firstImage.shape[1]

        maxSum = float(
            numpy.amax(
                numpy.add(firstImage.astype(numpy.uint32),
                          secondImage.astype(numpy.uint32))))
        maxValue = float(numpy.iinfo(firstImage.dtype).max)
        scaleFactor = (maxSum -
                       maxValue) / maxValue if maxSum > maxValue else 0

        result = numpy.ones((height, width, 3), numpy.uint8)
        for h in range(height):
            for w in range(width):
                R = (firstImage[h, w, 0] -
                     (firstImage[h, w, 0] * scaleFactor)) + (
                         secondImage[h, w, 0] -
                         (secondImage[h, w, 0] * scaleFactor))
                G = (firstImage[h, w, 1] -
                     (firstImage[h, w, 1] * scaleFactor)) + (
                         secondImage[h, w, 1] -
                         (secondImage[h, w, 1] * scaleFactor))
                B = (firstImage[h, w, 2] -
                     (firstImage[h, w, 2] * scaleFactor)) + (
                         secondImage[h, w, 2] -
                         (secondImage[h, w, 2] * scaleFactor))
                result[h, w] = [numpy.ceil(R), numpy.ceil(G), numpy.ceil(B)]

        ImageHelper.Save(result, self.imageType, 'sum-color-images', False,
                         self.firstDecoder, self.secondDecoder)
        result = Commons.Normalization(firstImage, result)
        ImageHelper.Save(result, self.imageType, 'sum-color-images', True,
                         self.firstDecoder, self.secondDecoder)
def unificationModule():
    unification = Unification('Resources/kobieta.png', 'Resources/zawody.png',
                              "L")
    unification.geometricGray()
    unification.rasterGray()