Beispiel #1
0
 def draw_conv_series(self, x, shape=None):
     for xx in x:
         VisUtil.show_img(VisUtil.trans_img(xx, shape), "Original")
         activations = self._get_activations(np.array([xx]), predict=True)
         for i, (layer, ac) in enumerate(zip(self._layers, activations)):
             if len(ac.shape) == 4:
                 for n in ac:
                     _n, height, width = n.shape
                     a = int(ceil(sqrt(_n)))
                     g = np.ones((a * height + a, a * width + a), n.dtype)
                     g *= np.min(n)
                     _i = 0
                     for y in range(a):
                         for x in range(a):
                             if _i < _n:
                                 g[y * height + y:(y + 1) * height + y, x * width + x:(x + 1) * width + x] = n[
                                     _i, :, :]
                                 _i += 1
                     # normalize to [0,1]
                     max_g = g.max()
                     min_g = g.min()
                     g = (g - min_g) / (max_g - min_g)
                     VisUtil.show_img(g, "Layer {} ({})".format(i + 1, layer.name))
             else:
                 ac = ac[0]
                 length = sqrt(np.prod(ac.shape))
                 if length < 10:
                     continue
                 (height, width) = xx.shape[1:] if shape is None else shape[1:]
                 sqrt_shape = sqrt(height * width)
                 oh, ow = int(length * height / sqrt_shape), int(length * width / sqrt_shape)
                 VisUtil.show_img(ac[:oh*ow].reshape(oh, ow), "Layer {} ({})".format(i + 1, layer.name))
Beispiel #2
0
 def draw_conv_series(self, x, shape=None):
     x = np.array(x)
     for xx in x:
         VisUtil.show_img(VisUtil.trans_img(xx, shape), "Original")
         for i, (layer, ac) in enumerate(
                 zip(
                     self._layers,
                     self._get_acts(
                         np.array([xx.transpose(1, 2, 0)],
                                  dtype=np.float32)))):
             if len(ac.shape) == 4:
                 VisUtil.show_batch_img(
                     ac[0].transpose(2, 0, 1),
                     "Layer {} ({})".format(i + 1, layer.name))
             else:
                 ac = ac[0]
                 length = sqrt(np.prod(ac.shape))
                 if length < 10:
                     continue
                 (height,
                  width) = xx.shape[1:] if shape is None else shape[1:]
                 sqrt_shape = sqrt(height * width)
                 oh, ow = int(length * height / sqrt_shape), int(
                     length * width / sqrt_shape)
                 VisUtil.show_img(ac[:oh * ow].reshape(oh, ow),
                                  "Layer {} ({})".format(i + 1, layer.name))
Beispiel #3
0
 def draw_conv_series(self, x, shape=None):
     for xx in x:
         VisUtil.show_img(VisUtil.trans_img(xx, shape), "Original")
         activations = self._get_activations(np.array([xx]), predict=True)
         for i, (layer, ac) in enumerate(zip(self._layers, activations)):
             if len(ac.shape) == 4:
                 for n in ac:
                     _n, height, width = n.shape
                     a = int(ceil(sqrt(_n)))
                     g = np.ones((a * height + a, a * width + a), n.dtype)
                     g *= np.min(n)
                     _i = 0
                     for y in range(a):
                         for x in range(a):
                             if _i < _n:
                                 g[y * height + y:(y + 1) * height + y, x * width + x:(x + 1) * width + x] = n[
                                     _i, :, :]
                                 _i += 1
                     # normalize to [0,1]
                     max_g = g.max()
                     min_g = g.min()
                     g = (g - min_g) / (max_g - min_g)
                     VisUtil.show_img(g, "Layer {} ({})".format(i + 1, layer.name))
             else:
                 ac = ac[0]
                 length = sqrt(np.prod(ac.shape))
                 if length < 10:
                     continue
                 (height, width) = xx.shape[1:] if shape is None else shape[1:]
                 sqrt_shape = sqrt(height * width)
                 oh, ow = int(length * height / sqrt_shape), int(length * width / sqrt_shape)
                 VisUtil.show_img(ac[:oh*ow].reshape(oh, ow), "Layer {} ({})".format(i + 1, layer.name))
Beispiel #4
0
 def draw_conv_series(self, x, shape=None):
     x = np.asarray(x)
     for xx in x:
         VisUtil.show_img(VisUtil.trans_img(xx, shape), "Original")
         for i, (layer, ac) in enumerate(zip(
                 self._layers, self._get_acts(np.array([xx.transpose(1, 2, 0)], dtype=np.float32)))):
             if len(ac.shape) == 4:
                 VisUtil.show_batch_img(ac[0].transpose(2, 0, 1), "Layer {} ({})".format(i + 1, layer.name))
             else:
                 ac = ac[0]
                 length = sqrt(np.prod(ac.shape))
                 if length < 10:
                     continue
                 (height, width) = xx.shape[1:] if shape is None else shape[1:]
                 sqrt_shape = sqrt(height * width)
                 oh, ow = int(length * height / sqrt_shape), int(length * width / sqrt_shape)
                 VisUtil.show_img(ac[:oh * ow].reshape(oh, ow), "Layer {} ({})".format(i + 1, layer.name))