def main_program(shuffi, isCrossValidation): list_all_test = shuffi[0] list_all_station = shuffi[1] global D #time.sleep(100) print len(list_all_station) trend_curve = generateGlobalMatrix(date_from, date_to, list_all_station) D = generateDistanceMatrix(list_all_station) area_id = 0 genModelForArea(area_id, list_all_station, list_data, G, D) reGenerateSemiMatrix(list_all_station) print 'GLOBAL DATA' print global_data derivation = np.zeros([row,col]) result = np.zeros([row,col]) for i in xrange(0,row): #print i for j in xrange(0, col): #print i, j point = (minLat + i*shift,minLon + j*shift) f.write(str(i)+' '+ str(j)+ ':'+ str(point) +'\n') #if isInVietnam(point): result[i][j], derivation[i][j] = krigeOne(point, neighbor, list_all_station, list_data, G, D) trendValue = getTrendValue(trend_curve, point[0], point[1]) #print trendValue result[i][j] = result[i][j] + trendValue #exportGeotiff('filename', raster, row, col, shift, minLon, minLat) if isCrossValidation == False: exportGeotiff('t08_GEOTIFF_simple_kriging_one_model', result, row, col, shift, minLon, minLat ) saveAsPng(result) saveAsPng(derivation) if isCrossValidation: return calculateSE(result, list_all_test, minLat, minLon, shift, date_to)
def main_program(shuffi, isCrossValidation): f_se = open("Moiseture_f_se.txt", "a") f_se.write("Moiseture_se statistic\n") f_da = open("Moiseture_f_da.txt", "a") f_da.write("Moiseture_da statistic\n") list_all_test = shuffi[0] list_all_station = shuffi[1] global D # time.sleep(100) print len(list_all_station) trend_curve = generateGlobalMatrix(date_from, date_to, list_all_station) D = generateDistanceMatrix(list_all_station) area_id = 0 genModelForArea(area_id, list_all_station, list_data, G, D) reGenerateSemiMatrix(list_all_station) print "GLOBAL DATA" print global_data derivation = np.zeros([row, col]) result = np.zeros([row, col]) result_kri_backup = np.zeros([row, col]) for i in xrange(0, row): # print i for j in xrange(0, col): # print i, j point = (minLat + i * shift, minLon + j * shift) f.write(str(i) + " " + str(j) + ":" + str(point) + "\n") result[i][j], derivation[i][j] = krigeOne(point, neighbor, list_all_station, list_data, G, D) trendValue = getTrendValue(trend_curve, point[0], point[1]) # print trendValue result[i][j] = result[i][j] + trendValue result_kri_backup[i][j] = result[i][j] # DATA ASSIMILATION: assimilate # if sate_lite_value[i][j] != 0: # result[i][j] = assimilate(result[i][j], derivation[i][j], sate_lite_value[i][j], sate_lite_deri[i][j], f_da) # Assimilate with Utility.assimilate if isCrossValidation == False: exportGeotiff("Moiseture__GEOTIFF_universal_kriging", result, row, col, shift, minLon, minLat) exportGeotiff("Moiseture__GEOTIFF_universal_kriging_derivation", derivation, row, col, shift, minLon, minLat) saveAsPng(result) saveAsPng(derivation) f_da.close() f_se.close() if isCrossValidation: return calculateSE( result, result_kri_backup, list_all_test, minLat, minLon, shift, date_to, f, sate_lite_value, f_se )